
A Formal Method for Assessing the Impact of Task-based
Erroneous Human Behavior on System Safety

Matthew L. Boltona,∗, Kylie A. Molinaroa, Adam Housera

aUniversity at Buffalo, State University of New York, Department of Industrial and Systems Engineering, Buffalo, NY, USA

Abstract

Erroneous human behavior is often cited as a major factor to system failure. However, the complexity of the human-automation
interaction can make it difficult for engineers to anticipate how erroneous human behavior can contribute to failures. In this work, we
introduce a novel method for generating human errors based on the task-based taxonomy of erroneous human behavior. This allows
erroneous acts to manifest as divergences from task models. We implement our method using the Enhanced Operator Function
Model. We further show how the method can be used with formal system modeling and formal verification with model checking to
prove whether or not potentially unanticipated erroneous behavior could contribute to system failures. We evaluate how our method
scales and use it to evaluate three case studies: a radiation therapy machine, a pain medication pump, and an Apache helicopter. We
discuss these results and explore options for future work.

Keywords: Human error, erroneous human behavior, task analysis, system safety, formal methods.

1. Introduction

Erroneous human behavior, where a human diverges from a
normative plan or task [1], is regularly cited as a source of failure
in complex systems [1–4]. It contributes to more than 1,000,000
injuries and between 44,000 and 98,000 deaths each year in
medicine [5]; roughly 75% of all accidents in general aviation
and 50% in commercial aviation [6–8]; one third of unmanned
aerial system (UAS) accidents [9]; 90% of automobile crashes
[10]; most fratricide incidents in military operations [11]; and
high profile disasters like the accident at Three Mile Island [12].
Humans are often blamed for failures associated with erroneous
human behaviors. However, the modern perspective on this
issue holds that such failures are the result of shortcomings
in the design of systems’ human-automation interaction and
thus not solely the fault of human operators. Unfortunately, the
complexity of these systems and the inherent concurrency that
exists in human-automation interaction can make it extremely
difficult for system designers to predict exactly how erroneous
behavior can occur and how it can cause problems.

A growing body of work has been investigating how the ex-
haustive analysis capabilities of formal methods, such as model
checking, can be used to evaluate human-automation interaction
[13–15]. In particular, techniques have been developed that en-
able an analyst to pair models of human task behavior (based
on a task analysis) with models of system behavior to deter-
mine when normative or erroneous human behavior can play
a role in violations of system safety [16–27]. While powerful,
these techniques can miss critical human-automation interac-
tions. Methods that only consider normative human behavior

∗Corresponding author
Email address: mbolton@buffalo.edu (Matthew L. Bolton)

neglect the impact of erroneous acts [16–19]. Methods that
require analysts to manually include erroneous human behav-
iors require them to anticipate what erroneous behavior will
potentially be problematic [20, 21, 24]. Finally, methods that
automatically generate erroneous human behaviors using devi-
ations from tasks are grounded in incompatible genotype- and
phenotype-based taxonomies [22, 23, 25–27, 27]. Thus, these
approaches predict different types of erroneous human behaviors
while missing others [28].

In this paper, we introduce a novel approach to generating
erroneous human behavior in formal task analytic behavior mod-
els so that model checking can be used to evaluate its impact on
system safety. This new method makes use of the task-based
taxonomy of erroneous human behavior, which connects the
leading phenomenological and genotypical erroneous behaviors
based on where erroneous behaviors deviate from a task [29].
By using this taxonomy, our new erroneous behavior generation
method offers a more complete means of assessing the impact of
erroneous human behavior on system safety. Below we discuss
the background necessary for understanding our method. We
then describe the method. This is followed by results that assess
how the method scales and the ability of the method to detect
both known and unknown problems in realistic case studies.
The first two cases come from the literature (a pain medication
pump [30] and a radiation therapy machine [22]), where legacy
phenotype- and genotype-based generation methods where pre-
viously employed but could not reproduce the failure conditions
found by each other [28]. By using the new generation tech-
nique to evaluate these applications, we show our new methods
accounts for the erroneous behaviors of the two, legacy, incom-
patible approaches. The third case, the firing procedures of an
Apache helicopter, is unique to this approach and demonstrates

Preprint submitted to Reliability Engineering and System Safety January 29, 2021

mbolton
Text Box
Bolton, M. L., Houser, A., & Molinaro, K. (2019). A formal method for assessing the impact of task-based erroneous human behavior on system safety. Reliability Engineering and System Safety, 188, 168-180.

the ability of the method to discover both known and previously
unknown system failures. We ultimately discuss our results and
future research directions.

2. Background

Below we cover the necessary background for understanding
our method. This includes an overview of formal methods and
model checking, how they have been used in erroneous behavior
analyses, the Enhanced Operator Function Model (EOFM) task
analytic modeling formalism, and the task-based taxonomy of
erroneous behavior.

2.1. Formal Methods and Model Checking

Formal methods are techniques and tools for mathematically
modeling, specifying, and proving properties about (formally
verifying) systems [31]. Formal models mathematically describe
the behavior of a target system. Specification properties describe
conditions that should always be true in the system. Formal
verification is the process of mathematically proving if the for-
mal model satisfies the specifications. Formal methods can be
applied in a number of different ways. Early approaches used
manual “pen and paper” proofs to show the correctness of com-
puter programs. However, there are now semi-automated and
automated theorem proving tools to help analysts perform these
proofs [32–35]. One such tool is model checking.

Model checking is an automated approach to formal verifi-
cation [35]. In this, the formal model describes a system as a
state machine: a collection of variables whose values indicate
state and transitions between states based on inputs and current
state. Specification properties are asserted using model variables,
Boolean operators, and other model logic operations (usually
temporal logic [36]). For verification, a software tool exhaus-
tively searches through the formal model’s statespace. If it finds
a violation, the model checker returns a trace through the model
(called a counterexample) that shows exactly how the violation
occurred. If no violation is discovered, then the model checker
successfully proved the system model satisfies the specification.

The major limitation of model checking is scalability [35].
This is because it suffers from the “state explosion problem:”
statespace size increases exponentially as concurrent elements
are added to it. This can quickly lead to models that are too big
(exceed machine memory) or take too long to verify. Because of
this, active research is focused on addressing this issue [37].

Formal methods are mostly used to engineer and analyze
computer hardware and software [31, 38]. They have also been
used to evaluate the safety and reliability of abstract representa-
tions of complex and cyberphysical systems [39–43]. Because
they are adept at finding problems that arise from interactions
between components in complex systems, researchers have been
exploring how formal methods (and especially model checking)
can be used for human interactive systems [13–15, 44–47]. This
includes analyses of interface usability, methods for discovering
mode confusion and automation surprise, and analyses for deter-
mining the impact of human behavior and perception on system
safety and performance [14]. In this work, we are predominantly

concerned with how task analytic behavior models have been
used with formal methods to evaluate the impact of erroneous
human behavior. This is discussed in depth below.

2.2. Formal Methods and Task-based Erroneous Behavior

Task analysis is a systematic process analysts use to describe
all of the different ways human operators normatively achieve
goals with a system [48–50]. This is commonly documented
using a hierarchical task model. Such a model is a collection of
individual tasks, where each is represented as a hierarchy of goal-
directed activities that decompose into other activities and, at the
lowest level, actions. Strategic knowledge (condition logic) and
internal operators control when and how activities can execute
in relation to each other and the operational environment. Task
analytic models are some of the most successful technologies
developed by human factors engineers and are thus widely used.

Task models can be interpreted formally. This allows them to
be included in larger formal system models that contain a formal
description of other relevant system behaviors. Formal verifica-
tion can then be used to evaluate the impact of both modeled
normative and erroneous behavior as well as generated erro-
neous behavior on system performance and safety. Researchers
either manually describe normative task models in formal nota-
tions as part of larger systems models [51, 52] or translate native
task model notations into a formalism in which other system
elements are represented [16–19, 21, 53, 54].

Further, investigators have explored how erroneous behav-
iors can be incorporated into the task models so that their impact
on system safety and performance can be evaluated with model
checkers. Erroneous behaviors can either be generated manually
using patterns or automatically using different theories of erro-
neous behavior [22, 23, 25–27, 30, 54, 55]. With few exceptions
(like the research that has modeled communication errors [26]),
these approaches rely on two different taxonomies of erroneous
behavior to inform their process. This first is Hollnagel’s [1]
phenotypes of erroneous behavior, which classifies erroneous
behavior based on how they observably deviate from a normative
plan of action. Generation methods based on this classification
focus of permuting task models to replicate the erroneous phe-
notypes [20–22, 24, 56, 57]. The second taxonomy concerns the
genotypes of erroneous behavior found in Reason’s Generic Er-
ror Modeling System (GEMS) [2]. In this, erroneous behaviors
are classified based on their cognitive causes: slips of attention
(problems with the execution of a plan or task), rule-based mis-
takes (wrong plan), or knowledge-based mistakes (formulating
a plan wrong). For work where the human operator is properly
trained and knows his or her task, slips are the most relevant.
Thus research on replicating erroneous human behavior in task
models tends to focus on the generation of slips [23, 25, 27, 30],
but can also account for mistakes [54].

While all of these approaches have definite utility, they are
limited. First, while genotype-based erroneous behavior genera-
tion methods tend to scale linearly with the number of erroneous
human behaviors [30], the phenotype-based approaches scale ex-
ponentially [22]. This can limit the applicability of the method.
Second, erroneous behaviors predicted by the two approaches

2

are often divergent [28]. In particular, erroneous behaviors gen-
erated from the phenomenological perspective tend to be better
at evaluating the robustness of system to low-level extraneous
actions. Genotype-based methods tend to manifest higher in
the task (usually based on failures of attention for task strategic
knowledge). Thus, even these formal methods can miss crit-
ical system interactions. The recent task-based taxonomy of
erroneous human behavior [29] unified the phenomenological
and genotypical perspectives and thus offers opportunity for ad-
dressing the shortcomings of the previous generation approaches.
This taxonomy is discussed next.

