
Chapter 13
Enhanced Operator Function Model
(EOFM): A Task Analytic Modeling
Formalism for Including Human Behavior
in the Verification of Complex Systems

Matthew L. Bolton and Ellen J. Bass

Abstract The enhanced operator function model (EOFM) is a task analytic

modeling formalism that allows human behavior to be included in larger formal sys-

tem models to support the formal verification of human interactive systems. EOFM

is an expressive formalism that captures the behavior of individual humans or, with

the EOFM with communications (EOFMC) extension, teams of humans as a col-

lection of tasks, each composed representing a hierarchy of activities and actions.

Further, EOFM has a formal semantics and associated translator that allow its repre-

sented behavior to be automatically translated into a model checking formalism for

use in larger system verification. EOFM supports a number of features that enable

analysts to use model checking to investigate human-automation and human-human

interaction. Translator variants support the development of different task models

with methods for accounting for erroneous human behaviors and miscommunica-

tions, the creation of specification properties, and the automated design of human-

machine interfaces. This chapter provides an overview of EOFM, its language, its

formal semantics and translation, and analysis features. It addresses the different

ways that EOFM has been used to evaluate human behavior in human-interactive

systems. We demonstrate some of the capabilities of EOFM by using it to evaluate

the air traffic control case study. Finally, we discuss future directions of EOFM and

its supported analyses.
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13.1 Introduction

In complex systems, failures often occur as a result of unexpected interactions

between components including contributions from human behaviors

(Hollnagel 1993; Perrow 1999; Reason 1990; Sheridan and Parasuraman 2005). To

design and analyze complex systems, human factors engineers use task analysis (Kir-

wan and Ainsworth 1992) to describe required normative human behaviors. Erro-

neous human behavior models provide engineers with means for exploring the poten-

tial impact of human error (Hollnagel 1993; Reason 1990). To support design and

analysis, Enhanced Operator Function Model (EOFM) (Bolton et al. 2011), based

on the Operator Function Model (Mitchell and Miller 1986), was developed to allow

engineers to represent task analytic human behavior formally and to include both nor-

mative and erroneous human behavior in formal verification analyses. EOFM with

communication (EOFMC) further supports models with coordination and commu-

nication among a team of people (Bass et al. 2011).

The analyses supported by EOFM and EOFMC have evolved from older tech-

niques that use formal verification to evaluate human-automation interaction (Bolton

et al. 2013). In particular, EOFM is similar to techniques that attempt to include

human behavior in formal verification analyses by using formal interpretations of

task analytic models. As such, EOFM supports similar sorts of evaluations offered by

other systems such as AMBOSS (Giese et al. 2008), ConcurTaskTrees (Aït-Ameur

and Baron 2006; Paternò and Santoro 2001; Paternò et al. 1997), User Action Nota-

tion (Hartson et al. 1990; Palanque et al. 1996), HAMSTER (Martinie et al. 2011,

2014), and various approaches that require task concepts to be directly represented

in other modeling formalisms (Basnyat et al. 2007; Degani et al. 1999; Fields 2001;

Gunter et al. 2009). However, EOFM and EOFMC distinguish themselves by the rich

feature set and the analyses they support. EOFM and EOFMC have formal semantics

that give the task behaviors specified by the XML language unambiguous, mathe-

matical meanings. The semantics serve as the basis for a series of translators that

automatically convert EOFMs, written in XML, into formal models that can be used

by a model checker. These translators support a number of different features that

generate alternate task models with erroneous behavior, properties that can be model

checked, and interface designs.1 A deeper discussion about the place of EOFM in

the larger formal HAI literature can be found in Bolton et al. (2011, 2013).

This chapter provides a general overview of EOFM and EOFMC. This includes

a description of the EOFM-supported analysis process, EOFM and EOFMC syntax,

formal semantics, translation, and a description of different analyses that leverage

EOFM and EOFMC. As concepts are introduced, we illustrate some of EOFMC’s

capabilities with a variation of the air traffic control case study. Below, the case study

is introduced. This is followed by a discussion of EOFM and its capabilities along

1The EOFM language specifications, translators, tools, documentation, and examples are freely

available at http://fhsl.eng.buffalo.edu/EOFM/.
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with applications to the case study. Finally, both the case study analysis results and

EOFM are generally discussed with pointers to additional applications and descrip-

tions of future research directions.

13.2 Case Study

To illustrate how EOFM can be used to evaluate a safety critical procedure involv-

ing human-human communication and coordination, we present a variation of Case

Study 2. Specifically, we present an EOFMC model where an aircraft heading clear-

ance is communicated by an air traffic controller (ATCo) to two pilots: the pilot flying

(PF) and the pilot monitoring (PM).

In this scenario, both the pilots and the air traffic controller have push-to-talk

switches which they press down when they want to verbally communicate informa-

tion to each other over the radio. They can release this switch to end communication.

For the aircraft, the Autopilot Flight Director System consists of Flight Con-

trol Computers and the Mode Control Panel (MCP). The MCP provides control of

the Autopilot (A/P), Flight Director, and the Autothrottle system. When the A/P is

engaged, the MCP sends commands to the aircraft pitch and roll servos to oper-

ate the aircraft flight control surfaces. Herein the MCP is used to activate heading

changes. The Heading (HDG)/Tracking (TRK) window of the MCP displays the

selected heading or track (Fig. 13.1). The numeric display shows the current desired

heading in compass degrees (from 0 and 359). Below the HDG window is the head-

ing select knob. Changes in the heading are achieved by rotating and pulling the

knob. Pulling the knob tells the autopilot to use the selected value and engages the

HDG mode.

AUTO
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Fig. 13.1 Heading control and display
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The following describes a communication protocol designed to ensure that this

heading is correctly communicated from the ATCo to the two pilots:

1. The air traffic controller contacts the pilots and gives them a new heading clear-

ance.

2. The PF starts the process of dialing the new heading into the heading window.

3. The pilots then attempt to confirm that the correct heading was entered. They do

this by having the PM point at the heading window, contact the ATCo, and repeat

back the heading the PM heard from the ATCo.

4. If the heading the PF hears read back to the air traffic controller does not match the

heading he or she entered in the heading window, the PF enters the heading heard

from the PM during the read back. The PM then points at the heading window

again and repeats the heading he or she originally heard from the ATCo. This

process (step 4) repeats while the heading window heading does not match what

the PM heard from the ATCo. It completes if the heading the PF heard from the

PM matches what is in the heading window.

5. If the heading the ATCo hears read back from the pilots (from step 3) does not

match the heading the air traffic controller intended, then the entire process (start-

ing at step 1) needs to be repeated until the correct heading is read back.

6. The PF engages the entered heading.

In what follows, we will show how EOFM concepts can be applied to this appli-

cation and various EOFM features are introduced.

13.3 Enhanced Operator Function Model (EOFM)
and EOFM with Communication (EOFMC)

EOFM and EOFMC (henceforth collectively referred to as EOFM except where

additional clarification about EOFMC is required) are task analytic modeling lan-

guages for representing human task behavior. The EOFM languages support the

formal verification approach shown in Fig. 13.2. An analyst examines target sys-

tem information (i.e. design document, observational data, manuals) to manually
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Fig. 13.2 Flow diagram showing how the verification method supported by EOFM works
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model normative human operator behavior (which can be a single human operator

or a team of human operators) using a task analytic representation, a formal sys-

tem model (absent human operator behavior), and specification properties that he or

she wants to check. The task analytic model is then automatically translated into the

larger formal model by a translation process. As part of this translation process, the

analyst can specify a maximum number of erroneous behaviors that will be mod-

eled as optional paths through the formal representation of the human operator task

behavior. The formal system model and the specifications are then run through the

model checker that produces a verification report. If a violation of the specification

is found, the report will contain a counterexample. Our visualizer uses the coun-

terexample and the original human task behavior model to illustrate the sequence of

human behaviors and related system states that led to the violation.

