
Innovations Syst Softw Eng manuscript No.
(will be inserted by the editor)

Using Formal Methods to Reason About Taskload and Resource
Conflicts in Simulated Air Traffic Scenarios*

Adam Houser, Lanssie Mingyue Ma, Karen M. Feigh, and Matthew L. Bolton,

Received: XXX / Accepted: XXX

Abstract In complex environments, like the modern air
traffic system, interactions between human operators and
other system agents can profoundly impact system perfor-
mance. System complexity can make it difficult to deter-
mine all of the situations where issues can arise. Simulation
and formal verification have been used separately to explore
the role of humans in complex systems. However, both have
problems that limit their usefulness. In this paper, we de-
scribe a method that allows interesting conditions related to
human taskload and resource conflicts between agents to be
discovered and evaluated in high fidelity through the syner-
gistic use of formal verification and simulation. The core of
this method is based on a formal modeling architecture that
represents original, agent-based simulation constructs using
computationally efficient abstractions that ensure the tempo-
ral and ordinal relationships between simulation events (ac-
tions) are represented realistically. Taskload for each agent
is represented using a priority queue model where only a

*We presented an earlier version of this manuscript at the 2015 In-
ternational Conference on Complex Systems Engineering [30]. This
new manuscript makes substantial contributions beyond what was re-
ported in [30]. Specifically, we present additional specification prop-
erties for generating different types of simulation scenarios. We also
report results showing how the model checking analyses connects with
the agent-based simulation. This new paper also features an extended
discussion.

A. Houser and M. L. Bolton
Department of Industrial and Systems Engineering
State University of New York at Buffalo
Amherst, NY 14260
Tel.: (716) 645-2359
Fax: (716) 645-3302

M. L. Bolton E-mail: mbolton@buffalo.edu

L. M. Ma and K. Feigh
Daniel Guggenheim School of Aerospace Engineering,
Georgia Institute of Technology
Atlanta, GA 30332

limited number of actions can be performed or remembered
by a human at a given time. Resources affected by agent be-
haviors are associated with actions so that resources can be
reasoned about at the action level. We discuss our method
and its formal architecture. We describe how the method
can be used to find taskload and resource conflict conditions
through the use of formal, checkable specification proper-
ties. We then use a simple air traffic example to demonstrate
the ability of our method to find interesting taskload and
resource conflict conditions around a simulation trace. The
implications of this method are discussed and directions for
future work are explored.

1 Introduction

A number of problems are associated with human-
automation interaction in complex systems [2, 17, 53]. High
demands on human resources can lead to excessive taskload;
work that fails to engage the human (such as monitoring) can
lead to a loss of vigilance; and poorly designed interfaces
may be incompatible or contradictory to the human oper-
ator’s task. Further, the complexity of a system can make
it difficult for humans to track system state. This can lead
to situations where the system does things the human does
not expect or human actions result in unintended outcomes,
both of which can lead to large-scale system disasters [49].
All of these conditions can result in human error and sys-
tem failures. As systems become more autonomous, these
types of problems are expected to become worse [17]. In this
work, we are predominantly concerned with issues related
to taskload and concurrency issues that can lead to human
operator confusion.

Human operator taskload is a measure of the number of
tasks a human operator is expected to perform at a given
time [43, 44]. Taskload has shown itself to be a good indi-

mbolton
Text Box
Houser, A., Ma, L. M., Feigh, K., & Bolton, M. L. (ND). Using formal methods to reason about taskload and resource conflicts in simulated air traffic scenarios. Innovations in Systems and Software Engineering. DOI: 10.1007/s11334-017-0305-2, 15 pages. In press.

2 Houser, Ma, Feigh, & Bolton

cator of human operator mental workload (the total mental
effort being expanded by a person at a given time) in the air
traffic system [25, 29, 43, 44, 60]. In this sense, it is impor-
tant that participants in this system avoid exorbitant levels of
taskload to prevent human error and reduced performance.
However, determining when taskload can become excessive
and what the performance implications of that taskload are
can be very challenging because of the many different peo-
ple, machines, and environmental conditions that can inter-
act during their operation. However, due to the many dif-
ferent operating conditions that can occur, experiments and
tests with real systems and human subjects are infeasible.

In complex systems that contain humans, physical ele-
ments, and computational elements (agents) in a distributed
environment, confusion about the value of shared resources
can have profound implications for system safety. Specifi-
cally, if the human cannot keep track of the system state, he
or she may behave erroneously or be surprised by system
behavior and behave unpredictably [41, 52]. These types
of concurrency problems can be thought of in terms of re-
sources. Specifically, in systems with concurrency, agents
can often have shared resources (variables and/or data) that
they can access and/or modify. If a resource is modified con-
currently by two agents, or modified by one agent while oth-
ers are accessing it, a human agent may become confused
and behave erroneously because a resource value does not
match his or her expectations.

To address these problems, researchers have been build-
ing simulation environments such as Work Models that
Compute (WMC) [47] that allow human operator taskload
and system performance to be analyzed in a variety of
air traffic simulations. Such simulations are more flexi-
ble than human subject experiments and real world tests.
They are also able to represent complex system concepts
in high fidelity. However, they follow a traditional experi-
mental approach and are thus not exhaustive and can still
miss potentially dangerous or performance-critical operat-
ing conditions that did not happen to occur in one of the
explored scenarios. Researchers have also been exploring
how formal verification [63] such as model checking [16]
(a means of performing formal verification based on ex-
haustive/complete searches of systems models) can be used
to prove whether or not concurrency issues can produce
confusing or dangerous conditions in systems that rely on
human-automation interaction [7, 61]. By virtue of using
proofs, these analyses are exhaustive and will thus not miss
conditions that can manifest in the evaluated models. How-
ever, this completeness comes at the expense of scalability,
which can severely limit what systems can be analyzed.

In this work, we strove to develop a new method for us-
ing simulation and formal verification synergistically in a
way that exploits the advantages of both approaches. Specif-
ically, this approach gives analysts the ability to use model

checking’s exhaustive search capabilities to explore the re-
gion around a simulated air traffic scenario to find excessive
human taskload conditions and resource conflicts that may
have previously been undiscovered. Discovered conditions
can then be more deeply explored using the high-fidelity
simulation analysis. By exploiting each method’s strengths,
this work makes a significant contribution in that it allows
formal analyses to be used with systems for which they
were not previously possible. In this paper, we describe how
this method was realized. First, we discuss the background
necessary to understand our method. We then discuss the
formal modeling architecture we developed for encapsulat-
ing WMC concepts. We describe the specification properties
that we can use with the model to generate traces. Finally,
we demonstrate the capabilities of our method by showing
how verification results can be used to create simulation sce-
narios for an air traffic application.

2 Background

2.1 WMC

Work Models that Compute (WMC) is a simulation frame-
work that dynamically models complex, multi-agent con-
cepts of operations and work domains [45]. WMC attempts
to model the collective work of a set of agents [46]. It con-
sists of two parts: a work model that describes the work
of a given domain, and an engine that simulates the work
model [45]. Each work model comprises three primary ele-
ments: agents, actions, and resources. Resources are defined
as a collection of specific elements of the work environment
which can be sensed and manipulated by the agents. Ac-
tions manipulate resources, are linked to a specific agent,
and represent the work at its most atomic unit. The work
model specifies each action’s frequency, priority, duration
of resources it needs or manipulates, and which agents are
involved [28]. Agents serve the dual purpose of organizing
actions and adding a layer of dynamics to the prescribed ac-
tion sequence by placing limits on both the number of si-
multaneously performed actions and their priorities [46].