2.3. EOFM and the Task-based Erroneous Behavior Taxonomy
The task-based taxonomy of erroneous human behavior is

formulated using EOFM. Thus, we discuss EOFM before detail-
ing the taxonomy.

2.3.1. EOFM
EOFM [19, 58] is an XML-based task analytic modeling

formalism that represents human behavior as an input/output
model. Inputs are system elements that are external to the hu-
man, such as interface display components or factors from the
environment. Outputs are human actions. The operators’ tasks
describe how human actions occur based on input and local
variables (representing perceptual or cognitive processes).

EOFMs represent a task as a hierarchy of goal-directed ac-
tivities that decompose into sub-activities and, at the bottom,
atomic actions. EOFMs can assert strategic knowledge explicitly
as Boolean expressions using input and local variables that assert
what must be true for them to start executing (Preconditions),
repeat (RepeatConditions), or complete (CompletionConditions).
Any activity can decompose into one or more other activities
or one or more actions. A decomposition operator (Table 1)
specifies how many sub-activities or actions can execute and the
temporal relationships between them.

Observable, atomic human actions or internal (cognitive or
perceptual) actions exist at the bottom of the task hierarchy.
Observable actions have three possible behaviors: AutoReset
actions happen as a single event; Toggle actions switch between

Table 1: Decomposition Operators

Operator Description

optor seq Zero or more of the activities or actions in the decomposition
must execute in any order, one at a time.

optor par Zero or more of the activities or actions in the decomposition
must execute in any order and can execute in parallel.

or seq One or more of the activities or actions in the decomposition
must execute in any order one at a time.

or par One or more of the activities or actions in the decomposition
must execute in any order and can execute in parallel.

and seq All of the activities or actions in the decomposition must execute
in any order, one at a time.

and par All of the activities or actions in the decomposition must execute
in any order and can execute in parallel.

xor Exactly one activity or action in the decomposition executes.
ord All activities or actions must execute in the order they appear in

the decomposition.
sync All actions in the decomposition must execute synchronously.

occurring and not occurring when the action is performed; and
SetValue actions convey a value that is more complex than oc-
currence or non-occurrence. Non-observable (internal) actions
allow internal behaviors (such as remembering something) to be
represented as local variable assignments.

EOFMs can be represented visually as tree-like graphs (ex-
amples are shown later in Figs. 7 and 10 to 12). Actions are
rectangles and activities are rounded rectangles. An activity’s
decomposition is an arrow labeled with the decomposition op-
erator. The arrow points to a rounded rectangle containing the
decomposed activities or actions. Strategic knowledge condi-
tions are triangles and/or arrows connected to the activity that
they constrain. These are labeled with the Boolean logic of
the condition. A Precondition is a yellow, downward triangle;
a CompletionCondition is a magenta, upward triangle; and a
RepeatCondition is an arrow recursively pointing to the activity.

EOFMs have formal semantics [19, 60]. This provides an
unambiguous, mathematical descriptions of how they execute.
For this, every activity and action is treated as a state machine
(Fig. 1) that transitions between three execution states: Ready
(waiting to execute), Executing, and Done. An activity or action
starts in the Ready state. It transitions between states based on
whether or not the specific Boolean conditions on the labeled
transitions (Fig. 1) are true.

The strategic knowledge conditions of an activity (Precondi-
tions, RepeatConditions, and CompletionConditions) are used
to partially describe when these transitions can occur. However,
three additional implicit conditions are also required. These
assert whether an activity can start, end, or reset based on the
given activity’s or action’s position in the task. Specifically, a
StartCondition indicates if an activity can start executing based
on the execution states of its parent, its parent’s decomposi-
tion operator, and its siblings (activities or actions in the same
decomposition). An EndCondition indicates if an activity or
action can end execution based on the execution state of its chil-
dren (activities or actions the activity decomposes into) and its
decomposition operator. Since an action has no children, its End-
Condition is true when the action has been properly executed.
Finally, a Reset condition indicates when an activity or action
can return to the Ready execution state. A Reset occurs when an
a top-level activity reaches Done (and broadcasts a Reset to all of
its decedents) or is issued to all of an activities dependents when
it repeats (this is shown as a transition With Reset in Fig. 1).
More details on these conditions can be found in [19, 60].

The formal semantics of EOFM are used as the basis for
an automated translator (implemented in Java) that interprets
the EOFM XML and outputs a formal representation. This can
be part of a larger formal system model [19, 60] that the ana-
lyst manually implements using the notation of the Symbolic
Analysis Laboratory (SAL) [59]. The the model created by the
translator contains a module (a sub-model) representing the hu-
man task behavior (modules describing the rest of the model
elements must be manually described by the analyses). This
module has input variables from the XML markup, outputs rep-
resenting human actions (the type of SetValue actions is specified
in the XML; all other human actions are Boolean), local vari-
ables representing local variables explicitly defined in the XML,

3

(a) (b)
Legend

State

Transition

Initial State

Reset

StartCondition ˄ Precondition

˄ ¬ CompletionCondition

StartCondition

˄ CompletionCondition

EndCondition

˄ CompletionCondition

EndCondition ˄ RepeatCondition ˄¬ CompletionCondition with Reset

Executing

Ready

Done

Reset StartCondition

EndCondition
Executing

Ready

Done

Figure 1: EOFM transition semantics.

% Ready to Executing transition for an activity
[] Activity = Ready AND (StartCondition) AND (Precondition)
 AND NOT (CompletionCondition) -->

Activity’ = Executing;
% Ready to Done transition for an activity
[] Activity = Ready AND (StartCondition) AND (CompletionCondition) -->

Activity’ = Done;
% Executing to Executing (a repeat) transition for an activity
[] Activity = Executing AND (EndCondition) AND (RepeatCondition)
 AND NOT (CompletionCondition) -->

Activity’ = Executing;
% All sub-activities and actions are set to Ready (they are Reset)
SubAct’ = Ready;
...

% Executing to Done transition for an activity
[] Activity = Executing AND (EndCondition)
 AND (CompletionCondition) -->

Activity’ = Done; (a)

% Done to Ready transition (Reset) for an activity with no parent
[] Activity = Done -->

Activity’ = Ready;
% All sub-activities and actions are set to Ready (the are Reset)
SubAct’ = Ready;
...

% Ready to Executing transition for a humanaction with autoreset behavior
[] AutoResetAction = Ready AND (StartCondition) AND InterfaceReady -->

AutoResetAction’ = Executing;
AutotResetActionValue’ = TRUE;
Submitted’ = TRUE;

% Ready to Executing transition for a humanaction with toggle behavior
[] ToggleAction = Ready AND (StartCondition) AND InterfaceReady -->

ToggleAction’ = Executing;
ToggleActionValue’ = NOT ToggleActionValue;
Submitted’ = TRUE;

% Ready to Executing transition for a humanaction with setvalue behavior
[] SetValueAction = Ready AND (StartCondition) AND InterfaceReady -->

SetValueAction’ = Executing;
SetValueActionValue’ = Value;
Submitted’ = TRUE;

% Ready to Done (via Executing) transition for a localvariable action
[] LocalVariableAction = Ready AND (StartCondition) -->

LocalVariableAction’ = Done;
LocalVariable’ = Value;

(b)

(c)

(d)

(e)

(f)

% Executing to Done transition for actions
[] Submitted AND NOT InterfaceReady -->

Submitted’ = FALSE;
% All Executing humanactions are set to Done and unchanged otherwise
Action' = IF Action = Executing THEN Done ELSE Action ENDIF;
...
% All autoreset actions are set to FALSE (others are unchanged)
AutoResetAction’ = FALSE;
... (g)

Figure 2: Patterns of SAL transitions (adapted from [58]) used for activities and actions to transition between their execution states. In SAL notation (see [59]),
[] indicates the beginning of a nondeterministic transition. This is followed by a Boolean expression representing the transition’s guard. The guard ends with a
-->. This is followed underneath by a series of variable assignments where a ’ on the end of a variable indicates that the variable is being used in the next state.
Colors enhance code readability. Comments are green, variables are dark blue, reserved SAL words are light blue, and values are orange. Things in purple represent
expressions such activity or action conditions. (a) Shows all of an activity’s transitions except for the Reset one from Fig. 1(a). (b) Represents the activity Reset
transition from Fig. 1(a). Note that this Reset transition only occurs for activities at the top of a task model hierarchy (ones with no parent). Other resets occur based
on the assignments that occur in these types of transitions or in repeat transitions (see (a)). (c)–(f) show the patterns of SAL transitions used for an action to transition
from Ready to Executing and/or from Ready to Done with an implied execution in between (see Fig. 1(b)). (c) presents the pattern used for a humanaction with
autoreset behavior, while (d) reports the pattern used for a humanaction with toggle behavior. (e) shows the pattern used for a humanaction with setvalue behavior. (f)
displays the pattern used for a localvariable action. Note that in (e) and (f), Value is used to represent a variable or specific value from the EOFM’s XML markup. (g)
shows the SAL transition pattern used to handle all action Executing-to-Done transitions. Note that all transitions associated with actions that produce output behavior
[(c), (d), (e), and (g)] use two Boolean variables to handle a coordination handshake with the other elements of the formal model (which are manually created by the
analyst). An input variable InterfaceReady will always be true when the interface is ready to receive input. An output variable Submitted (which is initialized to
false) is set to true when one or more human actions are performed. More details on the translation process can be found in [58].

and other local variables representing the execution state of the
task’s activities and actions. Activity and action execution state
are defined using a SAL enumerated type with values Ready,
Executing, or Done (as per the semantics in Fig. 1). Then, to
describe the behavior of the human task, the module explicitly
represents all of the edges from the formal semantics in Fig. 1 as
nondeterministic, guarded transitions. Figure 2 presents patterns
that show how these transitions are formed for each activity and

action in a task. A deeper discussion of the EOFM translation
process can be found in [58].