EOFM has an XML syntax that supports the hierarchical concepts compatible

with task analytic models. This represents task behavior as a hierarchy of goal-

directed activities (representing the behaviors and strategic knowledge required to

accomplish a goal) that can decompose into sub-activities (for achieving sub-goals)

and, at the bottom of the hierarchy, atomic actions (specific things the human oper-

ator(s) can do to the environment). The language allows for the modeling of human

behavior, either individuals or groups, as an input/output system. Inputs may come

from other elements of the system like human-device interfaces or the environment.

Output variables are human actions. The operators’ task models describe how human

actions may be generated based on input and local variables (representing percep-

tual or cognitive processing as well as group coordination and communication). To

support domain specific information, variables are defined in terms of constants,

analyst-defined types, and basic types (reals, integers, and Boolean values).

To represent the strategic knowledge associated with procedural activities, activ-

ities can have preconditions, repeat conditions, and completion conditions (Boolean

expressions written in terms of input, output, and local variables as well as con-

stants) that specify what must be true before an activity can execute, when it can exe-

cute again, and what is true when it has completed execution respectively. Activities

are decomposed into lower-level sub-activities and, finally, actions. Decomposition

operators specify how many sub-activities or actions can execute and what the tem-

poral relationships are between them. Actions are either an assignment to an output

variable (indicating an action has been performed) or a local variable (representing

a perceptual, cognitive, or group communication action). Optionally an action can

include a value so that the human operator can set a value as part of the action.

All tasks in an EOFM descend from a top level activity, where there can be

many tasks. Tasks can either belong to one human operator, or, in EOFMC, they

can be shared among human operators. A shared task must be associated with two

or more associates, and a subset of associates for the general task can be identified

for each activity. This makes it explicit which human operators are participating in

which activity. While the activities in these shared tasks can decompose in the same

ways as their single-operator counterparts, they can explicitly include human-human
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communication (a non-shared activity cannot). For communication, a value (com-

municated information) from one human operator can be received by one or more

other human operators (modeled as an update to a local variable).

13.3.1 Syntax

The EOFM language’s XML syntax is defined using the REgular LAnguage for

XML Next Generation (RELAX NG) standard (Clark and Murata 2001) (see

Figs. 13.3, 13.4 and 13.5). These provide an explicit description of the EOFM lan-

guage and can thus be employed by analysts when developing their own EOFM and

EOFMC models.2 Below we describe the EOFMC syntax. An example of the syn-

tax used in an actual model is shown in Fig. 13.7, with highlights showing specific

features.

XML documents contain a single root node whose attributes and sub-nodes define

the document. For the EOFM, the root node is called eofms. The next level of the

hierarchy has zero or more constant nodes, zero or more userdefinedtype nodes, and

one or more humanoperator nodes. The userdefinedtype nodes define enumerated

types useful for representing operational environment, human-device interface, and

human mission concepts. A userdefinedtype node is composed of a unique name

attribute (by which it can be referenced) and a string of data representing the type

construction (the syntax of which is application dependent). A constant node is

defined by a unique name attribute, either a userdefinedtype attribute (the name

attribute of a userdefinedtype node) or basictype attribute. A constant node also

allows for the definition of constant mappings and functions through the addition of

optional (zero or more) parameter attributes for defining function arguments.

The humanoperator nodes represent the task behavior of the different human

operators. Each humanoperator has zero or more input variables (inputvariable
nodes and inputvariablelink nodes for variables shared with other human operators),

zero or more local variables (localvariable nodes), one or more human action output

variables (humanaction nodes) or human communication actions (humancomaction
nodes), and one or more task models (eofm nodes). A human action (a humanac-
tion node) describes a single, observable, atomic act that a human operator can per-

form. A humanaction node is defined by a unique name attribute and a behavior
attribute which can have one of three values: autoreset (for modeling a single discrete

action such as flipping a switch), toggle (for modeling an action that must be started

and stopped as separate discrete events such as starting to hold down a button and

then releasing it), or setvalue for committing a value in a single action. This type of

human action has an additional attribute that specifies the type of the value being set

2Note that although EOFM does not have its own language creation tool, the RELAX NG lan-

guage specification allows professional XML development environments (such as oXygen XML

Editor; https://www.oxygenxml.com/) to facilitate rapid model development with code completion

and syntax checking capabilities.
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Fig. 13.3 A visualization of the EOFM Relax NG language specification that species EOFM

syntax (see Syncro Soft 2016 for more details). Yellow indicates constructs added to EOFM for

EOFMC. Other colors are used to indicate nodes representing identically defined syntax elements

across Figs. 13.3, 13.4 and 13.5. The language specification for activity and sharedeofm nodes can

be found in Figs. 13.4 and 13.5 respectively
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Fig. 13.4 Syntax visualization of the activity node from Fig. 13.3

Fig. 13.5 Syntax visualization of the sharedeofm node from Fig. 13.3

(a reference to a userdefinedtype or a basictype) or a reference to a local variable

which will contain the value to be set. A human communication action (a humanco-
maction node) describes a special type of setvalue action that a human operator can

use to communicate something (a value or the value stored in an associated variable)

to one or more other human operators.

Input variables (inputvariable nodes) are composed of a unique name attribute

and either a userdefinedtype or basictype attribute (defined as in the constant node).

To support the definition of inputs that can be perceived concurrently by multiple

human operators (for example two human operators hearing the same alarm issued
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by an automated system) the inputvariablelink node allows a humanoperator node

to access input variables defined in a different humanoperator node using the same

input variable name. Local variables are represented by localvariable nodes, them-

selves defined with the same attributes as an inputvariable or constant node, with

an additional sub-node, initialvalue, a data string with the variable’s default initial

value.

The task behaviors of a human operator are defined using eofm nodes. One eofm
node is defined for each goal directed task behavior. The tasks are defined in terms of

activity and action nodes. An activity node is represented by a unique name attribute,

a set of optional conditions, and a decomposition node. Condition nodes contain

a Boolean expression (in terms of variables and human actions) with a string that

constrains the activity’s execution. The following conditions are supported:

∙ Precondition (precondition in the XML): criterion to start executing;

∙ RepeatCondition (repeatcondition in the XML): criterion to repeat execution; and

∙ CompletionCondition (completioncondition in the XML): criterion to complete

execution.