A scenario pulls all elements of work models, agents,
actions, and resources into a simulation. This can be used
to generate an action trace and other higher-level metrics
of interest. The simulation engine works on a hybrid timing
mechanism that allows WMC to incorporate features of both
continuous time and event-based simulation. This enables
WMC to simulate dynamic systems (such as aircraft dynam-
ics) and event-based agents (such as pilot models) [28, 48].

WMC provides an excellent framework for the work dis-
cussed in this paper. It allows for the modeling of humans
and automated agents, while accounting for the resources
each requires and modifies over the course of their work. It
also accounts for human operator taskload. Further, while

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 3

traditional simulations represent actions as if they are the
sole responsibility of specific agents, WMC assigns actions
to the work model. Actions are then executed by whichever
agents are available. This allows for a full investigation of
work as a fully defined object.

2.2 Modeling Taskload in Aerospace Systems

The current version of WMC does not support the ability
to evaluate human operator taskload. However, earlier sim-
ulations have researched this capability using the concepts
around which WMC is built [43, 44]. In this formulation,
each modeled human agent has two priority queues: one rep-
resenting actions that are active (currently being executed)
and one representing actions that are inactive. Inactive ac-
tions can have two designations. Those that have never been
executed are designated as delayed, and actions that were
previously active but are now inactive are designated as in-
terrupted. The active queue has a limited capacity which
results in actions transitioning between queues. If a human
agent is assigned new actions, those actions are put in the
inactive queue and given the delayed designation. If there is
room in the active queue, the highest priority actions (those
with the highest explicit priority with the shortest execution
time as determined by the action’s resources) are moved to
the active queue. If there are active actions with lower pri-
orities than those in the inactive queue, those lower-priority
actions are moved to the inactive queue and designated as
delayed, and the higher priority actions are moved up into
the active queue. As actions are finished, they are removed
from the active queue and rescheduled for later (if they oc-
cur again) or to never occur again. Within this infrastructure,
taskload can be described as the complete set of actions in
all of an agent’s queues. While this approach to taskload has
its limitations [35], it has proven itself useful in a number of
aerospace applications [25, 29, 43, 44, 60].

2.3 Formal Verification

Formal verification is an analysis technique that falls
within the discipline of formal methods. Formal meth-
ods are well-defined mathematical languages and tech-
niques for the specification, modeling, and verification of
systems [63]. Specification properties mathematically de-
scribe desirable system conditions. Systems are modeled us-
ing mathematically-based languages, and verification then
mathematically proves whether or not the model satisfies the
specification. Model checking is an automated approach to
formal verification [16], whereby a formal model describes a
system as a state transition model: a set of variables and tran-
sitions between variable states. Desirable specification prop-
erties are usually represented in a temporal logic [24]. Verifi-

cation is performed automatically by exhaustively searching
a system’s statespace to determine if these properties hold.
If they do, the model checker returns a confirmation. Oth-
erwise, a counterexample is produced. This shows how the
specification violation occurred as a trace through the states-
pace of the model.

Formal verification has been successfully used to eval-
uate human-automation interaction in a number of different
capacities [7, 61]. Most relevant to this discussion is the re-
search that has focused on workload and mode confusion.

There is a significant body of literature that focuses on
using formal methods to find potential mode confusion in
human-automation interaction [7]. However, this work has
predominantly used models of human-machine interfaces
[12–14, 34, 36], concurrently executing human mental mod-
els and automation models [11, 20, 21, 50, 51, 54], or con-
currently executing human task knowledge and automation
models [8–10, 62]. As such, these analyses have almost ex-
clusively focused on systems with single human operators
and have not accounted for the interaction of multiple hu-
mans and automated agents in a distributed system.

Comparatively fewer papers have explored how human
workload and taskload can be considered in formal meth-
ods. The sole contributions have come from Mercer and
Goodrich et al. [40, 56], who have researched ways of for-
mally modeling workload. However, they have not used
these methods in formal verification analyses.

No matter the analysis subject, formal verification tech-
niques like model checking suffer from combinatorial explo-
sion, where the statespace grows exponentially as additional
components are added to the model [16]. This can lead to
models that are too big or take too long to be verified. Be-
cause of this scalability limitation, complex system behav-
iors must often be represented abstractly. This can limit the
types of system behaviors and interactions that can be con-
sidered in a given analysis.

2.4 Formal Verification and Simulation in Combination

Success has been found in using formal verification syner-
gistically with simulation to exploit the exhaustive capabil-
ities of model checking with simulation’s ability to repre-
sent system in higher fidelity. Specifically, formal verifica-
tion has been used selectively to evaluate bounded elements
of a simulated system [26, 27, 31, 65]. Of particular interest
to this project is work that has used simulation traces as a
means of creating formal models of a scope small enough to
avoid limits imposed by scalability [15, 57, 64]. However,
these analyses are limited in that they only check properties
about the actual trace and thus do not account for any system
behavior beyond what is already contained within it. There
is significant potential in using model checking with simu-
lation traces, where the model checking analyses will allow

4 Houser, Ma, Feigh, & Bolton

WMC Model

WMC

Simulation
WMC Scenario

Simulation

Results

WMC to

Formal Model

Translation

Model

Checking

Counterexample

 / Model Trace
SpeciSpeciSpecifications

Formal Model

Counterexample

to WMC

Translation

Generated

Scenarios

Simulation

Trace

1

2

3

4

Fig. 1 Flow diagram illustrating the our method for the synergistic
use of WMC simulation and model checking. Shaded shapes represent
elements that originally existed as part of WMC. Numbers in processes
correspond to steps from the list on page 4.

analysts to explore a more complete space around a trace
and thus find potentially interesting or dangerous operating
conditions that were missed.

3 Our Method

In this work, we attempted to develop a method that gives
analysts the ability to use model checking’s exhaustive
search capabilities to explore the region around a simulated
air traffic scenario to find excessive human taskload condi-
tions and/or resource conflicts that may not have been dis-
covered otherwise. We further wanted to give analysts the
ability to analyze the discovered scenario condition more
deeply using the high-fidelity air traffic simulation.

Our method, which allows WMC simulation to be used
synergistically with formal verification, is shown in Fig. 1.
This method works as follows:

1. A WMC work model (which describes the agents in a
simulation, along with the actions they perform and the
resources they modify) and a scenario (which describes
the initial conditions that represent a specific air traf-
fic situation and future events that can occur) are run
through a WMC simulation. The simulation produces a
trace showing exactly how that scenario evolved.

2. The work model, scenario, and simulation trace are then
translated into a formal model representing the simula-
tion over a constrained period of time (a time window).
In WMC, the time at which actions occur and the du-
ration of those actions are critical to the manifestation

Actions

Agents

Action

Agentactions

Scheduler

agents

assignment

status

globalTime

Fig. 2 Formal modeling architecture used to represent WMC concepts.

of taskload. Thus, in the formal model, the timing of
actions (when they occur and for how long they occur)
is explicitly represented. This representation can include
analyst-defined variance, nominally on the order of one
to three seconds, to allow the model checker to explore
the performance space around the modeled scenario. The
translator also generates a set of specification properties
designed to find interesting taskload conditions in the
model.

3. A model checker is used to explore the formal model to
generate traces illustrating violations of specifications.

4. The traces are then translated back into WMC scenarios
for deeper analyses in its simulation environment.

Note that this method was designed to be employed iter-
atively. That is, an analyst would gradually move a window
of time through a scenario, starting at the beginning, over
multiple analyses. This allows the effects of changes in the
scenario that happen early its time line to play out and be
considered in subsequent model checking sessions.