2.3.2. The Task-Based Taxonomy of Erroneous Behavior
EOFM was used as the basis for the task-based taxonomy

of erroneous human behavior [29], a classification system that
unifies the phenomenological (what) and genotypical (why) per-
spectives based on where erroneous behaviors can occur as

4

True

With Reset

Ready

Done Executing

¬ StartCondition ˅ ¬ Precondition

˅ CompletionCondition

StartCondition

˄ ¬ CompletionCondition

¬ EndCondition

˅ ¬ CompletionCondition

¬ EndCondition ˅ ¬ RepeatCondition ˅ CompletionCondition With Reset

¬ StartCondition

StartCondition

¬ EndCondition

Ready

Executing
EndCondition

Done

True

(a) (b)
Mode

Intrusion

Omission

Restart

StartCondition

Delay

StartCondition ˄ Precondition

˄ ¬ CompletionCondition

EndCondition

˄ (CompletionCondition

 ˅ RepeatCondition

 ˄ ¬ CompletionCondition)

Figure 3: EOFM erroneous transition semantics.

deviations from tasks. The premise behind this is that by know-
ing where a deviation occurs in a task model, the way the error
will manifest (the phenotype of erroneous action [1]), and the
information the human operator failed to attend to (the genotype
of the slip [2]) will also be apparent.

In the taxonomy, a human who erroneously diverges from a
task will do so by violating the task’s formal semantics. Thus,
the taxonomy classifies erroneous human behavior based on
how the formal semantics are violated. The nature of the vio-
lation shows at which activity or action the divergent behavior
occurred, what the erroneous behaviors was (its phenotype), and
which part of the formal semantics were violated and thus not
properly attended to (the error’s genotype). Taxonomy classifica-
tions are hierarchical. First, the taxonomy distinguishes between
erroneous behaviors that originate at the activity or action levels.
Task execution can diverge from the formal semantics either
through violations of the execution state transition semantics or
through incorrect action variable assignments that occur during
the action’s execution. Thus, the taxonomy further identifies the
divergence type associated with an erroneous act. These diver-
gences have limited ways they can manifest (erroneous behavior
modes). These represent the next taxonomy level. Within each
mode, the task-based taxonomy classifies an erroneous behavior
based on the point of divergence from the semantics.

For transition-based behaviors, erroneous behavior modes
represent erroneous transitions that can occur between activity
and action execution states (see Fig. 3). An intrusion occurs
whenever an activity or action transitions to executing when it
should not. An omission occurs when an activity transitions to
done when it should not. A restart occurs when an activity’s exe-
cution restarts (it resets and starts executing form the beginning)
when it should not. Finally, a delay occurs when an activity or
action does not transition out of its current state when it should.

For execution-based erroneous behaviors, the mode is the
type of variable assignment (the type of action) performed: a
substitution for a SetValue action and a misremembrance for
local variable assignments.

Each point of divergence is further refined and given mean-
ingful erroneous behavior types based on what the human im-
properly attended to (for transition-based erroneous behaviors)
or improper variable assignment (for execution-based errors).

Table 2: Action-level Erroneous Behavior Types

Assignment Erroneous Behavior Type

CorrectAction := IncorrectValue Action Value Substitution
IncorrectAction := CorrectValue Action Target Substitution

CorrectVariable := IncorrectValue Value Misremembrance
IncorrectVariable := CorrectValue Target Misremembrance

The original paper on the taxonomy [29] explicitly shows
how each of the Hollnagel’s phenotypes of erroneous action and
each of the slip genotypes from GEMS [2] are associated with
deviations from task. However, for the purposes of the discussed
research, it is only important to understand the classification
of transition-based errors at the level of modes. For execution-
based erroneous behaviors, there can be value and target types
of substitutions and misremembrances (Table 2). In the former,
an incorrect value is assigned to the target variable (the action or
the local variable). In the latter, the correct value is assigned to
the wrong target (action of local variable).

Note that the closest analog to the task-based taxonomy
[29] is the system developed by Fahssi et al. [61]. Fahssi et al.
showed how both the phenotypes and genotypes or erroneous
behaviors could be systematically identified in task models as
part of a human reliability analysis using a guided, manual,
systematic process. While similar to the task based taxonomy
[29], the system in [61] does not provide a systematic means of
permuting the execution semantics of a task model. Thus it was
not used in the work presented here.

3. Method

Existing EOFM-based formal verifications techniques [18,
19, 62] were extended to support erroneous behavior genera-
tion with the new taxonomy. In our method (Fig. 4), an analyst
creates a normative task model as an EOFM. The analyst also
constructs a formal system model representing the behavior
of the system and environment the human interacts with. The
Java-based EOFM to SAL translator uses the EOFM formal
semantics (Fig. 1) and the erroneous behavior semantics (Fig. 3
and Table 2) to automatically incorporate both the normative

5

Translation &
Erroneous
Behavior

Generation

Manual
Modeling

Model
Checking
with SAL

SpecificationEOFM Task
Model

Verification
Report

Formal
System
Model

Figure 4: EOFM model checking analysis with the novel erroneous behavior
generation technique incorporated into it.

EOFM task behavior and generated erroneous behaviors into the
formal system model. The SAL model checker then evaluates
whether system specifications created by the analyst or automat-
ically generated from the EOFM task models [62] will always
be true. A verification report will indicate if the specifications
hold and, if not, show how they were violated with counterex-
amples. Counterexamples can be inspected using the EOFM
counterexample visualizer [63].

The major contribution of this method comes from its new
translation and erroneous behavior generation process. This
works by modifying the way EOFM formal semantics were
interpreted in the translated formal representation of the task
behavior model. Specifically, during translation, when the nor-
mative transitions for each activity and action are being created
using the patterns from Fig. 2, the task-based erroneous behav-
iors are incorporated into this formal representation by adding
transitions that allow for the erroneous transitions in Fig. 3 and
assignments from Table 2. Figure 5 shows the patterns that are
used for all activities to represent the erroneous behavior modes
from Fig. 3(a) in SAL’s input language. The corresponding tran-
sitions generated for all actions (and replicating the modes from
Fig. 3(b)) are shown in Fig. 6(a). The additional SAL transition
patterns that are used to generate action-level erroneous behavior
types (Table 2) when an action is SetValue or a local variable
assignment are shown in Fig. 6(b) and (c). These additions en-
able activities and actions to execute, repeat, stop executing, or
assign values incorrectly based on failures of attention in all of
the different ways supported by the taxonomy.

A formal model that allows any erroneous behavior to man-
ifest at any given time will create unbounded human behavior
that will not be interesting to analysts. Further, including all pos-
sible erroneous behaviors in a given analysis will likely only find
a particular combination of conditions that cause a failure for a
given property. In this situation, an analyst may miss erroneous
behaviors that can cause failures in different ways. The method
addresses these issues in two different ways. First, the formal
model keeps track of the total number of erroneous human be-
haviors allowed in a given analysis (Max in Figs. 5 and 6) and
only allow erroneous behaviors to be performed if the maximum
was not reached by counting (Count in Figs. 5 and 6) the number
erroneous behaviors included in any given analysis. Second, the
method allows analyst to have full control of which erroneous
behaviors are generated. For example, an analyst can choose
the default option of generating every erroneous behavior for
every activity and action in a task model. However, the analyst

can also choose to only generate erroneous behaviors for a given
activity or actions (or set of activities and actions) as well as
only allow specific modes or types of errors to be generated.
Analysts are able to explicitly specify how these options are
employed in the EOFM’s XML markup prior to translation. The
net effect of these features is that, formal verifications conducted
with erroneous behavior generation will prove whether or not
the modeled system is safe for up to the maximum number of
erroneous human behaviors for the subset of analyst allowed
erroneous behaviors.

4. Applications and Results

Below we present the case studies considered in our analyses.
First we discuss are scalability analyses. This is followed by
results of our analyses of legacy systems (the pain medication
pump and the radiation therapy machine). Finally, we present
our analysis of an Apache helicopter firing procedure.1

All of case study verifications were performed on a computer
workstation with a 12-core, 3.6 GHz, Intelr Xeonr processor
and 128 GB of RAM running Linux Mint 18.1.

4.1. Scalability Analyses
For the scalability tests, analyses were run using the three

tasks shown in Fig. 7. These were designed to increase in com-
plexity between tasks based on the number of actions and activi-
ties and the number of strategic knowledge conditions ((C1, C2,
C3, and C4) representing Preconditions, RepeatConditions, and
CompletionConditions). All used the optor par decompositions
because it results in the maximum number of model states [19].

Each task model was translated into a formal model and
paired with a system model that updated the state of the strategic
knowledge conditions in response to human actions. In all of
the tasks, the human must perform a given action (i.e. Action1)
until its associated condition (i.e. C1) is true.

Within each formal model, the maximum number of erro-
neous human behaviors included (applied to all activities and
actions) was varied from 0 to 16. A true specification was ver-
ified against each model and the number of visited states and
verification times were recorded (see Fig. 8). This shows that
the number of model states and verification times all scaled lin-
early with the maximum number of erroneous human behaviors.
This is a significant result because it shows that the erroneous
behavior generation method can be applied to complex systems
without the risk of exacerbating scalability (an issue that occurs
when exponential increases occur).