An activity’s decomposition node is defined by a decomposition operator (an

operator attribute) and a set of activities (activity or activitylink nodes) or actions

(action nodes). The decomposition operator (Table 13.1) controls the cardinal and

Table 13.1 Decomposition operators

Operator Description

optor_seq Zero or more of the activities or actions in the decomposition

must execute in any order one at a time

optor_par Zero or more of the activities or actions in the decomposition

must execute in any order and can execute in parallel

or_seq One or more of the activities or actions in the decomposition

must execute in any order one at a time

or_par One or more of the activities or actions in the decomposition

must execute in any order and can execute in parallel

and_seq All of the activities or actions in the decomposition must

execute in any order one at a time

and_par All of the activities or actions in the decomposition must

execute in any order and can execute in parallel

xor Exactly one activities or actions in the decomposition must

execute

ord All activities or actions in the decomposition must execute in

the order they appear

sync All activities or actions in the decomposition must execute

synchronously

com All activities or actions in the decomposition must execute

synchronously, where information is transferred between

human operators
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temporal execution relationships between the sub-activity and action nodes in the

decomposition (its children). The EOFM language implements the following decom-

position operators: and, or, optor, xor, ord, and sync. The com decomposition

operator is exclusive to EOFMC. Some operators have two modalities: sequential

(suffixed_seq) and parallel (suffixed_par). For the sequential mode, the activities

or actions must be executed one at a time. In parallel mode, the execution of activ-

ities and action in the decomposition may overlap in any manner. For the xor, ord,

sync, and com decomposition operators, only one modality can be defined: xor and

ord are always sequential and sync and com are always parallel.

The activity nodes represent lower-level sub-activities and are defined identically

to those higher in the hierarchy. Activity links (activitylink nodes) allow for reuse of

model structures by linking to existing activities via a link attribute which names the

linked activity node.

The lowest level of the task model hierarchy is represented by either observable,

atomic human actions or internal (cognitive or perceptual) ones, all using the action
node. For an observable human action, the name of a humanaction node is listed

in the humanaction attribute. For an internal human action, the valuation of a local

variable is specified by providing the name of the local variable in the localvariable
attribute and the assigned value within the node itself.

Shared tasks are defined in sharedeofm nodes. Each sharedeofm contains two or

more associate nodes explicitly defining which human operators collaborate to per-

form the shared tasks defined within these nodes. Tasks themselves are represented

with the same hierarchy of activities and actions as in individual human operator

tasks. The associates of each activity must be a subset of the associates of its ances-

tors. If no associates are defined in an activity, the associates are inherited from its

parent node. Each action node is associated with a humanaction, localvariable, or

communicationaction defined under the different human operators. Thus an action
in a shared task is already affiliated with a humanoperator and does not require an

explicitly defined associate.

While the activities in these shared tasks can decompose in the same ways as

their single-operator counterparts, they have an additional decomposition option.

The com decomposition operator explicitly models human-human communication.

Assuming the associates are participating in the communication, com is a special

form of the sync decomposition operator and assumes information is being trans-

ferred between human operators. The decomposition must start with the performance

of a humancomaction, which commits a value (communicated information either

explicitly defined in the XML markup or from a variable originally associated with

the humancomaction when it was defined). The decomposition ends with one or

more actions explicitly pointing to local variables to allow other human operators to

register the information communicated via the humancomaction.
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13.3.2 Visual Notation

The structure of an instantiated3 EOFMC’s task behaviors can be represented visu-

ally as a tree-like graph structure, where actions are depicted by rectangular nodes

and activities by rounded rectangle nodes (see Fig. 13.6). In these visualizations,

conditions are connected to the activity they modify: a Precondition is represented

by a yellow, downward pointing triangle connected to the left side of the activity;

a CompletionCondition is presented as a magenta, upward pointing triangle con-

nected to the right of the activity; and a RepeatCondition is conveyed as a recursive

arrow attached to the top of the activity. These standard colors are used for condi-

tion shapes to help distinguish them from each other and the other task structures.

A decomposition is presented as an arrow, labeled with the decomposition opera-

tor, extending below an activity that points to a large rounded rectangle contain-

ing the decomposed activities or actions. Activities are labeled with the associated

activity name. Actions are labeled with the name of the associated humanaction,

localvariable, or humancomaction name. Values committed by a humanaction with

set value behavior, assigned to a localvariable assignment, or communicated by a

humancomaction are shown in bold below this label. Communication actions are

presented in the same decomposition as the local variables used for receiving the

communication. Arrows are used to show how the communicated value is sent to the

other local variables in the decomposition. These visualizations can be automatically

generated from the XML source, as is currently done with a MS Visio plugin we have

created (Bolton and Bass 2010c). The visualizations are useful because they help

communicate encapsulated task concepts in publications and presentations. They

also facilitate counterexample visualization, something discussed in more depth in

Sect. 13.3.8.

13.3.3 Case Study Model

We implemented the task from our communication protocol application in EOFMC.

Figure 13.6 depicts its visualization while Fig. 13.7 shows the corresponding XML.

The entire process starts when the ATCo has a new, correct clearance to communi-

cate to the pilots (lATCoClearance = CorrectHeading; the precondition to aChange-
Heading). This allows for the performance of aChangeHeading and its first sub-

activity aCommandAndConfirm. The ATCo performs the aToggleATCoTalk activ-

ity by pressing his push-to-talk switch (hATCoToggleTalkSwitch). Then, the ATCo

communicates the heading (aToggleATCoTalk4) to the pilots (lATCoClearance via

the sATCoTalk human communication action), such as “AC1 Heading 070 for spac-

ing.” Both pilots remember this heading (stored in the local variables lPFHead-

3An EOFM model created using the EOFM XML-based language.
4In this example, all headings are modeled abstractly as either being CorrectHeading, if it matches

the heading clearance the ATCo intended to communicate, or IncorrectHeading, if it does not.
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Fig. 13.6 Visualization of the instantiated EOFMC communication protocol from Fig. 13.7. The

task is colored based on the associates (human operators) performing the task (see the legend)
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Fig. 13.7 EOFM XML for the communication protocol application. Specific EOFM language

features are highlighted and labeled with bolded italic text
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ingFromATCo and lPMHeadingFromATCo for the PF and PM respectively). The

ATCo releases the switch (under the second instance of aToggleATCoTalk; an activ-
itylink in Fig. 13.7). Then, the PF performs the procedure for changing the head-

ing in the heading window (aMakeTheChange): pushing the heading select knob

(hPFPushHeadingSelectKnob), rotating it (hPFRotateToHeading) to the heading

that the PF heard from the ATCo (lPFHeadingFromATCo), and pulling the heading

select knob (hPFPullHeadingSelectKnob).

Next, the pilots perform a read back procedure (aConfirmTheChange). They do

this by having the PM point at the heading window value (which can be observed by

the PF) and the PM performs the procedure for repeating back the heading that the

PM heard from the ATCo to the PF and the ATCo.

If the heading in the window does not match the heading the PF just heard read

back to the ATCo, the pilots must collaborate to update the heading (aUpdateThe-
Heading). To do this, the PF enters the heading he or she heard read back to the ATCo

by the PM (aCorrectThePF). If this heading in the window still does not match the

heading the PM heard from the ATCo, the PM again points at the heading window

and repeats the heading he or she heard from the ATCo back to the PF (all under

aCorrectThePF). This entire process repeats as long as the heading window does

not match the heading the PM heard from the ATCo.

If the clearance the ATCo heard read back from the pilots does not match what

the ATCo intended, aCommAndConfirm must repeat until this is true. Once this is

true, the PF engages the entered heading.

13.3.4 Formal Semantics

We now formally describe the semantics of the EOFM language’s task models:

explicitly defining how and when each activity and action in a task structure is Exe-
cuting.

