
ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Generating Erroneous Human Behavior from
Strategic Knowledge in Task Models and Evaluating
its Impact on System Safety with Model Checking

Matthew L. Bolton, Member, IEEE, and Ellen J. Bass, Senior Member, IEEE

Abstract—Human-automation interaction, including erroneous
human behavior, is a factor in the failure of complex, safety-
critical systems. This paper presents a method for automatically
generating formal task analytic models encompassing both er-
roneous and normative human behavior from normative task
models, where the misapplication of strategic knowledge is
used to generate erroneous behavior. Resulting models can be
automatically incorporated into larger formal system models so
that safety properties can be formally verified with a model
checker. This allows analysts to prove that a human-automation
interactive system (as represented by the formal model) will
or will not satisfy safety properties with both normative and
generated erroneous human behavior. Benchmarks are reported
that illustrate how this method scales. The method is then
illustrated with a case study: the programming of a patient-
controlled analgesia pump. In this example, a problem resulting
from a generated erroneous human behavior is discovered. The
method is further employed to evaluate the effectiveness of
different solutions to the discovered problem. The results and
future research directions are discussed.

Index Terms—Task analysis, formal methods, model checking,
human error, human-automation interaction, system safety.

I. INTRODUCTION

COMPLEX, safety-critical systems involve the interaction
of automated devices and goal-oriented human operators

in a dynamic environment. Human-automation interaction
(HAI) [1], [2] is particularly important to the operation of
safety-critical systems. Erroneous human behavior [3], where
the human operator does not follow the normative procedures
for interacting with a system, is often associated with failures.
HAI research has produced a number of analysis techniques
and design tools that can be used to address this problem. In
particular, emerging model-driven design and analysis tech-
niques [4], [5] use models of the automation, human-device
interfaces (HDIs), human task behavior, human cognition,
and/or environmental conditions to provide guarantees about
the performance of the system using formal methods.

Formal methods are a set of languages and techniques
for the modeling, specification, and verification of systems
(usually computer hardware or software) [6]. There are many
different ways that a model can be formally verified. Model
checkers are computer software tools that support automatic

Matthew L. Bolton is with the Department of Mechanical and Industrial
Engineering at the University of Illinois at Chicago, Chicago, IL 60607 USA
e-mail: mbolton@uic.edu

Ellen J. Bass is with the College of Information Science and Technology and
the College of Nursing and Health Professions, Drexel University, Philadelphia

Manuscript received XXXXX; revised XXXXX

verification analyses. In model checking, an automated process
verifies whether or not a formal model of a system satisfies
a set of desired properties (a specification) [7]. A formal
model describes a system as a set of variables and transitions
between variable values (states). Specification properties assert
properties that the analyst wants to be true with the system,
usually using a temporal logic. Verification is the process of
proving that the system meets the properties in the specifi-
cation. Model checking does this by exhaustively searching
a system’s statespace to determine if the specification holds.
If there is a state in the model that violates the specification,
a single counterexample (execution trace) is produced which
represents a counterproof: it identifies the incremental model
states that led up to the violation.

Formal, model-based approaches have been used to evaluate
HAI in a number of different ways (see [5] for a survey). These
approaches include different methods for evaluating the po-
tential impact of erroneous human behavior on system safety.
Poor usability conditions in HDIs can be investigated using
formal verification [8]–[11]. Formal verification can be used to
find potential mode confusion1 [14]–[23], which can produce
erroneous human behaviors [13]. Formal system models can
include a model of cognitively-driven human behavior [24]–
[27], and formal verification can be used to evaluate when the
modeled cognitive factors could result in erroneous human
behavior causing a problem [28]–[34]. Finally, task analytic
behavior models (products of a cognitive task analysis [35],
[36]) can be included in the formal system model and formal
verification can be used to evaluate the impact of the modeled
behavior (which can be normative or erroneous) on system
safety [37]–[50]. While there are distinct tradeoffs between
all of these approaches (see section VI-B), this last one is
advantageous in that it explicitly models the impact of human
behavior, gives analysts a clear indication of what the human
operator was attempting to do when problems occurred, and
uses models that are commonly employed by human factors
and systems engineers [51]. However, it may not scale as well
as the other methods in some circumstances [43], [51].

This paper presents a method which extends the formal
verification work on task analytic behavior models. This new
approach can be used to automatically generate erroneous
human behavior based on the physical manifestation of a
human operator’s misapplication of strategic knowledge (the

1Mode confusion is a HAI issue which occurs when the human operator is
unable to keep track of the state or mode of the device automation [12], [13].