4.2. Legacy Cases
To demonstrate the ability of this new method to discover

situations where erroneous behavior can contribute to failures,
we have used it to find problems discovered in older analyses
[22, 23]. Specifically, we used the new method to evaluate the
safety of a radiation therapy machine [22] (previously evaluated

1EOFM and SAL listings of all of the presented case study models can be
found at http://fhsl.eng.buffalo.edu/resources/.

6

http://fhsl.eng.buffalo.edu/resources/

% Erroneous activity Ready to Ready (Delay) transition
[] Activity = Ready AND (StartCondition) AND (Precondition) AND NOT (CompletionCondition) AND (Count <= Max) -->

Activity’ = Ready;
Count’ = Count + 1;

% Erroneous activity Ready to Done (Omission) transition
[] Activity = Ready AND (StartCondition) AND NOT (CompletionCondition) AND (Count <= Max) -->

Activity’ = Done;
Count’ = Count + 1;

% Erroneous activity Ready to Executing (Intrusion) transition
[] Activity = Ready AND NOT (StartCondition) AND NOT (Precondition) AND (CompletionCondition) AND (Count <= Max) -->

Activity’ = Executing;
Count’ = Count + 1;

% Erroneous activity Executing to Executing (Delay) transition
[] Activity = Executing AND (EndCondition) AND ((CompletionCondition) OR (RepeatCondition) AND NOT (CompletionCondition)) AND (Count <= Max) -->

Activity’ = Executing;
Count’ = Count + 1;

% Erroneous activity Executing to Executing (Restart) transition
[] Activity = Executing AND (NOT (EndCondition) OR NOT (RepeatCondition) OR (CompletionCondition)) AND (Count <= Max) -->

Activity’ = Executing;
% All sub-activities and actions are set to Ready (they are Reset)
SubAct’ = Ready;
...
Count’ = Count + 1;

% Erroneous activity Executing to Done (Omission) transition
[] Activity = Executing AND NOT (EndCondition) AND NOT (CompletionCondition) AND (Count <= Max) -->

Activity’ = Done;
Count’ = Count + 1;

% Erroneous activity Done to Executing (Intrusion) transition
[] Activity = Done AND (Count <= Max) -->

Activity’ = Executing;
Count’ = Count + 1;

Figure 5: Patterns of SAL transitions used for representing the erroneous behavior modes for activities. These represent each of the erroneous transitions from
Fig. 3(a) as options beyond the normative transitions from Fig. 2(a) and (b). Note that Max represents the maximum number of erroneous behaviors allowed in a given
analysis and Count represents a counter that tracks the number of erroneous behaviors that have occurred. None of these transition can occur unless the count has not
reached the maximum (Count <= Max). Count is incremented when each transition does occur (Count’ = Count + 1).

% Erroneous action Ready to Ready (Delay) transition
[] Action = Ready AND (StartCondition) AND (Count <= Max) -->

Action’ = Ready;
Count’ = Count + 1;

% Erroneous action Ready to Done (Omission) transition
[] Action = Ready AND (StartCondition) AND (Count <= Max) -->

Action’ = Done;
Count’ = Count + 1;

% Erroneous action Ready to Executing (Intrusion) transition
[] Action = Ready AND NOT (StartCondition) AND (Count <= Max) -->

Action’ = Executing;
Count’ = Count + 1;

% Erroneous action Executing to Executing (Delay) transition
[] Action = Executing AND (EndCondition) AND (Count <= Max) -->

Action’ = Executing;
Count’ = Count + 1;

% Erroneous action Executing to Done (Omission) transition
[] Action = Executing AND NOT (EndCondition) AND (Count <= Max) -->

Action’ = Done;
Count’ = Count + 1;

% Erroneous action Done to Executing (Intrusion) transition
[] Action = Done AND (Count <= Max) -->

Action’ = Executing;
Count’ = Count + 1;

% Erroneous Ready to Executing Action Value Substitution
[] SetValueAction = Ready AND (StartCondition) AND InterfaceReady AND (Count <= Max) -->

SetValueAction’ = Executing;
SetValueActionValue’ IN {x: ActionType | x /= CorrectValue};
Submitted’ = TRUE;
Count’ = Count + 1;

% Erroneous Ready to Executing Action Target Substitution
[] SetValueAction = Ready AND NOT (StartCondition) AND InterfaceReady AND (Count <= Max) -->

SetValueAction’ = Executing;
SetValueActionValue’ IN {x: ActionType | x /= CorrectValue};
Submitted’ = TRUE;
Count’ = Count + 1;

% Ready to Executing transition for a humanaction with setvalue behavior
[] SetValueAction = Done AND InterfaceReady AND (Count <= Max) -->

SetValueAction’ = Executing;
SetValueActionValue’ IN {x: ActionType | x /= CorrectValue};
Submitted’ = TRUE;
Count’ = Count + 1;

% Erroneous Ready to Done (via Executing) Value Misremembrance
[] LocalVariableAction = Ready AND (StartCondition) AND (Count <= Max) -->

LocalVariableAction’ = Done;
LocalVariable’ IN {x: ActionType | x /= CorrectValue};
Count’ = Count + 1;

% Erroneous Ready to Done (via Executing) Target Misremembrance with wrong value
[] LocalVariableAction = Ready AND NOT (StartCondition) AND (Count <= Max) -->

LocalVariableAction’ = Done;
LocalVariable’ IN {x: ActionType | x /= CorrectValue};
Count’ = Count + 1;

% Erroneous Done to Done (via Executing) Target Misremembrance with wrong value
[] SetValueAction = Done AND (Count <= Max) -->

LocalVariableAction’ = Done;
LocalVariable’ IN {x: ActionType | x /= CorrectValue};
Count’ = Count + 1;

(a)

(b)

(c)

Figure 6: Patterns of SAL transitions used for representing
(a) the erroneous behavior modes (from Fig. 3(b)) and (b)–(c)
the action-level erroneous behavior types (from Table 2) for
actions. The transition patter in (a) are used to represent each
of the erroneous transitions from Fig. 3(b) as options beyond
the normative transitions from Fig. 2(c)–(g). The transition
patterns in (b) are used to represent Action Value Substitu-
tion and Action Target Substitution erroneous behavior types
from the upper half of Table 2. The transition patterns in (c)
are used to represent Value Misremembrance and Target Mis-
remembrance erroneous behavior types from the lower half
of Table 2. Max and Count are as defined in the caption of
Fig. 5. Note that in the above, a dark red color indicates a type.
Further, the IN operator is used to indicate nondeterministic
assignment to a variable to its left of a value from a set defined
between the curly braces {...} to the right.

with generated erroneous phenotypes [1]) and a patient con-
trolled analgesia pump [23] (a pain medication pump previously
evaluated with generated slips [2]).

The new method was applied to these case studies with a
maximum of one erroneous human behavior applied to all activ-
ities and actions. For both cases it was able to find the originally
identified problems. For the radiation therapy machine, this was
a condition where the human operator could accidentally select
the wrong mode for the machine, correct it too quickly for the

machine process, and administer a treatment that irradiates a
patient. This analysis visited 702,048 states and took a total of
2.71 seconds.

The pain medication pump analysis found an error where
a practitioner could enter an incorrect value into the pump, re-
sulting in the administration of an incorrect prescription. This
verification visited 141,2983,528 over 12,811.14 seconds. This
is a significant result because the original erroneous behavior
generation methods were incompatible and would not find the

7

aActivity

1234

NOT(iC1 AND iC2 AND iC3 AND iC4)

NOT(iC1 AND iC2 AND iC3 AND iC4)

iC1 AND iC2 AND iC3 AND iC4

optor_par

aActivity12

NOT(iC1 AND iC2)

NOT(iC1 AND iC2)

iC1 AND iC2

optor_par

aActivity1

NOT iC1

NOT iC1

iC1

optor_par

hAction1

aActivity2

NOT iC2

NOT iC2

iC2

optor_par

hAction2

aActivity34

NOT(iC3 AND iC4)

NOT(iC3 AND iC4)

iC3 AND iC4

optor_par

aActivity3

NOT iC3

NOT iC3

iC3

optor_par

hAction3

aActivity4

NOT iC4

NOT iC4

iC4

optor_par

hAction4

aActivity12

NOT(iC1 AND iC2)

NOT(iC1 AND iC2)

iC1 AND iC2

optor_par

aActivity1

NOT iC1

NOT iC1

iC1

optor_par

hAction1

aActivity2

NOT iC2

NOT iC2

iC2

optor_par

hAction2

aActivity1

NOT iC1

NOT iC1

iC1

optor_par

hAction1

(b)

(a)

(c)

Figure 7: Instantiated EOFM normative task structures used as inputs scalability analyses. Activities begin with the letter “a” and actions do not. (a) The human
operator must perform Action1 until condition C1 is true. (b) The human operator must perform Action1 and Action2 until C1 and C2 are true respectively. (c) The
human operator must perform Action1, Action2, Action3, and Action4 until C1, C2, C3 and C4 are true respectively.

issues of the other [28].
Further, for both case studies, we used our new approach

to evaluate systems that incorporate the fixes discovered in the
original papers: having the radiation therapy machine check
power levels before allow treatment administration [22] and re-
quiring prescription review before administration in the pump
[23]. For both of these modified models, our method found
no situations where a maximum of one erroneous human be-
havior could irradiate patients or produce incorrect prescription
delivery, respectively. For this, the radiation therapy machine
verified in 2.74 seconds having visited 685,632 states. The pain
medication pump verified in 10,627.58 seconds having visited
1,198,592,964 states. These are positive results for the analyzed
applications because they show that the fixes incorporated by the

previous efforts are not only robust to the originally considered
erroneous behaviors but also the more complete set of erroneous
behaviors generated with the new method. More details on each
of these applications can be found in [22, 23].