An activity’s or action’s execution is controlled by how it transitions between

three discrete states:

∙ Ready: the initial (inactive) state which indicates that the activity or action is wait-

ing to execute;

∙ Executing: the active state which indicates that the activity or action is executing;

and

∙ Done: the secondary (inactive) state which indicates that the activity has finished

executing.

While Preconditions, RepeatConditions, and CompletionConditions can be used

to describe when activities and actions transition between these execution states,

three additional conditions are required. These conditions support transitions based

on the activity’s or action’s position in the task structure, the execution state of its

parent, children (activities or actions into which the activity decomposes), and sib-

lings (activities or actions contained within the same decomposition).
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∙ StartCondition: implicit condition that triggers the start of an activity or action

defined in terms of the execution states of its parent and siblings.

∙ EndCondition: implicit condition to end the execution of an activity or action

defined in terms of the execution state of its children.

∙ Reset: implicit condition to reset an activity (have it return to the Ready execution

state).

For any given activity or action in a decomposition, a StartCondition is comprised

of two conjuncts with one stipulating conditions on the execution state of its parent

and the other on the execution state of its siblings based on the parent’s decomposi-

tion operator, generally formulated as:

(𝑝𝑎𝑟𝑒𝑛𝑡.𝑠𝑡𝑎𝑡𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔) ∧
⋀

∀𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 s
(𝑠.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔)

This is formulated differently depending on the circumstances. If the parent’s

decomposition operator has a parallel modality, the second conjunct is eliminated.

If the parent’s decomposition operator is ord, the second conjunct is reformulated

to impose restrictions only on the previous sibling in the decomposition order:

(𝑝𝑟𝑒𝑣_𝑠𝑖𝑏𝑙𝑖𝑛𝑔.𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒). If it is the xor decomposition operator, the second con-

junct is modified to enforce the condition that no other sibling can execute after one

has finished: ⋀
∀𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 s

(𝑠.𝑠𝑡𝑎𝑡𝑒 = 𝑅𝑒𝑎𝑑𝑦)

An activity without a parent (a top level activity) will eliminate the first conjunct.

Top level activities that are defined for a given humanoperator treat each other as

siblings in the formulation of the second conjunct with an assumed and_seq rela-

tionship. All other activities are treated as if they are in an and_par relationship and

are thus not considered in the formulation of the StartCondition. Top level activities

that are defined for sharedeofms treat all other activities as if they are in an and_par
relationship, thus they have StartConditions that are always true.

An EndCondition is also comprised of two conjuncts both related to an activity’s

children. Since an action has no children, an action’s EndCondition defaults to true.

The first conjunct asserts that the execution states of the activity’s children satisfy the

requirements stipulated by the activity’s decomposition operator. The second asserts

that none of the children are Executing. This is generically expressed as follows:( ⨁
∀𝑠𝑢𝑏𝑎𝑐𝑡𝑠 c

(𝑐.𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒)

)
∧

⋀
∀𝑠𝑢𝑏𝑎𝑐𝑡𝑠 c

(𝑐.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔)

In the first conjunct,
⨁

(a generic operator) is to be substituted with ∧ if the activ-

ity has the and_seq, and_par, sync, or com decomposition operator; and ∨ if the

activity has the or_seq, or_par, or xor decomposition operator. Since optor_seq and

optor_par enforce no restrictions, the first conjunct is eliminated when the activity

has either of these decomposition operators. When the activity has the ord decompo-
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(a) (b)

Fig. 13.8 a Execution state transition diagram for a generic activity. b Execution state transition

diagram for a generic action

sition operator, the first conjunct asserts that the last activity or action in the decom-

position has executed.

The Reset condition is true when an activity’s or action’s parent transitions from

Done to Ready or from Executing to Executing when it repeats execution. If the

activity has no parent (i.e., it is at the top of the decomposition hierarchy), Reset is

true if that activity is in the Done execution state.

The StartCondition, EndCondition, and Reset conditions are used with the Pre-
condition, RepeatCondition, and CompletionCondition to define how an activity or

action transitions between execution states. This is presented in Fig. 13.8 where states

are represented as nodes (rounded rectangles) and transitions as arcs. Guards are

attached to each arc.

The transitions for an activity (Fig. 13.8a) are described in more detail below:

∙ An activity is initially in the inactive state, Ready. If the StartCondition and Pre-
condition are satisfied and the CompletionCondition is not, then the activity can

transition to the Executing state. However, if the StartCondition and Completion-
Condition are satisfied, the activity moves directly to Done.

∙ When in the Executing state, an activity will repeat execution when its EndCondi-
tion is satisfied as long as its RepeatCondition is true and its CompletionCondition
is not. An activity transitions from Executing to Done when both the EndCondition
and CompletionCondition are satisfied.

∙ An activity will remain in the Done state until its Reset condition is satisfied, where

it returns to the Ready state.

Note that if an activity does not have a Precondition, the Precondition condition

is considered to be true. If the activity does not have a CompletionCondition, the

CompletionCondition clause is removed from all possible transitions and the Ready
to Done transition is completely removed (Fig. 13.8a). If the activity does not have

a RepeatCondition, the Executing to Executing transition is removed (Fig. 13.8a).
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The transition criteria for an action is simpler (Fig. 13.8b) since an action cannot

have a Precondition, CompletionCondition, or RepeatCondition. Because actions do

not have any children, their EndConditions are always true. Actions in a sync or com
decomposition must transition through their execution states at the same time.

The behavior of human action outputs and local variable assignments are depen-

dent on the action formal semantics. For a humanaction with autoreset behavior,

the human action output occurs when a corresponding action node in the EOFM

task structure is Executing and does not otherwise. For a humanaction with toggle
behavior, the human action switches between occurring or not occurring when a cor-

responding action node is Executing. A humanaction with a setvalue behavior will

set the corresponding human action’s value when the action is Executing. Similarly,

a communication action or a local variable assignment associated with an action
node will occur when the action is Executing.

13.3.5 EOFM to SAL Translation

To be utilized in a model checking verification, models written using EOFM’s XML

notation must be translated into a model checking language. We use the formal

semantics to translate XML into the language of the Symbolic Analysis Laboratory

(SAL). SAL was selected for use with EOFM because of the expressiveness of its

notation, its support for a suite of checking and auxiliary tools, and its cutting edge

performance at the time of EOFM’s development. SAL is a framework for combining

different tools to calculate properties of concurrent systems (De Moura et al. 2003;

Shankar 2000). The SAL language (see De Moura et al. 2003) is designed for spec-

ifying concurrent systems in a compositional way. Constants and types are defined

globally. Discrete system components are represented as modules. Each module is

defined in terms of input, output, and local variables. Modules are linked by their

input and output variables. Within a module, local and output variables are given ini-

tial values. All subsequent value changes occur as a result of transitions. A transition

is composed of a guard and a transition assignment. The guard is a Boolean expres-

sion composed of input, output, and local variables as well as SAL’s mathematical

operators. The transition assignment defines how the value of local and output vari-

ables change when the guard is satisfied. The SAL language is supported by a tool

suite which includes state of the art symbolic (SAL-SMC), bounded (SAL-BMC),

and “infinite” bounded (SAL-INF-BMC) model checkers. Auxiliary tools include a

simulator, deadlock checker, and an automated test case generator.