3.1 Formal Modeling Architecture

To formally model WMC concepts with our method (Fig.
1), we needed a formal modeling architecture. The archi-
tecture needed to support all of the following: (a) Model-
ing real-valued time: Because our method allows analysts to
evaluate how variance in timing and nondeterminism in ac-
tion prioritization affects taskload, we needed the capability
to formally model real-valued time; (b) Modeling taskload:
WMC can support a priority-queue-based approach to mod-
eling human taskload and how humans switch between tasks
and actions [44]. Thus, our architecture needed to be able to
replicate the taskload and task switching behavior of WMC;
(c) Computational efficiency: Because of the scalability lim-
itations of model checking, the architecture must represent
WMC concepts in a computationally efficient manner.

The architecture for accomplishing this is shown in Fig.
2. In this, the formal model is represented by three syn-
chronously composed modules: a Scheduler, Actions, and
Agents. The Scheduler keeps track of modeled time, deter-
mines when actions are assigned to agents, and coordinates

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 5

Table 1 Variables that Define the Action Data Type

Variable Description

id A unique action identification as an integer from 1 to
N, where there are N total actions.

agent The identification of the agent responsible for the ac-
tion.

state The priority queue location and status of the action:
whether it is in active, delayed, or interrupted, or no-
tAssigned (the state of an action that has yet to be as-
signed or has been finished and rescheduled).

priority The priority level of the action as a bounded integer.
time The time left for the action to finish executing (initial

times are determined by the time it takes to set an ac-
tion’s resources in the original WMC model).

update The next time the action will be assigned (this is deter-
mined by the observed timings in the simulation trace).

the behavior of the other modules based on the scheduler’s
status. The Actions module is actually a collection of syn-
chronously composed action submodules that represent ac-
tions from the WMC simulation. Similarly, Agents is a col-
lection of synchronously composed agent submodules that
represent agents from the WMC simulation.

The Actions and Agents modules communicate with
each other via arrays of action and agent data types (actions
and agents from Fig. 2). Each action and agent is associated
with an instance of its respective data type. The action data
type contains all of the variables shown in Table 1, while the
agent data type is defined by the variables in Table 2.

Our architecture does not explicitly represent the pri-
ority queues underlying WMC agents. Rather, the state of
these can be inferred by performing operations over the ar-
ray of action data types. To do this efficiently, we make use
of λ calculus to reason about sets [22, 55] of actions. In this
sense, a set is a mapping of action ids to Boolean values

actionset : actionID→ Boolean.

Such sets use λ operations to define this mapping. For ex-
ample, the empty set can be represented as

∅= λ (i ∈ actionIDs) : False.

This can be interpreted as: for all possible values of action
id i, i is not in the set (i maps to False).

Our architecture abstracts away the WMC concept of
resources in service of computational efficiency. However,
what resources are being modified at any given time can be
inferred from the actions that are executing (information that
is readily available from the WMC model and scenario).

The following describes the details of each of the ele-
ments in our architecture.

3.1.1 Scheduler

The Scheduler module is responsible for maintaining the
clock and communicating the globalTime to the other mod-

actionsArray' = actionsArrayactionsArray' ≠ actionsArray

assignment' ≠ Ø

assignment' = Ø
assigning doingshuffling

Fig. 3 State transition system representing the scheduler’s status. Note
that an ′ on a variable indicates that variable’s value in the next
state. For example actions′ 6= actions is checking whether actions will
change in the next state.

ules. It also indicates when notAssigned actions with update
times at the current globalTime are ready to be executed via
the assignment variable. Finally, the Scheduler uses its sta-
tus to coordinate the behavior of the other modules.

The Scheduler’s status transitions between its three
states using the logic in Fig. 3. Specifically, it starts out as-
signing, where it indicates which actions are ready to be ex-
ecuted. After assigning, it automatically transitions to shuf-
fling. When the Scheduler is shuffling, the action modules
are able to reassign the execution state of assigned actions
(move them between priority queues). While shuffling, the
Scheduler monitors the state of actions to see if any changes
will occur in the next state. If any changes do occur, the
Scheduler remains shuffling. If there are no changes, the
Scheduler status transitions to doing. If the Scheduler’s sta-
tus is doing then, if in the next state there is nothing to as-
sign, the status transitions to shuffling. Otherwise it transi-
tions to assigning.

If the Scheduler is assigning it communicates which ac-
tions are ready to be performed by computing a λ calculus
set. This set is defined as

assignment = λ (i ∈ actionIDs) :
actions[i].update = globalTime
∧actions[i].state = notAssigned,

(1)

Table 2 Variables that Define the Agent Data Type

Variable Description

id A unique agent identification as an integer from
1 to M, where there are M total agents.

activeCapacity The agent’s active priority queue capacity.
activeCount The number of active actions the agent is respon-

sible for (the number of actions in the agent’s
active priority queue).

minActive The active action the agent is responsible for that
has the minimum priority (smallest priority and
longest time) of all such actions.

maxInactive The delayed or interrupted action (an action in
the inactive queue) the agent is responsible for
that has the maximum priority (greatest priority
and shortest time) of all such actions.

6 Houser, Ma, Feigh, & Bolton

This can be interpreted as the set of all action ids such that
the associated actions are currently notAssigned and have an
update time equal to the current globalTime.

The Scheduler uses timed automata [1, 23] to represent
globalTime as a real-valued quantity. If the Scheduler status
is doing then globalTime is increased to the minimum value
in the set of times associated with how long it will take to
finish any of the active actions and the next update times of
any of the notAssigned actions.

3.1.2 Agents

The Agents module is a composition of synchronously com-
posed agent submodules, where each agent manages the val-
ues of its corresponding agent data type. Conceptually, each
agent is responsible for keeping track of the number of its
active actions (activeCount). It also provides information
each action will need for moving between execution states
(moving between priority queues) in the form of its minAc-
tive and maxInactive variables.

To compute activeCount, an agent submodule uses the
formula in (2) with actionState = active. In the formal
model, the code for doing this operation is automatically
generated with a known bound on the number of possible
actions (N). This operation is therefore linear and scales ef-
ficiently. It is also important to note that this same equation
(2) can be used to compute the number of actions that are
in the delayed and interrupted priority queues, even though
these are not explicitly represented in the formal model.

To compute minActive and maxInactive, the agent first
uses λ calculus to compute sets containing all of the ac-
tion ids that satisfy the minimum active and maximum in-
active criteria (minActiveSet and maxInactiveSet, respec-
tively). The minActiveSet is computed as shown in (3)
where, for all action ids i in a set of actionIDs, i is in the set
if the action with id = i is active, associated with the given
agent, and has a priority less than or equal to all other active
actions associated with the agent. maxInactiveSet is com-
puted as shown in (4) where, for all action ids i in a set of ac-
tionIDs, i is in the set if the action with id = i is interrupted
or delayed, associated with the given agent, and has a prior-
ity greater than or equal to all other delayed or interrupted
actions associated with the agent. With these sets computed,
the action’s minActive and maxInactive are selected from the
action ids in minActiveSet and maxInactiveSet respectively.
This allows for non-determinism in what actions will ulti-
mately be active or inactive at any given time if the actions
have the same priority.

3.1.3 Actions

Each action within the Actions module is responsible for
managing the values in the associated action data type in

response to the Scheduler’s status and the global time. For
any given model state, each action behaves as follows:

– If status is doing and that action’s state is active, then the
action’s time is decremented based on the amount elapsed
since the clock was last updated. If doing this means that
the action has finished (that time becomes 0), the action’s
state is set to notAssigned and its update time is set to
the action’s next update time from the original simulation
trace. To add non-determinism to the timing of actions,
variance can be included in the update time.