4.3. The Apache Helicopter Case
To see how our method could be used to evaluate erroneous

behavior potential in a more complex application, we consider
an Apache helicopter procedure for flying between targets, iden-
tifying them, and deciding whether to fire on them. Note that
information about this application and its tasks came from a
publicly available report [64].

In this application, an Apache helicopter is expected to fly
over a given region. Bisecting this region laterally is a national

8

V
erification T

im
e (s)

V

is
ite

d
S

ta
te

s

Maximum # of Erroneous

Behaviors (x)

(b)

ŷs = 55.618x + 3.235

R² ≈ 1

ŷt = 0.001x + 0.047

R² = 0.073

-0.01

0.04

0.09

0.14

0.19

0.24

0

100

200

300

400

500

600

700

800

900

0 4 8 12 16

ŷs = 3E+07x - 6E+07

R² = 0.9524

0

500

1000

1500

2000

2500

3000

3500

4000

0

5E+07

1E+08

2E+08

2E+08

3E+08

3E+08

4E+08

4E+08

0 4 8 12 16

ŷ t =
 126.52x -

 198.43

R² =
 0.932

ŷs = 4472.3x - 4591.7

R² = 0.995

ŷt = 0.014x + 0.130

R² = 0.842

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

10000

20000

30000

40000

50000

60000

70000

0 4 8 12 16

V
erification T

im
e (s)

V

is
ite

d
S

ta
te

s

V
erification T

im
e (s)

V

is
ite

d
S

ta
te

s

Verification Time (s) and Fitted Line (ŷt)# Visited States and Fitted Line (ŷs)

Maximum # of Erroneous

Behaviors (x)

(c)

Maximum # of Erroneous

Behaviors (x)

(a)

Figure 8: Scalability test results. These show that the number of visited states and the total verification time increase linear with the maximum number of erroneous
behaviors included in the model checking analyses that used each of the respective task models [(a), (b), and (c)] from Fig. 7.

border. Below the border are friendly targets. Above it are
hostile targets. The Apache helicopter pilots are expected to fly
around this region to inspect targets, locate new targets, receive
new locations overs the radio, identify encountered targets (as
friendly or hostile by calling in over the radio), and, if a target is
hostile, fire on it.

1 – 38R NT 91602700 A+1024 <selected>
2 – 38R NT 91302910 A+1101
Scroll…
Add Location
Add Laser Location

Current Location: 38R NT 96592446 A+ MO4

Figure 9: An Apache helicopter flight computer. This displays the helicopter’s
current location. The pilot can select a location to fly to, scroll through entered
locations, manually add a location, or add a location by using an onboard laser
for identifying the position of a something in the environment.

To assist pilots in their task, they have a flight computer
(Fig. 9) that allows them to store locations for future reference.
In our version of this system, two locations are displayed on
the screen at a time and there can be up top four total locations
in the computer. The pilot can scroll between options. He or
she can also manually add locations to the computer that are
received over the radio. Locations can further be added by using
a laser to identify the position of an object in the environment.

The EOFM tasks for normatively controlling the helicopter
are shown in Figs. 10 to 12. This includes the task for initiating
flight (Fig. 10), the task for entering a new location from the
radio (Fig. 11(a)), the task for identifying a new target that has
been spotted by the pilot (Fig. 11(b)), and the task for engaging
the target (Fig. 12).

When these tasks were converted into SAL using our new
translator (initially with a maximum of 0 erroneous behaviors).
The SAL version was paired with other formal representations
of the system. This contained the flight state of the helicopter
(iFlyState) which can be Landed (if the aircraft is not flying),
EnRoute (if it is flying), or Hovering (if it is investigating and/or
dealing with a potential target). The model also represents in-
formation available to the human operator through the flight
computer: the current location of the aircraft (iCurrentLocation)
which can be either above or below the border; as well as the
locations currently displayed on the interface based on the cur-
rent scroll location (iDisplayLocation1 and iDisplayLocation2);
the set of all locations in the computer; and the selected location.
This model is also capable of allowing a new radio location
to become available (iNewRadioLocationAvailable, which can
become true nondeterministically when the aircraft if flying), the
value of this communicated to the pilot (iNewRadioLocation),
and whether or not a request confirmation is given over the radio
(iRadioConfirmation). Further, when an aircraft is flying, the
aircraft can nondeterministically encounter a new target.

For this model, we wanted to check that no friendly fire
incidents ever occurred. This was formulated in linear temporal
logic (the specification language of SAL) as:

G¬

 hFireWeapons
∧iTargetPresent
∧IsBelow(iCurrentLocation)

 . (1)

This can be interpreted as: globally (G) it should never be true
that the pilot fires the weapons when a target is present with the
current location is below the border.

We formally verified the model with the specification in (1)
both with normative human behavior and with erroneous human
behavior generated using the new approach. Because these anal-

9

aInitiate
Flight

ord

ord

hScrollDisplay

aChoose
Displayed
Location

xor

ord

lDisplayLocation =
iDisplayLocation1

ord

lDisplayLocation =
iDisplayLocation2

lDisplayLocation ≠ NoLocation
AND lDisplayLocation ≠ iCurrentLocation

ord

hFlyToLocation
lDisplay
Location

iDisplayLocation1.ID ≠ lCurrentDisplayLocationIndex OR
iDisplayLocation2.ID ≠ lCurrentDisplayLocationIndex

aFlyTo
Selected
Location

aSelectDisplay
Location

iDisplayLocation1.ID
 ≠ lCurrentDisplayLocationIndex
OR iDisplayLocation2.ID
 ≠ lCurrentDisplayLocationIndex

iDisplayLocation1.ID
 = lCurrentDisplayLocationIndex
OR iDisplayLocation2.ID
 = lCurrentDisplayLocationIndex

lCurrentDisplayLocationIndex
 = iDisplayLocation2.ID

lCurrentDisplayLocationIndex
 = iDisplayLocation1.ID

aChoose2aChoose1

iCurrentLocation ≠ lDisplayLocation AND hFlyToLocation ≠ lDisplayLocation

lDisplayLocation.ID
 = lCurrentDisplayLocationIndex

Figure 10: Task for initiating flight in the Apache helicopter application. This
task can be performed if the helicopter’s current location is not the displayed
location in the computer and the helicopter is not enroute to that location. The
pilot first scrolls through a display of locations in the helicopter’s computer
and notes the proper location from one of the two displayed on a given screen.
He or she then sets the helicopter to fly to the noted location.

aRecieve
NewRadio

iNewRadioLocationAvailable

ord

aEnterNew
Radio

ord

lLocation
FromRadio =
iNewRadio
Location

hManually
EnterLocation
lLocationFrom

Radio

aSelect
Location

xor

lCurrentDisplayLocationIndex < 4

ord

lCurrentDisplay
Location
Index = 0

aSelectOld
Location

ord

lCurrentDisplayLocationIndex =
lCurrentDisplayLocationIndex

+ 1 MOD 4

aSelectNew
Location

aIdentify
Target

iTargetPresent

ord

aInvestigate

ord

hFlyInvestigate
AtLocation

aCheck
IfNew

ord

aSelect
Display
Location

iCurrentLocation ≠ lDisplayLocation
iCurrentLocation = lDisplayLocation

ord

hGetLaser
Location

lCurrentDisplay
LocationIndex = 0

aChoose
Displayed
Location

aIdentify
New

(a) (b)

Figure 11: (a) Task from the Apache helicopter application showing how a human pilot receives a new location over the radio, manually enters the location into the
computer (which was inserted immediately after the current location), and then selects this location. (b) Task from the Apache application showing how a human pilot
responds to the identification of a target in the environment. To do this, the pilot first hovers the aircraft by investigating at the location. The pilot then identifies if the
target is new based on the target locations in the computer. If the target is new, the pilot uses the helicopter’s laser to obtain the target’s location. Note that in the above
activities with dotted lines are defined elsewhere (in this case Fig. 10).

10

aEngage
Target

ord

aConfirm
Status

ord

hGetFire
Clearance

lDisplayLocation

aFire

iRadioConfirmation

NOT iTargetDestroyed

iTargetDestroyed
OR NOT iRadioConfirmation

ord

aSelectNext
Location

ord

aChoose
Location

xor

aSelect
Location1

lCurrentDisplay
LocationIndex ≠ 0

ord

lCurrentDisplay
Location
Index = 0

aSelect
Location2

lCurrentDisplay
LocationIndex ≠ 1

ord

lCurrentDisplay
Location
Index = 1

aSelect
Location3

lCurrentDisplay
LocationIndex ≠ 2

ord

lCurrentDisplay
Location
Index = 2

aSelect
Location4

lCurrentDisplay
LocationIndex ≠ 3

ord

lCurrentDisplay
Location
Index = 3

aSelect
Display
Location

aChoose
Displayed
Location

hFire
Weapons

lDisplayLocation = NoLocation

iFlyState = Hovering AND iCurrentLocation = lDisplayLocation

Figure 12: Task from the Apache application showing how a human pilot engages a target. If the helicopter is hovering and the helicopter is at the selected location, the
pilot can engage the helicopter. This is done by first confirming whether or not to fire on the target by reading the displayed location over the radio. If a confirmation
was received, the pilot can fire on the target until it is destroyed. The pilot must then find and select a new target to fly to.

yses strove to both replicate documented failures [64] and find
new problems, we took a systematic approach to the erroneous
behavior analyses. In particular, we exploited the feature of our
method to selectively generate all possible erroneous behaviors
for each activity and action between evaluations (all possible er-
roneous behavior that could manifest at a single activity or action
were considered in given analyses). This resulted in 56 separate
verifications. In total, these took just over 34 hours to complete
and visited a sum total of 3,261,110,619 states. The average veri-
fication took 36.44 minutes and visited 58,234,118.2 states. The
model without any erroneous human behaviors verified to true,
thus it was not possible to commit friendly fire when the pilot
behaved normatively. However, the other verifications found 39
different erroneous behaviors that could lead to friendly fire (see
Table 3). While this sounds very concerning, an examination of
the counterexamples associated with each found that many of
the errors manifested in one of nine types of failure (thus each
entry in Table 3 is associated with and clustered under a given
“Note”). While all of these erroneous behaviors are possible
and potentially dangerous, the behavior seen under note E is
of particular interest. This is because a situation where a pilot
gets clearance by remembering the wrong value (which could

be another or previously entered location) matches the profile of
actual fratricide incidents that have occurred with Apache heli-
copters [64]. The other failure conditions do not have analogues
in the literature or accident reports. However, they do exhibit
face validity and are thus worthy of future investigation.