The EOFM to SAL translation is automated by custom Java software that uses the

Document Object Model (Le Hégaret 2002) to parse EOFM’s XML code and con-

vert it into SAL code. Currently, several different varieties of EOFM to SAL trans-

lators exist; each supports different subsets of EOFM functionality. For example,

there is a different translator for EOFMC that allows for the modeling and analy-

ses of human-human communication and coordination. Despite the difference, the

translators generally function on the same principles.
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For a given instantiated EOFM, the translator defines SAL constants and types

using the constant and userdefinedtype nodes. The translator creates a single SAL

module for the group of human operators represented in humanoperator and share-
deofm nodes. Input, local, and output variables are defined in each module corre-

sponding to the humanoperator nodes’ inputvariable, localvariable, and humanac-
tion nodes respectively. Input and local variables are defined in SAL using the name
and type (basictype or userdefinedtype) attributes from the XML. Local variables are

initialized to their values from the markup. All output variables represent human-
actions. They are either treated as Boolean (for actions with autoreset and toggle
behavior; true indicates this action is being performed) or are given the type associ-

ated with the value they carry (for setvalue behavior).

The translator defines two Boolean variables in the group module to handle a

coordination handshake with the human-device interface module (see Bolton and

Bass 2010a):

1. An input variable InterfaceReady that is true when the interface is ready to receive

input; and

2. An output variable ActionsSubmitted that is true when one or more human actions

are performed.

The ActionsSubmitted output variable is initialized to false.

The translator defines a SAL type, ActivityState, to represent the execution states

of activities and actions: Ready, Executing, or Done (Fig. 13.8). As described pre-

viously, the activity and action state transactions define the individual and coordi-

nated tasks of the group of human operators (Fig. 13.8). Each activity and action

in a task structure has an associated local variable of type ActivityState. The transi-

tions between the execution state for each activity and action are explicitly defined

as nondeterministic transitions in the module representing human task behavior.

Figure 13.9 presents patterns that show how the transitions from Fig. 13.8a for each

activity are implemented in SAL by the translator. Note that for a given activity, the

StartCondition and EndCondition are defined in accordance with the formal seman-

tics (see Sect. 13.3.4). It is also important to note that, in these transitions, if an

activity does not have a particular strategic knowledge condition, the clause in the

transition guard is eliminated. Further, if an activity does not have a repeat condi-

tion, the Executing to Executing condition is eliminated completely. If an activity

does not have a CompletionCondition, the Ready to Done transition is eliminated.

Because the Reset occurs when an activity’s parent resets, the Reset transition is han-

dled differently than the others. When a parent activity transitions from Executing
to Executing, its children’s execution state variables (and all activities and actions

lower in the hierarchy) are assigned the Ready state (see the Executing to Executing
transition in Fig. 13.9a). Additionally, for each activity at the top of a task hierar-

chy, a transition (Fig. 13.9b) is created that checks if its execution state variable is

Done. Then, in the transition assignment, this variable is assigned a value of Ready
along with the lower level activities and actions in order to achieve the desired Reset
behavior.
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(a)

(b)

Fig. 13.9 Patterns of SAL transitions used for an activity to transition between its execution state.

a Represents all but the Reset transition. b Represents the Reset transition. Note that this Reset

transition only occurs for activities at the top of a task model hierarchy (ones with no parent).

Other resets occur based on the assignments that occur in these types of transitions or in repeat

transitions (see a). In SAL notation (see De Moura et al. 2003), [] indicates the beginning of a

nondeterministic transition. This is followed by a Boolean expression representing the transition’s

guard. The guard ends with a –>. This is followed underneath by a series of variable assignments

where a ’ on the end of a variable indicates that the variable is being used in the next state. Color

is used to improve code readability. Comments are green, variables are dark blue, reserved SAL

words are light blue, and values are orange. Purple is used to represent expressions, such activity

conditions, or values that would be explicitly inserted into the code by the translator

Transitions between execution states for variables associated with action nodes

that represent humanactions are handled differently due to the variable action types

and behaviors, simpler formal semantics, and the coordination handshake. Because

resets are handled by activity transitions, explicit transitions are only required for

activity Ready to Executing and Executing to Done transitions. Figure 13.10 shows

how the Ready to Executing transitions are represented for each of the different action

types. Note that only actions that are humanactions must wait for InterfaceReady to

be true to execute. This is because these are the only actions that produce behavior

that needs to be observed by other elements in the formal model (Fig. 13.10a–c).

In the variable assignment for each of the actions, ActionsSubmitted is set to true.

Similarly, to improve model scalability, other types of human actions (local vari-

able assignments and communication actions; Fig. 13.10d, e) do not make use of the

coordination protocol. Their Executing to Done transitions also occur automatically

following the Ready to Executing because an action’s EndCondition is always true.

Thus, the transitions shown in Fig. 13.10 effectively show a Ready to Done transi-

tion with all of the work associated with the action Executing occurring. Actions

that fall in a sync decomposition are handled in accordance with the transitions in

Fig. 13.10. Specifically, the StartCondition of the first action in the decomposition
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(a) (b)

(c)

(e)

(d)

Fig. 13.10 Patterns of SAL transitions used for an action to transition from Ready to Executing
and/or Ready to Done with an implied execution in between. a The pattern used for a humanaction
with autoreset behavior. b The pattern used for a humanaction with toggle behavior. c The pattern

used for a humanaction with setvalue behavior. d The pattern used for a localvariable action.

e The pattern used for a communication action. Note that LocalVariable1–

LocalVariableN represent local variables in a com decomposition that received the

value communicated. Further note that in c, d, and e, Value is used to represent a variable or

specific value from the XML markup

must be satisfied in the transition guard and the variable assignment next state values

for all actions in the decomposition are done in accordance with their type.

Because the EndCondition for all actions is always true, the Executing to Done
transition for humanactions is handled by a single guard and transition assignment

(Fig. 13.11). In this, the guard accounts for the handshake protocol. Thus the guard

specifies that ActionsSubmitted is true and that InterfaceReady is false: verifying

that the interface has received submitted humanaction outputs. In the assignment,

ActionsSubmitted is set to true; any execution state variable associated with an Exe-
cuting humanaction is set to Done (it is unchanged otherwise); and any humanaction
output variables that supports the autoreset behavior are set to false.

Because all of the transitions are non-deterministic, multiple activities can be

executed independently of each other when _par decomposition operators are used,

when they are in non-shared task structures of different human operators, and when

they are in sharedeofms. Multiple human actions resulting from such relationships

are treated as if they occur at the same time if the associated humanaction out-

put variables change during the same interval (a sequential set of model transi-

tions) when InterfaceReady is true. However, human actions need not wait for all
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(a) (b)

(c)

(e)

(d)

Fig. 13.11 SAL transition pattern used to handle action Executing to Done transitions

possible actions to occur once InterfaceReady has become true. In this way, all pos-

sible overlapping and interleaving of parallel actions can be considered.

For our communication protocol case study, the EOFMC XML (Fig. 13.7) was

translated into SAL using the automated translator.5 The original model contained

164 lines of XML code. The translated model contained 490 lines of SAL code. A

full listing of the model code can be found at http://tinyurl.com/EOFMCBook.6 This

model was asynchronously composed with a simple model representing the heading

change window, where the heading can be changed when the pilot rotates the heading

knob. These two models were composed together to create the full system model used

in the verification analyses.