– If status is assigning and the action is in the set of as-
signed actions, then the action’s state is set to delayed and
the action’s time is updated. Non-deterministic amounts
of time variance can also be added in this assignment.

– If status is shuffling, then:
◦ If the action’s state is delayed or interrupted and it

is equal to its agent’s maxInactive action and either
the action has a higher priority than its agent’s min-
Active action or its agent’s active capacity has not been
reached, then the action’s state is set to active.

◦ If the action’s state is active and equal to its agent’s mi-
nActive action, and the agent’s active capacity has been
exceeded, then the action’s state is set to interrupted.

3.2 Specification Properties and Analysis Capabilities

Our architecture gives us the ability to model sections of
simulation traces with included variance in the timing of ac-
tions. This is useful because it allows us to reason about
taskload and resource conflicts in specification properties
that allow us to assert the absences of specific conditions we
are interested in generating traces to explore. Specifically,
with model checking, we can then use these properties to
generate counterexamples showing exactly how the condi-
tions of interest occur. As such, this enables us to use our
method (Fig. 1) to create WMC scenarios to examine the
conditions found in the counterexample in the simulation.
For our current purposes, we are interested in specifications
that concern taskload conditions and potential resource con-
flicts that can result from concurrency between agents.

There are multiple taskload conditions we are potentially
interested in discovering. To find conditions where the hu-
man operator is working as hard as they can, we want to see
a condition where the operator’s active priority queue is at its
capacity [44]. To find this, we can use linear temporal logic
to assert that the active queue for a given human agent with
id = i will never reach capacity with the following specifi-

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 7

cardinality(actionState) =

{
1, if actions[1].agent = agentID∧actions[1].state = actionState

0, otherwise

+ ...+

{
1, if actions[N].agent = agentID∧actions[N].state = actionState

0, otherwise

(2)

minActiveSet = λ (i ∈ actionIDs) :actions[i].agent = agentID∧actions[i].state = active

∧∀(j ∈ actionIDs) :


(

actions[j].agent = agentID
∧actions[j].state = active

)
⇒

actions[i].priority < actions[j].priority

∨
(

actions[i].priority = actions[j].priority
∧actions[i].time > actions[j].time

)
 (3)

maxInactiveSet = λ (i ∈ actionIDs) :actions[i].agent = agentID

∧ (actions[i].state = delayed∨actions[i].state = interrupted)

∧∀(j ∈ actionIDs) :



actions[j].agent = agentID

∧
(

actions[j].state = delayed
∨actions[j].state = interrupted

)
⇒

 actions[i].priority < actions[j].priority

∨
(

actions[i].priority = actions[j].priority
∧actions[i].time < actions[j].time

)


(4)

cation property:1

FindActiveLoad |=

G

 (status = doing)

⇒
(

agent[i].activeCount
< agent[i].activeCapacity

) .
(5)

This can be interpreted as: for all paths through the model
(G), if the scheduler’s status is doing, then agent i’s active-
Count should be less than activeCapacity. Note that we are
only concerned with the capacity of an agent’s queues when
the scheduler’s status is doing because, by design, queue
capacities may be exceeded during nominal assigning and
shuffling operations.

If the human’s working memory meets or exceeds its
capacity, he or she might forget an action. This condition
can manifest when there are excessive actions that are de-
layed or interrupted. We can use the following specification
to find counterexamples where the number of delayed or in-
terrupted actions meet or exceed capacity:

FindInactiveLoad |=

G


(status = doing)

⇒

 cardinality(delayed)
+cardinality(interrupted)
< agent[i].inactiveCapacity


 .

(6)

1 Note that specification property patterns are presented with a
name, followed by a |=, followed by the specification property logic.

In this, agent[i].inactiveCapacity is used as the maximum
capacity of agent[i]’s inactive queue. Note that this parame-
ter is not used to define the behavior of the model (as with
the parameters in Table 2). Rather, this value must be defined
in the specification itself.

To find conditions where capacity is exceeded, we can
check the following:

FindOverload |=

G


(status = doing)

⇒

 cardinality(delayed)
+cardinality(interrupted)
≤ agent[i].inactiveCapacity


 .

(7)

A lack of taskload can also be a problem because it can
indicate that the person is not being utilized by the system.
Further, humans that are not being engaged by the system
may experience a decrement in vigilance which can result
in human error [37].

If an original simulation scenario contains excessive
taskload, an analyst may want to find variations of the sce-
nario that result in lower taskload. To find counterexamples
where a human never reaches their maximum load, we can

8 Houser, Ma, Feigh, & Bolton

use the following specification patterns:

FindNoLoad |=

G¬




status = doing∨ status 6= doing

∧

(cardinality(delayed)
+cardinality(interrupted)

)
< agent[i].inactiveCapacity




U(globalTime≥ Never)

 .
(8)

This asserts that globally (G) we never want it to be the case
that either the status is doing or the status is not doing with
the cardinality of the inactive queue less than its capacity
until (U) the end of the model simulation time. Similarly,
we can find counterexample where a human never exceeds
their maximum load with:

FindNoOverload |=

G¬




status = doing∨ status 6= doing

∧

(cardinality(delayed)
+cardinality(interrupted)

)
≤ agent[i].inactiveCapacity




U(globalTime≥ Never)

 .
(9)

Variations of FindNoLoad [Eq. (8)] and FindNoOver-
load [Eq. (9)] can also be used to find instances of active
load that never reach capacity or never exceed it by replac-
ing agent[i].inactiveCapacity with agent[i].activeCapacity
and cardinality(delayed) + cardinality(interrupted) with
cardinality(active). Thus, an analyst who wishes to find
counterexamples with load at or below certain levels can re-
place any of the capacity variables in Eqs. (8) and (9) with
a specific number. This can also be used to find instances of
low load that could suggest vigilance decrement and error.

The WMC scenario contains information that relates re-
sources to actions. This can be used to find situations where
the concurrent performance of actions could cause resource
conflicts. In our work, we are concerned with two different
types of resource conflicts. First, in a get-set conflict, if an
action sets a resource at the same time that another action
gets it, it will not be clear what value the receiving action
will assume. This could result in human operator confusion.
Similarly, in a set-set conflict, if two actions set resource val-
ues at the same time, then it will not be clear what value the
resource has and the human(s) involved may become con-
fused. For both types of resource conflicts, we can generate
a counterexample demonstrating a conflict between two po-
tentially conflicting actions with

FindResourceConflict |=

G¬
(

actions[j].state = Active
∨actions[k].state = Active

)
.

(10)

This asserts that globally (G) we never want a given action
(actions[j]) to execute (be Active) at the same time as an-
other action actions[k].

Finally, a human may forget an action if it remains in
working memory (delayed or interrupted) for too long [38].
We can find where this occurs for a given action with:

FindExcessiveDelay |=

G

 (actions[j].state 6= notAssigned)

⇒
((

globalTime
−actions[j].update

)
< timeMax

) .
(11)

In this, timeMax is an analyst-specified waiting time that an
action should not exceed. This can be interpreted as for all
paths through the model (G), it should always be true that if
an action has been assigned to an agent (the action’s state is
notAssigned), then the time since its last update should not
exceed timeMax.

3.3 Implementation

We have implemented our method (Fig. 1) as a desktop
computer application. The program automatically process
WMC scenarios, generates the formal model and specifi-
cation properties, and converts counterexamples result ob-
tained from verifying the properties with a model checker
back into a WMC scenario.