5. Discussion and Conclusions

In this work, we introduced a novel approach to generating
erroneous human behavior based on the task-based taxonomy of
erroneous human behavior [29]. This approach can be used in
formal verification analyses that contain information about both
the normative human task behavior and the system the human
is interacting with to predict how both anticipated and unan-
ticipated erroneous behaviors can contribute to system failures.
This work is significant for several reasons.

First, because the new method is based on the task-based
taxonomy of erroneous human behavior, it is more complete
than previous erroneous human behavior generation techniques
[22, 23, 25, 27, 30, 54] that were based on incompatible phe-
notypes and genotypes. This capability was illustrated in the
case study analyses, where our new method was able to find

11

Table 3: Verification Results for the Apache Helicopter Application

Activity / Action Time (s) # Visited states Erroneous Behavior Note

NA 1113.01 18,488,464 NA A

aInitiateFlight 13.18 683,140 Executing-to-Done Omission B

aSelectDisplayLocation from aInitiatelight 13.05 745,977 Done-to-Executing Intrusion C

hScrollDisplay from aInitiatelight 10.87 409,451 Ready-to-Executing Intrusion
aChooseDisplayedLocation from aInitiatelight 11.55 508,949 Done-to-Executing Intrusion
aChoose1 from aInitiatelight 11.5 478,907 Ready-to-Executing Intrusion
aChoose2 from aInitiatelight 10.28 378,551 Ready-to-Executing Intrusion
aFlyToSelectedLocation 10.16 438,422 Done-to-Executing Intrusion
aRecieveNewRadio 12.98 909,744 Ready-to-Executing Intrusion
aEnterNewRadio 12.05 557,998 Ready-to-Executing Intrusion
aInvestigate 10.87 482,260 Done-to-Executing Intrusion
hFlyInvestigateAtLocation 11.14 348,919 Done-to-Executing Intrusion
aSelectDisplayLocation from aIdentifyTarget 12.25 713,170 Done-to-Executing Intrusion
hScrollDisplay from aIdentifyTarget 10.89 418,830 Ready-to-Executing Intrusion
aChooseDisplayedLocation from aIdentifyTarget 11.62 443,296 Done-to-Executing Intrusion
aChoose1 from aIdentifyTarget 11.35 466,720 Ready-to-Executing Intrusion
aChoose2 from aIdentifyTarget 10.35 427,537 Ready-to-Executing Intrusion
aIdentifyNew 11.39 599,971 Done-to-Executing Intrusion
hGetLaserLocation 11.49 469,858 Ready-to-Executing Intrusion
aSelectNextLocation 88.22 1,630,1277 Ready-to-Executing Intrusion
aSelectDisplayLocation from aSelectNextLocation 14.22 964,988 Ready-to-Executing Intrusion
hScrollDisplay from aSelectNextLocation 10.79 446,885 Ready-to-Executing Intrusion
aChooseDisplayedLocation from aSelectNextLocation 11.49 496,445 Ready-to-Executing Intrusion
aChoose1 from aSelectNextLocation 11.04 484,291 Ready-to-Executing Intrusion
aChoose2 from aSelectNextLocation 10.4 485,383 Ready-to-Executing Intrusion

aFire 6.44 12,642 Ready-to-Executing Intrusion D

hFireWeapons 6.53 10,107 Ready-to-Executing Intrusion

lDisplayLocation from aInitiatelight under aChoose1 9.9 1,896,915 Misremembrance E

lDisplayLocation from aInitiatelight under aChoose2 9.54 1,895,321 Misremembrance
lDisplayLocation from aIdentifyTarget under aChoose1 10.24 1,945,480 Misremembrance
lDisplayLocation from aIdentifyTarget under aChoose2 9.21 1,949,899 Misremembrance
lDisplayLocation from aSelectNextLocation under aChoose1 11.04 1,950,732 Misremembrance
lDisplayLocation from aSelectNextLocation under aChoose2 10.63 1,957,855 Misremembrance

hFlyToLocation 9.81 527,089 SetValue ValueSubstitution F

hManuallyEnterLocation 11.51 1,047,300 SetValue Value Substitution G

aIdentifyTarget 13.26 864,789 Executing-to-Done Omission H

aCheckIfNew 13.97 944,480 Executing-to-Done Omission

aEngageTarget 6.83 31,797 Ready-to-Executing Intrusion I

aConfirmStatus 9.6 270,931 Ready-to-Done Omission J

hGetFireClearance 8.91 198,275 Value Substitution K

A No erroneous behavior occurred.
B When initiating flight, the pilot fails to fly to the new location and gets confirmation to fire on a target based on the location he or she should have flown to.
C The pilot replaces getting clearance to fire (hGetFireClearance) with an action from an erroneously executing activity or action.
D The pilot erroneously fires his or her weapons.
E The pilot spuriously and erroneously remembers the wrong location and uses this to get clearance to fire on a target.
F The pilot flies to the incorrect location and gets confirmation to fire based on the location he or she should have flown to.
G The pilot manually enters an incorrect value into the flight computer, flies to it, and gets fire clearance based on the values he or she should have entered.
H The pilot fails to acquire a laser location on a target and erroneously gets permission to fire on the target based on the location he or she was previously flying to.
I Erroneously beginning the engagement process and getting permission to fire based on the last remembered location.
J Skipping the confirmation/clearance activity and firing based on a previously received clearance.
K Getting fire clearance by erroneously saying the wrong location.

the same system problems that could only be discovered with
either the phenotype- or genotype-based techniques [28]. The
technique was also able to discover a real failure condition in
a new case study (the Apache Helicopter application) as well
as multiple previously unknown failure scenarios. This is an
important contribution because it means that this approach will
enable analysts to both find more unexpected problems than

previously possible and, if no problems are discovered, have an
unprecedented confidence in the reliability of their system.

Second, the scalability analyses show that the method’s ver-
ification time increases linearly with the maximum number of
considered erroneous human behaviors. This is a very positive
result because it means that method scalability will be less of
a restrictive issues when using our method. This is also an

12

important result because previous phenotype-based generation
methods [22] scaled exponentially with the maximum number
of erroneous human behavior. Thus the new method offers more
complete erroneous behavior generation with better scalability.
This will allow the reliability benefits of using our method to be
available to many more systems.

Third, the ability to selectively apply erroneous behavior
generation across the entire task model, at each activity or ac-
tion, or for specific erroneous behaviors is also a contribution.
Previous methods either focused on manually incorporating spe-
cific erroneous behavior [20, 21, 24, 24, 56, 57] or look at all
possible erroneous behaviors [22, 23, 25–27, 30, 54, 55]. By
giving analysts more options, our method can enable either of
these analyses. It will also allow analysts to find more potential
erroneous behaviors than allowed by just these two approaches.
This is particularly well demonstrated in the Apache helicopter
application, where the application of the generation to each ac-
tivity and action between analyses enable the discovery of 39
different erroneous behaviors that could contribute to system
failures. This capability should further allow the analyses to
scale even more effectively to complex systems, where genera-
tion of all possible erroneous behaviors in a given verification
could limit method applicability.

Finally, the analyses of the Apache helicopter application
are themselves a contribution. Specifically, the method was able
to discover the types of conditions that have actually resulted in
fratricide (Note E from Table 3). This provide evidence that the
method is valid. The method also discovered nine other plausi-
ble, but previously unknown, general types of erroneous human
behaviors that could contribute to friendly fire. Future work
should investigate if these erroneous behaviors could actually
result in friendly fire in a real Apache helicopter. Identifying
and correcting these errors could thus significantly reduce the
potential for future fratricide incidents.

Our developments also suggest avenues of future research.
We discuss these below.

5.1. Team Communication and Coordination
Previous EOFM research determined how to extend it to

support verification of human-human communication and coor-
dination [58, 65]. These developments were then developed to
allow miscommunication to to be automatically accounted for in
verification analyses both without [26, 55] and with other types
of generated erroneous behaviors [25, 66]. The EOFM com-
munication and coordination extensions are fully compatible
with the semantics of EOFM used in the presented work. Fur-
ther, the miscommunication generation method uses the same
concepts as action value substitutions and action target substi-
tutions (Table 2) in the new method. Thus, the new erroneous
behavior generation method should be capable of generating
erroneous behaviors and miscommunication in team tasks that
require human-human collaboration and communication. This
should be investigated in future work.