13.3.6 Erroneous Behavior Generation

EOFM supports three different types of erroneous behavior generation, each based

on different theory and supported by different translators. For each of these genera-

tion techniques, an analyst can specify a maximum number of erroneous behaviors

5This translation also included miscommunication generation. This is discussed subsequently in

Sect. 13.3.6.3.
6Note that variables presented in the text are slightly different than in the model to improve read-

ability.
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to consider. The associated translator then creates a formal model that will generate

a formal representation of the EOFM represented behavior with the ability to per-

form erroneous behaviors based on the theory being used. When paired with a larger

formal model and evaluated with model checking, the model checker will verify that

the specification properties are either true or not with up to the maximum number

of erroneous behaviors occurring, in all of the possible ways the erroneous behavior

can occur up to the maximum. Thus, this feature allows consideration of the impact

that potentially unanticipated erroneous behavior can have on system safety.

13.3.6.1 Phenomenological Erroneous Behavior Generation

The first erroneous behavior generation technique is only supported by non-EOFMC

versions of EOFM. In this generation technique (introduced in Bolton and Bass

2010b and further developed in Bolton et al. 2012), each action in an instantiated

EOFM task is replaced with a generative task structure that allows for the perfor-

mance of Hollnagel’s (1993) zero-order phenotypes of erroneous action (Fig. 13.12).

Specifically, when it is time to execute an action, the new model allows for the

Fig. 13.12 EOFM task pattern that replaces actions at the bottom of EOFM task hierarchies to

generate zero-order phenotypes of erroneous action
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performance of the original action, the omission of that action, the repetition of the

original action, and the commission of another action. Multiple erroneous repetitions

and commissions can occur after either the performance of the original action and/or

other repetitions or commissions. It is through multiple performances of erroneous

actions that more complicated erroneous behaviors (more complex phenotypes) are

possible.

Whenever an erroneous activity executes, a counter (PCount) increments. Pre-

conditions on each activity keep the number of erroneous acts from exceeding the

analyst specified maximum (PMax). The preconditions also ensure that there is only

one way to produce a given sequence of actions for each instance of the structure.

For example, an omission can only execute if no other activity in the structure has

executed (all other activities must be Ready) and every other activity can only exe-

cute if there has not been an omission. See Fig. 13.12 and Bolton et al. (2012) for

more details.

Note that analysts wishing to use this or the following erroneous behavior gen-

eration features will likely want to do so iteratively. That is, start with a maximum

number of erroneous behaviors of 0 and incrementally increase it while checking

desired properties at each iteration. This approach helps analysts keep model com-

plexity under control while allowing them to evaluate the robustness of a system

until they find a failure or are satisfied with the performance of their model.

13.3.6.2 Attentional Failure Generation

The second erroneous behavior generation technique (Bolton and Bass 2011, 2013)

is supported by translators for both the original EOFM and EOFMC. Rather than

generate erroneous behavior from the action level up, this second approach attempts

to replicate the physical manifestation of Reason’s slips (1990). Specifically, humans

may have failures of attention that can result in them erroneously omitting, repeat-

ing, or committing an activity. We can replicate this behavior by changing the way

the translator interprets the EOFM formal semantics. Specifically, all of the origi-

nal transitions from the original formal semantics are retained (Fig. 13.8). However,

additional, erroneous transitions are also included (Fig. 13.13) to replicate a human

operator not properly attending to the environmental conditions described in EOFM

strategic knowledge. A human operator can fail to properly attend to when an activ-

ity should be completed and perform an omission (an erroneous Ready to Done or

Executing to Done transition), can fail to properly attend to an activity’s Precon-
dition and perform an erroneous Ready to Executing transition (a commission), or

not properly attend to when an activity can repeat and perform a repetition (an erro-

neous Executing to Executing transition). Whenever an erroneous transition occurs, a

counter (ACount) is incremented. An erroneous transition is only allowed to occur if

the counter has not reached a maximum (ACount < AMax). More information on this

erroneous behavior generation technique can be found in Bolton and Bass (2013).



366 M.L. Bolton and E.J. Bass

Fig. 13.13 Additional transitions, beyond those shown in Fig. 13.8a, used to generate erroneous

behaviors caused by a human failing to attend to information in EOFM strategic knowledge condi-

tions

13.3.6.3 Miscommunication Generation

The final erroneous behavior generation is only supported by EOFMC transla-

tion and relates to the generation of miscommunications in communication events

(Bolton 2015). This generation approach works similarly to attentional failure gen-

eration in that it adds additional formal semantics representing erroneous behaviors.

Thus, miscommunication generation keeps all of the formal semantics described in

Sect. 13.3.4. However, for each transition representing a human-human communica-

tion action, an additional transition is created (Fig. 13.14). In this, the value commu-

nicated can either assume the correct value meant for the original, non-erroneous,

transition or any other possible communicable value as determined by the type of the

information being communicated. Similarly, the local variables that are assigned the

communicated value received by the other human operators can be assigned the value

of what was actually communicated or some other possible communicable value. In

this way, our method is able to model miscommunications as an incorrect message

being sent, an incorrect message being received, or both. As with the other erroneous

behavior generation methods, this approach is regulated by a counter (CCounter) and

an analyst specified maximum (CMax). Every time a miscommunication occurs, a

counter is incremented; and an erroneous transition can only ever occur if the counter

is less than the maximum. More information on this process can be found in Bolton

(2015).
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Fig. 13.14 SAL transition pattern used for generating miscommunications. In this, ComType
is meant to represent the data type of the particular communication being performed. The state-

ment IN x: ComType | TRUE is thus saying that the variable to the left of the expres-

sion can be assigned any value from the type ComType nondeterministically. Note that Value
here represents the value that should have been communicated. Since Value is in ComType,

the nondeterministic assignments can produce a correct communication. For this reason, the

IF...THEN...ELSE...ENDIF expression checks to ensure that a miscommunication actually

occurred. If it did, the CCount is incremented. Otherwise, it remains the same

In our communication protocol application, miscommunication generation was

used when the original EOFMC XML code (Fig. 13.7) was converted into SAL’s

input language with our translator. Doing this, three versions of the model were cre-

ated, starting with CMax values of 0, 1, and 2.

13.3.7 Specification and Verification

EOFM-supported verification analyses are designed to be conducted with SAL’s

symbolic model checker. Because of this, specification properties are formulated

in linear temporal logic.

In the air traffic application, the purpose of the communication protocol is to

ensure that the pilots set the aircraft to the heading intended by the air traffic con-

troller. Thus, we formulate this in linear temporal logic as follows:

G
(
(𝑎𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝐷𝑜𝑛𝑒)
→ (𝑖𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑊 𝑖𝑛𝑑𝑜𝑤𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑙𝐴𝑇𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒)

)
(13.1)

This specification was checked against the formal model with varying levels of

CMax using SAL’s symbolic model checker (sal-smc) on a windows laptop with an

Intel Core i7-3667U running SAL on cygwin.

Verification analysis results are show in Table 13.2.7

7Note that an additional verification was conducted using the specification F(𝑎𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑒𝑎𝑑𝑖𝑛𝑔 =
𝐷𝑜𝑛𝑒) for every version of the model to ensure that (13.1) was not true due to vacuity.
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Table 13.2 Communication protocol formal verification results

Model with CMax Verification data

Outcome Time (s) Visited states

0 ✓ 3.588 6498

1 ✓ 4.461 77177

2 × 4.602 415537

Note: A ✓ indicates verification of (13.1) was successful. A × indicates verification failed and

produced a counterexample. Because verification times occur via symbolic model checking, we do

not expect the verification times to vary linearly with respect the number of visited states

These results show that for maximums of zero and one miscommunications, the

presented protocol will always be capable of allowing air traffic control to commu-

nicate headings to the pilot successfully and have the pilots execute that heading as

long as the protocol is adhered to. However, a failure occurs when there are up to

two miscommunications (𝐶𝑀𝑎𝑥 = 2).