In this implementation, a user will first run the WMC
simulation to develop a simulation trace. The application
then processes the WMC simulation, its scenario, and the
simulation trace. The application displays the simulation
trace to the analyst who then selects a time frame (a span of
time defined by a minimum and maximum) that will be the
focus of the model checking analysis. Once the time frame
is selected, the application automatically parses the relevant
portion of the trace to identify: (a) All of the actions per-
formed during their time frame; (b) The agents associated
with the actions; and (c) And all of the resources that are
gotten by or set be each of the actions.

The analyst then reviews the list of agents to identify
their type (human or basic). If an agent is basic, it repre-
sents an automated element of the system. It is thus given
an “unlimited” active priority queue (a queue with a maxi-
mum equal to the total number of actions in the analysis).
If an agent is human, then the analyst can set the size of the
agent’s active and inactive queues. The analyst can also re-
move agents from the analysis. This can be a useful feature
if automated agent behavior is not a factor in the analysis
and the analyst wants to help control for scalability.

When agent editing is completed, the program will mod-
ify the list of available actions to remove any actions asso-
ciated with excluded agents. An analyst can then edit the
priorities assigned to actions, the amount of time they take
to perform, as well as set variance on action update times
and performance times.

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 9

When this is completed, the program generates a model
checker input file based on the formal modeling architec-
ture (Fig. 2) in the notation of the Symbolic Analysis Lab-
oratory (SAL) [18] for use with its infinite bounded model
checker [19].2 In this file, generated versions of the speci-
fications from section 3.2 are created. Specifications based
on FindActiveLoad, FindInactiveLoad, FindOverload, Find-
NoLoad, and FindNoOverload [Eqs. (5)–(9)] are generated
for each agent included in the analysis. A FindResourceCon-
flict property [Eq. (10)] is generated for each pair of actions
where a get-set or set-set conflict could occur.

Once the desired specification has been checked with the
model checker and a counterexample produced, an analyst
can process the counterexample with our application. This
analyzes the counterexample and identifies what time each
of the actions needs to be performed at in the simulation to
achieve the behavior from the counterexample. The appli-
cation then generates WMC scenario code (C++), which is
used to modify the original WMC scenario. This resched-
ules each of the actions to achieve the new behavior. The
WMC simulation can then be rerun to analyze the impact of
this behavior. If desired, an analyst can iteratively use our
method with a simulation scenario to progressively investi-
gate a scenario over its entire run.

4 Testing

To test our method, we wanted to show first we could
use our different classes of specification properties to find
the intended simulation conditions. Second, we wanted to
show that we could use counterexamples generated with
the method to produce the desired behavior in the simula-
tion. For these tests, we use an air traffic control application.
Specifically, we employ scenarios from AAR Studies (Au-
thority, Autonomy, and Responsibility Studies; a series of
simulations) [32, 33]. These scenarios simulate three aircraft
attempting to land on runway RWY18R at the Amsterdam
Schiphol Airport under the supervision of an air traffic con-
troller with different distributions of authority and responsi-
bility between the aircraft, the aircraft pilots, and the air traf-
fic controller. For the purpose of the test reported here, we
examined a balanced distribution (termed FA3-FA3), which
defined a split of responsibility between both parties. This
maintains the idea that while both ground and aircraft have
their own responsibilities, they maintain full authority for
their responsibilities. It also ensures that there is no mis-
match between who is completing the action and who is re-
sponsible for the success of the action. This ensures our tests

2 SAL was chosen for this work because of the expressiveness of
input language [18]. This included the ability to model real time, its
support of both synchronous and asynchronous composition of mod-
ules (though only synchronous composition was ultimately used), and
its inclusion of lambda operations.

are only concerned with actions associated with the landing
tasks as opposed to actions associated with the monitoring
of other agents’ behaviors.

When this simulation scenario was originally run
through WMC, it generated a trace with 199,204 simula-
tion actions that occurred over 676.33 seconds of simulated
time. Our testing was concerned with determining that our
new method was capable of analyzing and modifying WMC
traces, and not necessarily analyzing an entire WMC sim-
ulation. Thus, the tests only focused on analyzing the first
five seconds of the original simulation scenario, checking
properties against a formal model of that period, and de-
termining that the modified scenario replicated the behavior
found in the counterexamples generated from the checking
of the properties. Note that five seconds was chosen for this
analysis because, when the original trace was examined, ac-
tions tended to cluster together. The first five seconds of the
simulation encapsulated the first cluster of actions. This in-
volved the air traffic controller managing all three aircraft’s
progress to waypoints and clearing the aircraft for descent
while the pilots direct their aircraft to the waypoint.

Although the time span considered in our test was small,
the model had significant complexity from the other ele-
ments of the system. Specifically, our analyses included all
four human agents from the original scenario: the pilots
from aircraft 1, 2, and 3 as well as the air traffic controller.
Further, in this analyzed segment, there were nine human ac-
tions: six for the air traffic controller, and one for each pilot.
The air traffic controller had separate actions for managing
the progress of each aircraft to the waypoint and for clearing
each aircraft for descent. Each aircraft pilot was capable of
directing his or her aircraft to the waypoint.

Because the original scenarios did not contain priority
queue limit information, these had to be assigned for the for-
mal model. For this, each agent was given an active queue
with a capacity of two and an inactive queue with a capacity
of three (giving each agent a memory capacity of seven plus
or minus two [39]). The duration of actions were treated as
if they would take one second each to perform.3 No tim-
ing variance was employed in our tests. However, the non-
determinism that could result from similarities in priorities
between actions was accounted for.

The SAL file created from the scenario contained gen-
erated properties for FindActiveLoad, FindInactiveLoad,
FindOverload, FindNoLoad, and FindNoOverload [Eqs.
(5)–(9)] for each agent. Three FindResourceConflict specifi-
cations using Eq. (10) were generated (all based on potential
get-set conflicts): one for each aircraft, where the conflict
occurs when the air traffic controller’s actions for managing

3 Note that these timings are not necessarily realistic. The pre-
sented tests were concerned with demonstrating the capabilities of our
method, not with the realism of the air traffic scenario. More realistic
scenarios will be the subject of future work. See section 5.

10 Houser, Ma, Feigh, & Bolton

an aircraft’s progress towards the waypoint and the pilot’s
action for directing the corresponding aircraft to the way-
point occur at the same time.

Simulations and verifications were performed on a com-
puter workstation with a 3.6 gigahertz Intel Xeon processor
with 128 gigabytes of RAM. Verifications were run on the
Linux Desktop using SAL’s infinite bounded model checker
[19]. SAL’s infinite bounded model checker requires a depth
(a bound) on the number of transitions considered in a given
analyses. For large bounds, verification can take a signifi-
cant amount of time. Thus, for all verifications, depths were
started out at 10 and were iteratively increased by 5 until ei-
ther a counterexample was found or the analyst was satisfied
that the property would not be violated.

4.1 Finding Counterexamples

The generated specifications have three distinct forms: those
for finding instances of load [derived from Eqs. (5)–(7)],
those for finding instances of a lack of load [based on Eqs.
(8) and (9)], and those for finding resource conflicts [cre-
ated from Eq. (10)]. Thus, while every property type has
been tested for its efficacy, the results discussed here focus
on one property of each form. Further, because the pilots
in the given modeled section only had one action each, it
made little sense to consider issues related to their load.
Thus load-based specifications were only checked for the
air traffic controller.

To start, we attempted to check whether the air traffic
controller could ever be overloaded [by checking Eq. (7)].
When verification was performed, a counterexample was
found at depth 10 (verification time: 16.56 seconds). This
showed that overload could occur in the scenario as origi-
nally represented in the WMC scenario.