5.2. Cognitive Models of Erroneous Human Behavior
This work was concerned with task-based formal erroneous

behavior generation techniques for accounting for erroneous hu-

man behavior. However, there have been a number of researchers
who have explored how formal models based on cognitive ar-
chitectures can be used to determine how erroneous behaviors
can arise and cause system problems (see reviews in [13, 15]).
Future work should investigate how our erroneous behavior gen-
eration method compares with these techniques and how they
scale relative to each other.

5.3. Accounting for the Stochasticity of Erroneous Behaviors

By virtue of using traditional, symbolic model check, the
method presented in this work considers all of the possible er-
roneous behaviors supported by the taxonomy equally. Thus,
the method does not account for the effect different environmen-
tal or social factors could have for making some errors more
probable than others. Results by Zheng et al. [67] have shown
that it is possible to predict rates of erroneous human behavior
based on such factors using a combination of probabilistic model
checking [68] and human reliability analysis [69, 70]. Future
work should investigate how these developments could be inte-
grated with the task-based taxonomy of erroneous behavior [29]
to enable analysts to account for the probabilities of different
erroneous acts occurring in verification analyses.

5.4. Further Scalability Improvements

In previous developments, we showed how the scalability
of the formal EOFM representation could be substantially im-
proved by “flattening” it [60]: representing the execution state
of each activity in terms of its descendant actions. However, this
improvement was conceptually incompatible with the presented
erroneous behavior generation method because it relies on each
activity and action erroneously transitioning at each possible
activity or action state. If it were possible to account for the
erroneous behavior transitions (and the counting of them) in
the “flattened” model, this would significantly improve method
scalability. This should be the subject of future research.

5.5. Model Validity

Beyond scalability, the other major challenge for model-
checking-based analyses is model validity. If the verified model
does not accurately capture the behavior of the target system,
the results of the analyses could be meaningless. This has the
potential to be a significant limitation of the method presented
in this paper because it relies on the analyst or modeler both
formally modeling the environment and automation of the sys-
tem and conducting an accurate task analysis. Both of these
activities require an extensive knowledge of the target systems
and significantly effortful observational analyses.

Fortunately, there are methods for addressing this. Specif-
ically, model checking produces counterexamples when spec-
ification failures are discovered. This gives analysts a means
of testing whether discovered issues are actually manifest in a
system. Further, parallel work [71] has investigated how EOFM
can be used with automated test case generation, a means of us-
ing formal models to produce collections of tests with coverage
guarantees. Such test can be used to validate that systems and
humans behave in ways captured by the model.

13

Additionally, by giving analysts a precise means of describ-
ing and reasoning about task analytic behavior, EOFM has the
potential to take some of the art and guess work out of task
analysis. Future should investigate how EOFM can be used
to influence the task analysis process and potentially automate
portions of it to help address validity issues that could arise from
incomplete or inaccurate task analyses.

5.6. Additional Applications

In this paper, we only considered three applications: two
medical devices and the Apache helicopter. These applications
enabled us to both check that the method could find existing
problems and, in the case of the Apache helicopter, discover
new potential failure conditions with high face validity. Unfortu-
nately, the lack of availability of an Apache helicopter prevented
us from directly testing for the discovered failures with the actual
system. However, there are many other potential applications in
medicine, aviation, energy systems, cybersecurity, and defense
where this limitation may not be present. Further, the considered
cases were all existing systems, not systems being designed or
implemented. The real power of our method would be realized
when using our method early in the design process to anticipate
and address problems. Future work should investigate other
safety-critical applications where our approach can be applied
to so that its benefits can be assessed throughout the systems
engineering life cycle.

Acknowledgement

The work presented here was supported by grant W911NF-
15-1-0474 “Young Investigator Program (8.5): Preventing Com-
plex Failures of Human Interactive Systems with Erroneous
Behavior Generation and Robust Human Task Behavior Patterns”
by the Army Research Office / Army Research Lab.

References

[1] Hollnagel, E.. The phenotype of erroneous actions. International Journal
of Man-Machine Studies 1993;39(1):1–32.

[2] Reason, J.. Human Error. New York: Cambridge University Press; 1990.
ISBN 0521314194.

[3] Sheridan, T.B., Parasuraman, R.. Human-automation interaction. Reviews
of Human Factors and Ergonomics 2005;1(1):89–129.

[4] Perrow, C.. Normal Accidents: Living with High-risk Technologies.
Princeton: Princeton University Press; 1999.

[5] Kohn, L.T., Corrigan, J., Donaldson, M.S.. To Err is Human: Building a
Safer Health System. Washington: National Academy Press; 2000.

[6] Kenny, D.J.. 26th Joseph T. Nall report: General aviation accidents in
2014. Tech. Rep.; AOPA Foundation; 2015.

[7] Kebabjian, R.. Accident statistics. planecrashinfo.com; 2016. URL:
http://www.planecrashinfo.com/cause.htm; accessed 3/14/2016.

[8] Javaux, D.. Human error, safety, and systems development in aviation.
Reliability Engineering & System Safety 2002;2(75):115–119.

[9] Manning, S.D., Rash, C.E., LeDuc, P.A., Noback, R.K., McKeon, J..
The role of human causal factors in US Army unmanned aerial vehicle
accidents. Tech. Rep. 2004-11; USA Army Research Laboratory; 2004.

[10] NHTSA, . National motor vehicle crash causation survey: Report to
congress. Tech. Rep. DOT HS 811 059; National Highway Traffic Safety
Administration; Springfield; 2008.

[11] Office of Technology Assessment, . Who goes there: Friend or foe. Tech.
Rep. OTA-ISC-537; Congress, US; Washington, DC; 1993.

[12] Le Bot, P.. Human reliability data, human error and accident mod-
els—illustration through the three mile island accident analysis. Reliability
Engineering & system safety 2004;83(2):153–167.

[13] Bolton, M.L., Bass, E.J., Siminiceanu, R.I.. Using formal verification
to evaluate human-automation interaction in safety critical systems, a
review. IEEE Transactions on Systems, Man and Cybernetics: Systems
2013;43(3):488–503.

[14] Bolton, M.L.. Novel developments in formal methods for human factors
engineering. In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting. SAGE Publications Sage CA: Los Angeles, CA;
2017, p. 715–717.

[15] Weyers, B., Bowen, J., Dix, A., Palanque, P., editors. The Handbook of
Formal Methods in Human-Computer Interaction. Berlin: Springer; 2017.

[16] Paternò, F., Santoro, C.. Integrating model checking and HCI tools to
help designers verify user interface properties. In: Proceedings of the 7th
International Workshop on the Design, Specification, and Verification of
Interactive Systems. Berlin: Springer; 2001, p. 135–150.

[17] Aı̈t-Ameur, Y., Baron, M.. Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model. Interna-
tional Journal on Software Tools for Technology Transfer 2006;8(6):547–
563.

[18] Bolton, M.L., Bass, E.J.. Formally verifying human-automation interac-
tion as part of a system model: Limitations and tradeoffs. Innovations in
Systems and Software Engineering: A NASA Journal 2010;6(3):219–231.

[19] Bolton, M.L., Siminiceanu, R.I., Bass, E.J.. A systematic approach
to model checking human-automation interaction using task-analytic
models. IEEE Transactions on Systems, Man, and Cybernetics, Part
A 2011;41(5):961–976.

[20] Bastide, R., Basnyat, S.. Error patterns: Systematic investigation of
deviations in task models. In: Task Models and Diagrams for Users
Interface Design. Berlin: Springer; 2007, p. 109–121.

[21] Fields, R.E.. Analysis of erroneous actions in the design of critical systems.
Ph.D. thesis; University of York; York; 2001.

[22] Bolton, M.L., Bass, E.J., Siminiceanu, R.I.. Generating phenotypical
erroneous human behavior to evaluate human–automation interaction us-
ing model checking. International Journal of Human-Computer Studies
2012;70(11):888–906.

[23] Bolton, M.L., Bass, E.J.. Generating erroneous human behavior from
strategic knowledge in task models and evaluating its impact on system
safety with model checking. IEEE Transactions on Systems, Man and
Cybernetics: Systems 2013;43(6):1314–1327.

[24] Bolton, M.L., Bass, E.J.. Formal modeling of erroneous human behavior
and its implications for model checking. In: Proceedings of the Sixth
NASA Langley Formal Methods Workshop. Hampton: NASA Langley
Research Center; 2008, p. 62–64.

[25] Pan, D., Bolton, M.L.. Properties for formally assessing the performance
level of human-human collaborative procedures with miscommunications
and erroneous human behavior. International Journal of Industrial Er-
gonomics 2018;63:75–88.

[26] Bolton, M.L.. Model checking human–human communication proto-
cols using task models and miscommunication generation. Journal of
Aerospace Information Systems 2015;12(7):476–489.

[27] Barbosa, A., Paiva, A.C., Campos, J.C.. Test case generation from
mutated task models. In: Proceedings of the 3rd ACM SIGCHI symposium
on Engineering interactive computing systems. ACM; 2011, p. 175–184.

[28] Bolton, M.L.. Using task analytic behavior modeling, erroneous human
behavior generation, and formal methods to evaluate the role of human-
automation interaction in system failure. Ph.D. thesis; University of
Virginia; Charlottesville; 2010.

[29] Bolton, M.L.. A task-based taxonomy of erroneous human behavior.
International Journal of Human-Computer Studies 2017;108:105–121.

[30] Bolton, M.L., Bass, E.J.. Evaluating human-automation interaction using
task analytic behavior models, strategic knowledge-based erroneous human
behavior generation, and model checking. In: Proceedings of the IEEE
International Conference on Systems Man and Cybernetics. Piscataway:
IEEE; 2011, p. 1788–1794.