13.3.8 Counterexample Visualization

Any produced counterexamples can be visualized and evaluated using EOFM’s

visual notation (Bolton and Bass 2010c). In a visualized counterexample, each coun-

terexample step is drawn on a separate page of a document. Any task with Executing
activities or actions is drawn next to a listing of other model variables and their val-

ues at the given step. Any drawn task hierarchy will have the color of its activities

and actions coded to represent their execution state at that step. Other listed model

variables can be categorized based on the model concept they represent: human mis-

sion, human-automation interface, automation, environment, and other. Any changes

in an activity or action execution state or variable values from previous steps are

highlighted. More information on the visualizer can be found in Bolton and Bass

(2010c).

When counterexample visualization was applied to the counterexample produced

for the communication protocol application, it revealed the following failure

sequence:

1. When the ATCo first communicates the heading to the pilots (under aComHead-
ing), a miscommunication occurs and the pilots both hear different incorrect head-

ings.

2. Then when the PM reads the heading back the ATCo and the PF (under aRead-
backHeading), a second miscommunication occurs and both the ATCo and the PF

think they heard the original intended heading and the heading originally heard

from the ATCo respectively.

3. As a result of this, the procedure proceeds without any human noticing an incor-

rect heading, and the incorrect heading is engaged.

A full listing of the counterexample visualization can be found at http://tinyurl.com/

EOFMCBook.
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13.4 Discussion

The presented application demonstrates the power of EOFM to find complex prob-

lems in systems that rely on human behavior for their safe execution, both with

normative and generated erroneous human behavior. From the perspective of the

application domain, the presented results are encouraging: as long as the protocol in

Fig. 13.6 is adhered to, heading clearances will be successfully communicated and

engaged. Ultimately it must be up to designers to determine how robust a proto-

col must be to miscommunication to support system safety. If further reliability is

required, analysts might want to use additional pilot and ATCo read backs. Addi-

tional analyses that explore how further read backs can increase reliability can be

found in Bolton (2015). Further, analysts may wish to conduct additional analyses

to see how robust to other types of erroneous human behaviors the protocol is both

with and without miscommunication. An example of how this can be done can be

found in Pan and Bolton (2015).

Beyond this case study, EOFM has demonstrated its use in the analysis of a num-

ber of applications in a variety of domains. It is also being continually developed to

improve its analyses and expand the ways it can be used in the design and evaluation

of human-machine systems. These are discussed below.

13.4.1 Applications

EOFM and EOFMC have been used to evaluate an expanding set of applications.

These are described below. While these have predominantly been undertaken by the

authors and their collaborators, the EOFM toolset is freely available (see http://fhsl.

eng.buffalo.edu/EOFM/). We encourage others to make use of these tools as EOFM

development continues.

13.4.1.1 Aviation Checklist Design

Pilot noncompliance with checklists has been associated with aviation accidents. For

example on May 31, 2014, procedural noncompliance of the flight crew of a Gulf-

stream Aerospace Corporation G-IV contributed to the death of the two pilots, a

flight attendant, and four passengers (NTSB 2015). This noncompliance can be influ-

enced by complex interactions among the checklist, pilot behavior, aircraft automa-

tion, device interfaces, and policy, all within the dynamic flight environment. We

used EOFM to model a checklist procedure and employed model checking to evalu-

ate checklist-guided pilot behavior while considering such interactions (Bolton and

Bass 2012). Although pilots generally follow checklist items in order, they can com-

plete them out of sequence. To model both of these conditions, two task models were

created: one where the pilot will always perform the task in order (enforced by an
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ord decomposition) and one where he or she can perform them in any order (using

the and_par decomposition operator).

Spoilers are retractable plates on the wings that, when deployed, slow the aircraft

and decrease lift. If spoilers are not used, the aircraft can overrun the runway (NTSB

2001). A pilot can arm the spoilers for automatic deployment using a lever. Alterna-

tively, a pilot can manually deploy the spoilers after touchdown. Arming the spoilers

before the landing gear has been lowered or the landing gear doors have fully opened

can result in automatic premature deployment which can cause the aircraft to lose

lift and have a hard landing. Spoiler deployment is part of the Before Landing check-

list. In our analyses, for the system model using the human task behavior (that is,

the Before Landing checklist) with the and_par decomposition operator, we identi-

fied that a pilot could arm the spoilers early and then open the landing gear doors, a

situation that could cause premature spoiler deployment. We explored how different

design interventions could impact the safe arming and deployment of spoilers.

13.4.1.2 Medical Device Design

EOFM has been used to evaluate the human-automation interaction (HAI) of two

different safety-critical medical devices. The first was a radiation therapy machine

(Bogdanich 2010; Leveson and Turner 1993) based on the Therac-25. This device

was a room-sized, computer-controlled, medical linear accelerator. It had two treat-

ment modes: electron beam mode is used for shallow tissue treatment, and x-ray

mode is used for deeper treatments—requiring electron beam current approximately

100 times greater than that used for the other mode. The x-ray mode used a beam

spreader (not used in electron beam mode) to produce a uniform treatment area and

attenuate the radiation of the beam. An x-ray beam treatment application without the

spreader in place could deliver a lethal dose of radiation. We used EOFM with its

phenomenological erroneous behavior generation to evaluate how normative and/or

unanticipated erroneous behavior could result in the administration of an unshielded

x-ray treatment (Bolton et al. 2012). We discovered that this could occur if a human

operated accidentally selected x-ray mode (a generated erroneous act) and corrected

it and administered treatment too quickly.

In the second medical device application, we used verifications with both norma-

tive behavior (Bolton and Bass 2010a) and attentional failure generation (Bolton and

Bass 2013) to evaluate the safety of a patient controlled analgesia (PCA) pump. A

PCA pump is a medical device that allows a patient to exert some control over intra-

venously delivered pain medication, where medication is delivered in accordance

with a prescription programmed into the device by a medical practitioner. Using

EOFM with its attentional failure generation, we were able to both discover when an

omission caused by an attentional slip could result in an incorrect prescription being

administered and how a simple modification to the device’s interface could prevent

this failure from occurring.
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13.4.1.3 Medical Device User Manual Design

The EOFM language, the ability to create new models in EOFM, and the ease of

composing formal task analytic models in SAL into larger system models helped to

provide insights relevant to patient user manual evaluation. User manual designers

generally use written procedures, figures and illustrations to convey procedural and

device configuration information. However ensuring that the instructions are accu-

rate and unambiguous is difficult. To analyze a user manual, our approach integrated

EOFM’s formal task analytic models and device models with safety specifications

via a computational framework similar to those used for checklists and procedures.

We demonstrated the value of this approach using alarm troubleshooting instructions

from the patient user manual of a left ventricular assist device (LVAD) (Abbate et al.

2016).