To find a condition where overload could be avoided, we
reran the verification with Eq. (9). This produced no coun-
terexample at depths 10 (verification time: 5.45 seconds)
and 15 (verification time: 85.81 seconds). However, at depth
20 (verification time: 479.74 seconds), a counterexample
was produced. This showed how actions could be spaced out
so as to avoid air traffic controller overload. This scenario is
explored in more depth in the subsequent section.

Finally, we attempted to check whether the get-set re-
source conflict could occur for aircraft one, where the con-
flict occurs when the air traffic controller’s actions for man-
aging an aircraft’s progress towards the waypoint and the
pilot’s action for directing the corresponding aircraft to the
waypoint occur at the same time. This produced a counterex-
ample at depth 10 (verification time: 10.7 s). This showed
that these two actions could produce a resource conflict in
the original scenario.

Collectively, these tests demonstrate the methods ability
to identify specification violations and thus generate coun-

terexamples. These counterexamples can be used to create
new scenarios.

4.2 Modifying the Simulation Scenario with
Counterexamples

Next, we wanted to test that our method could accurately be
used to generate a new scenario illustrating the action se-
quence from a counterexample. Because only the specifica-
tion that generated a counterexample with no overload [Eq.
(9)] represented an action sequence that was different from
the original scenario, this was used. Thus, we used our auto-
mated method to create a new scenario (a modified version
of the original) where the actions were spaced out as spec-
ified in the counterexample. A manual examination of the
resulting action trace revealed that the rescheduled actions
were being performed at the times specified in the coun-
terexample and that these timings avoided overload.

5 Conclusions and Discussion

In this paper, we described a formal modeling architecture
designed to enable the discovery of interesting human op-
erator conditions that relate to human taskload and resource
conflicts between agents though the synergistic use of for-
mal verification and simulation. The presented method al-
lows us to formally represent all of the relevant WMC con-
cepts while satisfying our objectives. (a) It uses timed au-
tomata to represent real-valued time and allows for sensitiv-
ity analyses of WMC concepts based on variance in the tim-
ing of actions; (b) It allows taskload to be modeled by hav-
ing the model reason over an array of actions, each with its
own state and associated with a different agent; and (c) By
using λ operations over the set of actions and by abstracting
away WMC details unimportant to the formal analyses, the
architecture is computationally efficient. A number of spec-
ification properties can be used to reason about taskload for
use in generating counterexamples. Finally, we showed how
these specification properties could be used to find scenarios
to drive WMC simulations to interesting conditions.

Previous work that has used formal verification with
simulation has either focused on analyzing limited aspects
of a simulation [26, 27, 31, 65] or on only model checking
the actual simulation traces [15, 57, 64]. As such, this work
makes a significant contribution in that it introduces a new
way of using simulation and formal verification synergisti-
cally by allowing model checking to be used to explore the
space around simulation scenarios. This is a major break-
through for several reasons. From a formal methods per-
spective, this approach allows formal verification to be used
in the analysis of complex systems that would have been too

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 11

big and/or complex to be evaluated in the past. From a simu-
lation perspective, our method allows for a much more com-
plete analysis of the space around a simulation trace than
was previously possible. This should allow analysts to use
high-fidelity simulations to find potential problems that may
not have been found otherwise.

While researchers have investigated how to formally
model workload [40, 56], these have been used in simula-
tion environments, not formal verification. Thus, our devel-
opments are significant because it constitutes the first effort
to account for human operator taskload in formal verifica-
tion analyses. By using lambda calculus sets as the means of
modeling taskload, we have developed a representation that
should be computationally tractable in a number of different
situations. Given the importance that taskload and workload
play in human performance and system safety, this advance
will enable formal verification to be used for human factors
engineering purposes in new and important ways.

The presented research focused primarily on the techni-
cal challenges of realizing our method. It thus neglects a full
application of the method in a realistic application. There are
also ways that the method could be improved. These issues
are explored below.

5.1 Scalability

An examination of the verification results shows that times
increase exponentially with the search depths (see Fig. 4).
This is a potentially limiting factor for our analyses as ver-
ifications could take so long to run that they would be pro-
hibitive for use in a long, complex simulation scenario.

For properties that relate to taskload, each agent in our
formal modeling architecture operates independently of the
others. Thus, for these types of specifications, verifications
for each agent could be run separately. The resulting new
action times from each analysis can then be integrated into
the new scenario.

Figure 4 illustrates how the verification times were re-
duced by only considering the air traffic controller in the for-
mal model for all of the verifications that related to taskload
in our application. This shows that, while limiting the num-
ber of agents in the model does not avoid exponential in-
creases in verification times, it does substantially reduce the
verification times. This will inevitably help in the analysis of
scenarios where verification time becomes an issue. Future
work should investigate this feature in more depth. It should
also explore other options for improving model scalability.

Although not discussed extensively here, our method
was designed to be used iteratively, where an analyst can:
use the method to modify one portion of a scenario, gener-
ate a new scenario, run it, observe the effect, and apply the
method on a latter part to further modify the scenario. In

5.45

85.81

479.74

1.45

20.5

112.9

1

10

100

1000

5 10 15 20 25

V
er

ifi
ca

tio
n

T
im

e
(s

)

Verification Depth

16.56

3.4

Fig. 4 Semi-log plot showing the verification times for the taskload
properties at different depths. ◦ and � represent the original verifi-
cation times [for Eqs. (7) and (9) respectively] where all four human
agents are included in the formal model. M and 2 represent the ver-
ification of the same properties (respectively), for formal models that
only include the air traffic controller. Dotted lines are used to show the
exponential trend line for verifications conducted for multiple depths.

this way, small time windows can be used effectively to ex-
plore longer scenarios while avoiding scalability issues. Fur-
ther, the iterative approach to the deployment of the method
should allow the impact of minor change early in the sce-
nario to be fully realized in subsequent scenario runs.

It is important to note that even with all of the agents
included in the verification analyses, the longest verifica-
tion time we observed was 479.47 seconds (Fig. 4). In our
analyses, the average WMC run took ∼650 seconds. Thus,
though the formal verification analyses can take a signifi-
cant amount of time, they are effectively considering an in-
finite number of simulation scenarios. As such, the dual use
of formal verification and simulation can be viewed as hav-
ing a scalability advantage in that model checking is allow-
ing multiple scenarios to be explored more efficiently than
could be achieved by only running multiple simulations. For
example, for the analyses presented in this paper, the scenar-
ios discovered from running the WMC simulation scenario
and then applying our model checking process required less
computational time than it would have taken to run two full
simulation runs. If only simulation were being employed,
many more simulations would be required to find the same
types of conditions, if they were ever found at all.

5.2 Abstraction

Because the exact timing of actions was critical to the way
that taskload was computed (this would be even truer if vari-
ance in action timing was included), we modeled it explic-
itly in our method. However, this is likely a major factor in
the verification times reported in the previous section. It is
conceivable that abstraction techniques could be used to re-
move the need to represent real time from the model and thus
enable the use of more traditional symbolic model check-

12 Houser, Ma, Feigh, & Bolton

ing. In fact, automated techniques exist for learning such
abstractions from hybrid models that contain both discrete
and continuous components [58, 59]. Future work should
explore how abstraction techniques could be used to poten-
tially improve the scalability of our approach.