[31] Wing, J.M.. A specifier’s introduction to formal methods. Computer
1990;23(9):8, 10–22, 24.

[32] Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.. PVS
Prover Guide. Computer Science Laboratory, SRI International; Menlo
Park, CA; 1999.

14

http://www.planecrashinfo.com/cause.htm

[33] Kaufmann, M., Moore, J.S., Manolios, P.. Computer-Aided Reasoning:
An Approach. Norwell, MA, USA: Kluwer Academic Publishers; 2000.

[34] Bertot, Y., Castéran, P., Huet, G.i., Paulin-Mohring, C.. Interactive
theorem proving and program development : Coq’Art : the calculus of
inductive constructions. Texts in theoretical computer science; Berlin,
New York: Springer; 2004.

[35] Clarke, E.M., Grumberg, O., Peled, D.A.. Model checking. Cambridge:
MIT Press; 1999.

[36] Emerson, E.A.. Temporal and modal logic. In: van Leeuwen, J.,
Meyer, A.R., Nivat, M., Paterson, M., Perrin, D., editors. Handbook of
Theoretical Computer Science; chap. 16. Cambridge: MIT Press; 1990, p.
995–1072.

[37] Mansouri-Samani, M., Pasareanu, C.S., Penix, J.J., Mehlitz, P.C.,
O’Malley, O., Visser, W.C., et al. Program model checking: A practi-
tioner’s guide. Tech. Rep.; Intelligent Systems Division, NASA Ames
Research Center; Moffett Field; 2007.

[38] Thomas, M.. The role of formal methods in achieving dependable software.
Reliability Engineering & System Safety 1994;43(2):129–134.

[39] Bolbot, V., Theotokatos, G., Bujorianu, M.L., Boulougouris, E., Vassa-
los, D.. Vulnerabilities and safety assurance methods in cyber-physical
systems: A comprehensive review. Reliability Engineering & System
Safety 2019;182:179–193.

[40] Sharvia, S., Papadopoulos, Y.. Integrating model checking with HiP-
HOPS in model-based safety analysis. Reliability Engineering & System
Safety 2015;135:64–80.

[41] Gribaudo, M., Horváth, A., Bobbio, A., Tronci, E., Ciancamerla, E.,
Minichino, M.. Fluid petri nets and hybrid model-checking: A compara-
tive case study. Reliability Engineering & System Safety 2003;81(3):239–
257.

[42] Wu, D., Zheng, W.. Formal model-based quantitative safety analysis
using timed coloured petri nets. Reliability Engineering & System Safety
2018;176:62–79.

[43] Bozzano, M., Cimatti, A., Katoen, J.P., Katsaros, P., Mokos, K.,
Nguyen, V.Y., et al. Spacecraft early design validation using formal
methods. Reliability Engineering & System Safety 2014;132:20–35.

[44] Rushby, J.. Using model checking to help discover mode confusions
and other automation surprises. Reliability Engineering & System Safety
2002;75(2):167–177.

[45] Bredereke, J., Lankenau, A.. Safety-relevant mode confusions–
modelling and reducing them. Reliability Engineering & System Safety
2005;88(3):229–245.

[46] Javaux, D.. A method for predicting errors when interacting with finite
state systems. How implicit learning shapes the user’s knowledge of a
system. Reliability Engineering & System Safety 2002;75:147–165.

[47] Herbert, L., Hansen, Z.. Restructuring of workflows to minimise er-
rors via stochastic model checking: An automated evolutionary approach.
Reliability Engineering & System Safety 2016;145:351–365.

[48] Kirwan, B., Ainsworth, L.K.. A Guide to Task Analysis. London: Taylor
and Francis; 1992.

[49] Schraagen, J.M., Chipman, S.F., Shalin, V.L.. Cognitive Task Analysis.
Philadelphia: Lawrence Erlbaum Associates, Inc.; 2000.

[50] Moray, N., Sanderson, P.M., Vicente, K.J.. Cognitive task analysis of a
complex work domain: A case study. Reliability Engineering & System
Safety 1992;36(3):207–216.

[51] Basnyat, S., Palanque, P., Schupp, B., Wright, P.. Formal socio-technical
barrier modelling for safety-critical interactive systems design. Safety
Science 2007;45(5):545–565.

[52] Gunter, E.L., Yasmeen, A., Gunter, C.A., Nguyen, A.. Specifying
and analyzing workflows for automated identification and data capture.
In: Proceedings of the 42nd Hawaii International Conference on System
Sciences. Los Alatimos: IEEE Computer Society. ISBN 978-0-7695-3450-
3; 2009, p. 1–11.

[53] Palanque, P.A., Bastide, R., Senges, V.. Validating interactive system
design through the verification of formal task and system models. In:
Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering
for Human-Computer Interaction. London: Chapman and Hall; 1996, p.
189–212.

[54] Martinie, C., Palanque, P., Fahssi, R., Blanquart, J.P., Fayollas, C.,
Seguin, C.. Task model-based systematic analysis of both system fail-
ures and human errors. IEEE Transactions on Human-Machine Systems
2016;46(2):243–254.

[55] Bolton, M.L., Bass, E.J.. Evaluating human-human communication
protocols with miscommunication generation and model checking. In: Pro-
ceedings of the Fifth NASA Formal Methods Symposium. Moffett Field:
NASA Ames Research Center. Moffett Field: NASA Ames Research
Center; 2013, p. 48–62.

[56] Bolton, M.L., Bass, E.J., Siminiceanu, R.I.. Using formal methods
to predict human error and system failures. In: Proceedings of the 2nd
International Conference on Applied Human Factors and Ergonomics. Las
Vegas: Applied Human Factors and Ergonomics International; 2008, p.
CD–ROM.

[57] Paternò, F., Santoro, C.. Preventing user errors by systematic analysis of
deviations from the system task model. International Journal of Human-
Computer Studies 2002;56(2):225–245.

[58] Bolton, M.L., Bass, E.J.. Enhanced Operator Function Model (EOFM): A
Task Analytic Modeling Formalism for Including Human Behavior in the
Verification of Complex Systems; chap. 13. Cham: Springer International
Publishing; 2017, p. 343–377.

[59] De Moura, L., Owre, S., Shankar, N.. The SAL language manual. Tech.
Rep. CSL-01-01; Computer Science Laboratory, SRI International; Menlo
Park; 2003.

[60] Bolton, M.L., Zheng, X., Molinaro, K., Houser, A., Li, M.. Improving
the scalability of formal human–automation interaction verification analy-
ses that use task-analytic models. Innovations in Systems and Software
Engineering 2017;13(1):1–17.

[61] Fahssi, R., Martinie, C., Palanque, P.. Enhanced task modelling for
systematic identification and explicit representation of human errors. In:
Human-Computer Interaction – INTERACT 2015. Cham: Springer Inter-
national Publishing; 2015, p. 192–212.

[62] Bolton, M.L., Jimenez, N., van Paassen, M.M., Trujillo, M.. Auto-
matically generating specification properties from task models for the
formal verification of human-automation interaction. IEEE Transactions
on Human-Machine Systems 2014;44:561–575.

[63] Bolton, M.L., Bass, E.J.. Using task analytic models to visualize model
checker counterexamples. In: Proceedings of the 2010 IEEE International
Conference on Systems, Man, and Cybernetics. Piscataway: IEEE; 2010,
p. 2069–2074.

[64] United States, . Operation Desert Storm - Apache Helicopter Fratricide
Incident: Report to the Chairman, Subcommittee on Oversight and Investi-
gations, Conmittee on Energy and Commerce, House of Representatives.
Tech. Rep. GAO/OSI-93-4; United States General Accounting Office;
1993.

[65] Bass, E.J., Bolton, M.L., Feigh, K., Griffith, D., Gunter, E., Mansky, W.,
et al. Toward a multi-method approach to formalizing human-automation
interaction and human-human communications. In: Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics. Piscat-
away: IEEE; 2011, p. 1817–1824.

[66] Pan, D., Bolton, M.L.. A formal method for evaluating the perfor-
mance level of human-human collaborative procedures. In: International
Conference on Cross-Cultural Design. Springer; 2015, p. 186–197.

[67] Zheng, X., Bolton, M.L., Daly, C., Feng, L.. A formal human reliability
analysis of a community pharmacy dispensing procedure. In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting. Los
Angeles: Sage; 2017, p. 728–732.

[68] Kwiatkowska, M., Norman, G., Parker, D.. PRISM 4.0: Verification of
probabilistic real-time systems. In: International conference on computer
aided verification. Springer; 2011, p. 585–591.

[69] Hollnagel, E.. Cognitive Reliability and Error Analysis Method (CREAM).
Amsterdam: Elsevier; 1998.

[70] Sun, Z., Li, Z., Gong, E., Xie, H.. Estimating human error probability
using a modified CREAM. Reliability Engineering & System Safety
2012;100:28–32.

[71] Li, M.. Formal methods for user experience evaluation and testing. Ph.D.
thesis; University at Buffalo, State University of New York; Buffalo; 2018.

15

	Introduction
	Background
	Formal Methods and Model Checking
	Formal Methods and Task-based Erroneous Behavior
	EOFM and the Task-based Erroneous Behavior Taxonomy
	EOFM
	The Task-Based Taxonomy of Erroneous Behavior

	Method
	Applications and Results
	Scalability Analyses
	Legacy Cases
	The Apache Helicopter Case

	Discussion and Conclusions
	Team Communication and Coordination
	Cognitive Models of Erroneous Human Behavior
	Accounting for the Stochasticity of Erroneous Behaviors
	Further Scalability Improvements
	Model Validity
	Additional Applications