During the process of encoding the written instructions into the formal EOFM

task model, we discovered problems with task descriptions in the manual as state-

ments were open to interpretation. During the process of developing the XML

description of the procedure, for example, it became clear that the description in the

user manual did not define which end of a battery cable to disconnect. We also identi-

fied issues with the order of troubleshooting steps in that the procedure included steps

that did not fix the problem before ones that did. The ability to change a single decom-

position operator in the model (from ord to to _seq) and subsequent model transla-

tion allowed model checking analyses visualized with our counter example visualizer

to show that a better ordering was possible. In addition the ability to include a for-

mal device model with the formal task model highlighted that the instructions did

not consider all possible initial device conditions.

13.4.1.4 Human-Human Communication and Coordination Protocols

EOFMC has been used to evaluate the robustness of protocols humans use to com-

municate information and coordinate their collaborative efforts. In one set of such

analyses, we evaluated the protocols air traffic controllers use to communicate clear-

ances to pilots. These analyses modeled the protocols in EOFMC and were formally

verified to determine if incorrect clearances could be engaged. Analyses without

any miscommunication generation (Bass et al. 2011) did not discover any problems.

Miscommunication generation was used to identify that a maximum of one mis-

communication could cause the protocol to fail and show how this protocol could

be modified to make it robust to higher maximum numbers of miscommunications

(Bolton 2015). A variant of this protocol is used for the case study analyses presented

in the next section.

A variant of this analysis was used to evaluate the protocol that a team of engineers

use to diagnose alarms in a nuclear power plant (Pan and Bolton 2015, 2016). Rather

than simply look for binary failure conditions in the performance of the team, this

work compared different protocols based on guaranteed performance levels deter-

mined by the degree of correspondence between team member conclusions and
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system knowledge at the end of the protocol. This was used to evaluate two dif-

ferent versions of the protocol: one where confirmation or contradiction statements

were used to show agreement or disagreement respectively and one where read backs

were used. In both cases, miscommunication and attentional failure generation were

included in formal verifications. These analyses revealed that the read back proce-

dure outperformed the other, producing correct operator conclusions for any number

of miscommunications and up to one attentional slip.

13.4.2 EOFM Extensions

Three EOFM extensions beyond its standard methods (Fig. 13.2) are described next.

13.4.2.1 Scalability Improvements

As the size of the EOFM used in formal verification analyses increases, the asso-

ciated formal model size and verification times increase exponentially (Bolton and

Bass 2010a; Bolton et al. 2012). This can limit what system EOFM can be used to

evaluate. Because of this, efforts have attempted to improve its scalability. To accom-

plish this, the EOFM formal semantics (see Sect. 13.3.4) are interpreted slightly dif-

ferently. In this new interpretation, the formal representation of the execution state

are “flattened” so that they are defined as Boolean expressions purely in terms of

the execution state of actions at the bottom of the EOFM hierarchy. This allows the

transitions associated with activities to be represented in the transition logic of the

actions. As such, there are fewer intermediary transitions in the formal EOFM rep-

resentation. This has resulted in significant reductions in model size and verification

time without the loss of expressive power for both artificial benchmarks and real-

istic applications pulled from the current EOFM literature (Bolton et al. 2016). For

example, a PCA pump model that contained seven different tasks and the associated

interface and mission components of the PCA pump in the larger formal model orig-

inally had 4,072,083 states and took 90.4 s to verify a true property. With the new

translator, the model statespace size was reduced to 15,388 states and took only 5.6 s

to verify the same property (Bolton et al. 2016).

13.4.2.2 Specification Property Generation

While EOFM can be used to evaluate HAI with model checking, most work requires

analysts to manually formulate the properties to check, a process that may be error-

prone. Further, analysts may not know what properties to check and thus fail to

specify properties that could find unanticipated HAI issues. As such, unexpected

dangerous interaction may not be discovered even when formal verification is used.
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To address this, an extension of EOFM’s method (Fig. 13.2) includes automatically

generating specification properties from task models (Bolton 2011, 2013; Bolton

et al. 2014). In general, these approaches work by using modified EOFM to SAL

translators to automatically generate specification properties from the EOFM task

models.

Two types of specification generation have been developed. The first types of gen-

erated specifications are task-based usability properties (Bolton 2011, 2013). These

allow analysts to automatically check that a human-automation interface will support

the fulfillment of the goals from EOFM tasks. While initial versions of this process

only allowed the analyst to find problems (Bolton 2011), later extensions provided a

diagnostic algorithm that enabled the reason for the usability failures to be system-

atically identified (Bolton 2013). This method was ultimately used to evaluate the

usability of the PCA pump application discussed previously.

The second class of generated properties asserted qualities about the execution

state of the task models based on their formal semantics (Bolton et al. 2014). This

enabled analysts to look for problems in the HAI of a system by finding places where

the task models would not perform as expected and thus elucidate potential unantic-

ipated interaction problems. For example, properties would assert that every execu-

tion state of each activity and action were reachable, that every transition between

execution states was achievable, that all activities and actions would eventually fin-

ish, and that any human task would always eventually be performable. This method

was used to re-evaluate the previously discussed aircraft before landing checklist pro-

cedure, where it discovered an unanticipated issue (Bolton et al. 2014). It also was

used in the evaluation of an unmanned aerial vehicle control system (van Paassen

et al. 2014). These last two applications are particularly illustrative of the specifica-

tion property generation feature’s power because both discovered system problems

previously unanticipated by the analysts.

13.4.2.3 Interface Generation

User-centered design is an approach for creating human-machine interfaces so that

they support human operator tasks. While useful, user-centered design can be chal-

lenging because designers can fail to account for human-machine interactions that

occur due to the inherent concurrence between the human and the other elements of

the system. This extension of EOFM has attempted to better support user-centered

designed by automatically generating formal designs of human-machine interface

functional behavior from EOFM task models guaranteed to always support the task.

To accomplish this, the method uses a variant of the L* algorithm (Angluin 1987) to

learn a minimal finite state automation description of an interface’s behavior; it uses

a model checker and the formal representation of EOFM task behavior to answer

questions about the interface’s behavior (Li et al. 2015). This method has been used

to successfully generate a number of interfaces including light switches, a vending

machine, and a pod-based coffee machine (Li et al. 2015). All generated interfaces
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have been verified to support the various task-based properties discussed in the pre-

vious section and Bolton et al. (2014). Future work is investigating how to include

usability properties in the generation process.

13.4.2.4 Improve Tool Interoperability and Usability

The use of XML allows EOFM-supported analyses to be platform independent.

Despite this, to date, EOFM has only been used with the model checkers found in

SAL. Future work should investigate how to make EOFM compatible with other

analysis environments.

Additionally, using the XML to create task models is relatively easy for someone

who is familiar with the language and had access to sophisticated XML develop-

ment environments that support syntax checking and code completion. However, the

usability of EOFM could be significantly improved with the addition of visual mod-

eling tools that would allow model creation with a simple point and click interface.

This will be investigated in future work.

13.5 Conclusions

As the above narrative demonstrates, EOFM offers analysts a generic, flexible task

modeling system that supports a number of different formal analyses. This is evi-

denced by the different applications that have been evaluated using EOFM and the

different analyses both supported by and extending the method (Fig. 13.2). It is

important to note that although all of the analyses discussed here use the model

checking tools in SAL, this need not be the case. Given that EOFM is XML-based,

it should be adaptable to many other formal verification analysis environments. This

is further supported by the fact that SAL’s input notation is very similar to those

offered by other environments. Future work will investigate how EOFM could be

adapted to other model checkers to increase the scope of its analyses.
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