5.3 Improvements to the Translation Processes

While automated, the translation processes still require
some manual analyst intervention to identify the sizes of
priority queues (if they are not part of the WMC model),
timing variances, and priorities. Further, when translating
a counterexample back into a WMC scenario, our method
will automatically create WMC code that must be manu-
ally placed in a WMC scenario cpp file, and the WMC C++
source must be recompiled. In future work, we hope to rely
less on these manual human operations. To accomplish this,
we hope to use XML descriptions of the work models and
scenarios. The XML Specification would create a universal
starting point for modeling new systems of interest and al-
low rapid changes to existing work models. Having such an
abstracted specification would support collaborators or gen-
eral users who are unfamiliar with WMC or SAL but more
familiar with XML markup. Additionally, an XML Speci-
fication would allow XML files of work models and sce-
narios to be translated back and forth between WMC sim-
ulations and SAL experiments without manual placing of
source code and WMC compilation. The XML Parser cur-
rently translates work model and scenario XML files into
WMC and WMC scenarios into XML. Current XML files
are parsed and XML statements are subsequently generated
and populate the WMC template. We envision the capabil-
ity for WMC to XML Specifications to parse WMC C++
files and dynamically generate XML tag statements during
runtime to populate XML template files.

5.4 Additional Sources of Variance

Our method only allows for variance of action timing and
sequencing due to non-determinism in action prioritization.
This allowed us to use formal verification to test the taskload
and resource conflict properties we were interested in. How-
ever, it does not allow for variations in the actions that are
performed due to human error or changes in the environ-
mental conditions. These could also impact taskload and re-
source conflicts by introducing additional actions or time
constraints. Work within the extended formal methods lit-
erature has focused on how human error and anomalous
system conditions can be generated in formal models so
that verifications can assess their impact on system perfor-
mance [3–7, 42]. Future work should investigate how these
approaches could be adapted for use in our method.

5.5 Expanded Application

The AAR Studies application presented here showed that
our method was capable of finding the desired conditions
around simulation traces and generating new simulation sce-
narios from those results. While the total amount of time
represented in the model was small (5 seconds), the method
was able to handle scenarios with 4 separate agents with 9
possible actions between them and produce results in a rea-
sonable amount of time.

While the results presented here were capable of test-
ing the intellectual contributions of our work, the analyses
do not give us any particular insights into the larger perfor-
mance of the represented air traffic control scenario. Further,
the balanced FA3-FA3 distribution we tested is only one of
many possible distributions of authority and responsibility
offered by the AAR Studies scenarios. Future work with the
method will explicitly focus on using the new capabilities
of the method to more deeply and completely explore how
taskload and resource conflicts could impact air traffic con-
trol performance under different distributions of authority
and responsibility.

Acknowledgement

This work was supported by the grant “Scenario-Based Ver-
ification and Validation of Autonomy and Authority” from
the NASA Ames Research Center under award number
NNX13AB71A.

References

1. Alur R, Dill DL (1994) A theory of timed automata.
Theoretical Computer Science 126(2):183–235

2. Bainbridge L (1983) Ironies of automation. Automatica
19(6):775–780

3. Bolton ML, Bass EJ (2008) Using relative position and
temporal judgments to identify biases in spatial aware-
ness for synthetic vision systems. The International
Journal of Aviation Psychology 18(2):1050–8414

4. Bolton ML, Bass EJ (2009) Comparing perceptual judg-
ment and subjective measures of spatial awareness. Ap-
plied Ergonomics 40(4):597–607

5. Bolton ML, Bass EJ (2013) Generating erroneous hu-
man behavior from strategic knowledge in task models
and evaluating its impact on system safety with model
checking. IEEE Transactions on Systems, Man and Cy-
bernetics: Systems 43(6):1314–1327

6. Bolton ML, Bass EJ, Siminiceanu RI (2012) Generat-
ing phenotypical erroneous human behavior to evalu-
ate humanautomation interaction using model check-

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 13

ing. International Journal of Human-Computer Studies
70(11):888–906

7. Bolton ML, Bass EJ, Siminiceanu RI (2013) Using for-
mal verification to evaluate human-automation interac-
tion in safety critical systems, a review. IEEE Trans-
actions on Systems, Man and Cybernetics: Systems
43(3):488–503

8. Bolton ML, Jimenez N, van Paassen MM, Trujillo M
(2014) Automatically generating specification proper-
ties from task models for the formal verification of
human-automation interaction. IEEE Transactions on
Human-Machine Systems 44:561–575

9. Bredereke J, Lankenau A (2002) A rigorous view of
mode confusion. In: Proceedings of the 21st Interna-
tional Conference on Computer Safety, Reliability and
Security, Springer, London, UK, pp 19–31

10. Bredereke J, Lankenau A (2005) Safety-relevant mode
confusions–modelling and reducing them. Reliability
Engineering and System Safety 88(3):229–245

11. Buth B (2004) Analyzing mode confusion: An approach
using FDR2. In: Proceeding of the 23rd International
Conference on Computer Safety, Reliability, and Secu-
rity, Springer, Berlin, pp 101–114

12. Butler RW, Miller SP, Potts JN, Carreño VA (1998) A
formal methods approach to the analysis of mode con-
fusion. In: Proceeding of the 17th Digital Avionics Sys-
tems Conference, IEEE, Piscataway, pp C41/1–C41/8

13. Campos JC, Harrison M (2001) Model checking inter-
actor specifications. Automated Software Engineering
8(3):275–310

14. Campos JC, Harrison MD (2011) Modelling and
analysing the interactive behaviour of an infusion pump.
In: Proceedings of the Fourth International Workshop
on Formal Methods for Interactive Systems, EASST,
Potsdam

15. Chen X, Hsieh H, Balarin F, Watanabe Y (2003) Au-
tomatic trace analysis for logic of constraints. In: Pro-
ceedings of the Design Automation Conference, IEEE,
pp 460–465

16. Clarke EM, Grumberg O, Peled DA (1999) Model
checking. MIT Press, Cambridge

17. Committee on Autonomy Research for Civil Aviation;
Aeronautics and Space Engineering Board; Division on
Engineering and Physical Sciences; National Research
Council (2014) Autonomy Research for Civil Aviation:
Toward a New Era of Flight. National Academy of Sci-
ences, Washington DC

18. de Moura L, Owre S, Shankar N (2003) The SAL lan-
guage manual. Tech. Rep. CSL-01-01, Computer Sci-
ence Laboratory, SRI International, Menlo Park

19. De Moura L, Owre S, Rueß H, Rushby J, Shankar N,
Sorea M, Tiwari A (2004) Sal 2. In: International Con-
ference on Computer Aided Verification, Springer, pp

496–500
20. Degani A (2004) Taming HAL: Designing interfaces

beyond 2001. Macmillan, New York
21. Degani A, Heymann M (2002) Formal verifica-

tion of human-automation interaction. Human Factors
44(1):28–43

22. Derrick J, North S, Simons T (2006) Issues in imple-
menting a model checker for Z. In: International Con-
ference on Formal Engineering Methods, Springer, pp
678–696

23. Dutertre B, Sorea M (2004) Timed systems in SAL.
Tech. Rep. NASA/CR-2002-211858, SRI International

24. Emerson EA (1990) Temporal and modal logic. In: van
Leeuwen J, Meyer AR, Nivat M, Paterson M, Perrin D
(eds) Handbook of Theoretical Computer Science, MIT
Press, Cambridge, chap 16, pp 995–1072

25. Feigh KM, Pritchett AR, Mamessier S, Gelman G
(2014) Generic agent models for simulations of con-
cepts of operation: part 2. Journal of Aerospace Infor-
mation Systems

26. Gelman G, Feigh KM, Rushby J (2013) Example of a
complementary use of model checking and agent-based
simulation. In: IEEE International Conference of Sys-
tems Man and Cybernetics, IEEE, Piscataway, pp 900–
905

27. Gelman G, Feigh K, Rushby J (2014) Example of a
complementary use of model checking and human per-
formance simulation. IEEE Transactions on Human-
Machine Systems 44(5):576–590

28. Gelman GE (2012) Comparison of model checking and
simulation to examine aircraft system behavior. PhD
thesis, Georgia Institute of Technology

29. Hart SG, Staveland LE (1988) Development of NASA-
TLX (Task Load Index): Results of empirical and theo-
retical research. Advances in psychology 52:139–183

30. Houser A, Ma LM, Feigh K, Bolton ML (2015) A
formal approach to modeling and analyzing human
taskload in simulated air traffic scenarios. In: 2015 In-
ternational Conference on Complex Systems Engineer-
ing, pp 1–6

31. Hu AJ (2008) Simulation vs. formal: Absorb what
is useful; reject what is useless. In: Proceedings of
the Third International Haifa Verification Conference,
Springer, Berlin, pp 1–7

32. IJtsma M, Hoekstra J, Bhattacharyya RP, Pritchett
A (2015) Computational assessment of different air-
ground function allocations. In: Eleventh USA/Europe
Air Traffic Management Research and Development
Seminar, 10 pages

33. IJtsma M, Pritchett AR, Bhattacharyya RP (2015) Com-
putational simulation of authority-responsibility mis-
matches in air-ground function allocation. In: Proceed-
ings of the 18th International Symposium on Aviation

14 Houser, Ma, Feigh, & Bolton

Psychology, Write State University, Dayton, 6 pages
34. Joshi A, Miller SP, Heimdahl MP (2003) Mode confu-

sion analysis of a flight guidance system using formal
methods. In: Proceedings of the 22nd Digital Avion-
ics Systems Conference, IEEE, Piscataway, pp 2.D.1-
1–2.D.1-12

35. Loft S, Sanderson P, Neal A, Mooij M (2007) Modeling
and predicting mental workload in en route air traffic
control: Critical review and broader implications. Hu-
man Factors 49(3):376–399

36. Lüttgen G, Carreño V (1999) Analyzing mode confu-
sion via model checking. In: Proceeding of Theoret-
ical and Practical Aspects of SPIN Model Checking,
Springer, Berlin, pp 120–135

37. Mackworth JF (1964) Performance decrement in vigi-
lance, threshold, and high-speed perceptual motor tasks.
Canadian Journal of Psychology 18(3):209–223

38. McFarlane DC, Latorella KA (2002) The scope
and importance of human interruption in human-
computer interaction design. Human-Computer Interac-
tion 17(1):1–61

39. Miller GA (1956) The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological Review 63(2):81

40. Moore J, Ivie R, Gledhill T, Mercer E, Goodrich M
(2014) Modeling human workload in unmanned aerial
systems. In: 2014 AAAI Spring Symposium Series,
AAAI, Palo Alto, pp 44–49

41. Palmer E (1995) “Oops, it didn’t arm”- A case study of
two automation surprises. In: Proceedings of the 8th In-
ternational Symposium on Aviation Psychology, Wright
State University, Dayton, pp 227–232

42. Pan D, Bolton ML (ND) Properties for formally assess-
ing the performance level of human-human collabora-
tive procedures with miscommunications and erroneous
human behavior. International Journal of Industrial Er-
gonomics DOI http://dx.doi.org/10.1016/j.ergon.2016.
04.001

43. Popescu V, Clarke J, Feigh KM, Feron E (2011) ATC
taskload inherent to the geometry of stochastic 4-
d trajectory flows with flight technical errors. CoRR
abs/1102.1660

44. Pritchett A, Feigh K (2011) Simulating first-principles
models of situated human performance. In: Proceedings
of the IEEE First International Multi-Disciplinary Con-
ference on Cognitive Methods in Situation Awareness
and Decision Support, IEEE, Piscataway, pp 144–151

45. Pritchett AR (2013) Simulation to assess safety in com-
plex work environments. In: Lee JD, Kirlik A (eds)
The Oxford handbook of cognitive engineering, Oxford
University Press, New York, chap 22, pp 352–366

46. Pritchett AR, Feigh KM, Kim SY, Kannan SK (2014)
Work models that compute to describe multiagent con-

cepts of operation: Part 1. Journal of Aerospace Infor-
mation Systems 11(10):610–622

47. Pritchett AR, Kim SY, Feigh KM (2014) Measuring
human-automation function allocation. Journal of Cog-
nitive Engineering and Decision Making 8(1):52–77

48. Pritchett AR, Kim SY, Feigh KM (2014) Modeling
human–automation function allocation. Journal of Cog-
nitive Engineering and Decision Making 8(1):33–51

49. Reason J (1990) Human Error. Cambridge University
Press, New York

50. Rushby J (2002) Using model checking to help discover
mode confusions and other automation surprises. Reli-
ability Engineering and System Safety 75(2):167–177

51. Rushby J, Crow J, Palmer E (1999) An automated
method to detect potential mode confusions. In: Pro-
ceedings of the 18th Digital Avionics Systems Confer-
ence, IEEE, Piscataway, pp 4.B.2–1–4.B.2–6

52. Sarter NB, Woods DD (1995) How in the world did we
ever get into that mode? Mode error and awareness in
supervisory control. Human Factors 37(1):5–19

53. Sheridan TB, Parasuraman R (2005) Human-
automation interaction. Reviews of Human Factors and
Ergonomics 1(1):89–129

54. Sherry L, Feary M, Polson P, Palmer E (2000) For-
mal method for identifying two types of automation-
surprises. Tech. Rep. C69-5370-016, Honeywell,
Phoenix

55. Smith G, Wildman L (2005) Model checking Z specifi-
cations using SAL. In: ZB 2005: Formal Specification
and Development in Z and B, Springer, pp 85–103

56. Stocker R, Rungta N, Mercer E, Raimondi F, Holbrook
J, Cardoza C, Goodrich M (2015) An approach to quan-
tify workload in a system of agents. In: Proceedings
of the 14th International Conference on Autonomous
Agents and Multiagent Systems, IFAAMAS, Liverpool

57. Stuart DA, Brockmeyer M, Mok AK, Jahanian F (2001)
Simulation-verification: Biting at the state explosion
problem. IEEE Transactions on Software Engineering
27(7):599–617

58. Tiwari A (2003) Hybridsal: Modeling and abstracting
hybrid systems. Tech. rep.

59. Tiwari A, Khanna G (2002) Series of abstractions for
hybrid automata. Hybrid Systems: Computation and
Control pp 425–438

60. Vela A, Feigh KM, Solak S, Singhose W, Clarke JP
(2012) Formulation of reduced-taskload optimization
models for conflict resolution. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and
Humans 42(6):1552–1561

61. Weyers B, Bowen J, Dix A, Palanque P (eds) (2017)
The Handbook of Formal Methods in Human-Computer
Interaction. Springer, Cham

Using Formal Methods to Reason About Taskload and Resource Conflicts in Simulated Air Traffic Scenarios* 15

62. Wheeler PH (2007) Aspects of automation mode con-
fusion. Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge

63. Wing JM (1990) A specifier’s introduction to formal
methods. Computer 23(9):8, 10–22, 24

64. Yasmeen A, Feigh KM, Gelman G, Gunter EL (2012)
Formal analysis of safety-critical system simulations.
In: Proceedings of the 2nd International Conference on
Application and Theory of Automation in Command
and Control Systems, IRIT Press, pp 71–81

65. Yuan J, Shen J, Abraham J, Aziz A (1997) On com-
bining formal and informal verification. In: Computer
Aided Verification, Springer, pp 376–387

	Introduction
	Background
	Our Method
	Testing
	Conclusions and Discussion