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2

knowledge the human operator uses to determine what the
appropriate plan is to achieve goals) that can occur as a result
of attention failures. The impact of the resulting behavior
on system safety can be evaluated with model checking. To
motivate this work, we first discuss erroneous human behavior
taxonomies and report how they have been used with task
behavior models and formal verification to evaluate safety-
critical systems. We then describe our new method. We present
analysis results which show how it scales. We illustrate the
method with a case study: the programming of a patient
controlled analgesia pump. Finally we discuss our method and
opportunities for future work.

A. Taxonomies of Erroneous Human Behavior

There are a number of different ways to classify and model
erroneous human behavior [52], [53]. Of the most relevance
to this work are Hollnagel’s phenotypes of erroneous action
[3] and Reason’s Generic Error Modeling System [54].

Hollnagel [3] classified erroneous human behaviors based
on their phenotype: how an erroneous behavior observably
deviates from a normative plan (task) of actions. All pheno-
types of erroneous human behavior are constructed from zero-
order phenotypes, those that represent deviations of behavior
for a single human action in a plan: prematurely starting an
action, delaying the start of an action, prematurely finishing
an action, delaying the completion of an action, omitting an
action, jumping forward (performing an action that should be
performed later), jumping backward (performing a previously
performed action), repeating an action, and performing an
unplanned action (an intrusion).

Alternatively, Reason [54] classified erroneous behaviors
based on their cognitive causes, their genotypes. Reason
identified a class of erroneous behaviors called slips. Slips
occur when a person fails to notice a system or environmental
condition (due to a failure of attention) and thus does not
perform a task normatively. A person may be interrupted or
may otherwise not be attending to the proper information and
omit actions. A person may erroneously repeat actions after
losing his place in a task. A person may also have his attention
“captured” by something else (external or internal) which
results in him performing (committing) inappropriate actions
either in addition to or instead of appropriate ones. From a
completely observable perspective, this means that a slip can
manifest as: (a) An omission – the failure to perform all or part
of an activity; (b) A repetition – the repeated performance of
an activity or action; or (c) A commission – the inappropriate
performance of an activity or action.

B. Erroneous Behavior, Task Models, and Formal Methods

When designing for HAI, task analytic methods can be
used to describe normative human behavior [35]. The resulting
models represent the mental and physical activities human
operators use to achieve goals with the system. These models
are often hierarchical: activities decompose into other activities
and, at the lowest level, atomic actions. Strategic knowledge
controls when activities can execute and modifiers between
activities or actions control how they execute in relation to

each other. Many task analytic models can be represented with
discrete graph structures [45], [55]–[57].

Researchers have investigated how erroneous human behav-
ior can be manually, systematically incorporated into norma-
tive task analytic behavior models for use in analyses. The ma-
jority of this work has focused on identifying ways of inserting
Hollnagel’s phenotypes of erroneous action [3] into normative
task behavior models [47], [58]–[62]. Paternò and Santoro
[59] presented a different approach for modeling higher order
erroneous behaviors more akin to the physical manifestation
of Reason’s [54] slips. In this technique erroneous behaviors
could occur due to high level activities executing at the wrong
time or failing to execute at the correct time.

Because they can be represented discretely, task analytic
models can be used to include human behavior in formal
system models along with other system elements including
device automation, HDIs, and the operational environment
[37]–[41], [43]–[50]. This allows system safety properties to
be verified in light of the modeled human behavior which
could include any erroneous behaviors incorporated into the
model using the above techniques.

Bolton et al. [51] developed a more automated approach.
A task structure capable of generating erroneous human be-
haviors based on Hollnagel’s zero-order phenotypes can be
automatically incorporated into normative human task behav-
ior models by replacing each action in the original hierarchy.
The number of generated erroneous behaviors (zero-order
phenotypes) is limited by an analyst-specified upper bound.
The resulting task behavior models are automatically translated
into formal system models [45], [51]. A model checker is used
to evaluate the impact of both the original (normative) and
generated (erroneous) behavior on system safety properties.
This method has a distinct advantage over the other erroneous
behavior generation techniques in that it allows erroneous
behaviors that may not have been anticipated by analysts to
be considered. While this technique has proven itself useful
for finding potential problems in human-automation interactive
systems, a large upper bound on the number of erroneous
acts would be required to generate the activity level erroneous
behaviors explored by Paternò and Santoro [59]. Such large
upper bounds will generate erroneous behavior patterns that
analysts may not find interesting. Further, as the upper bound
on the number or erroneous acts increases, both the number
of states and the safety property verification time increase
exponentially. This is problematic because, for a realistic
system, the size of the model may exceed the resources
available to the model checker on the analysis machine or
verification may take too long to complete.

C. Objectives

For a system that can be modeled formally and whose
human task behavior can be represented using a hierarchi-
cal task analytic modeling formalism, we have developed
a method that allows analysts to automatically evaluate the
impact of erroneous behaviors like those discussed by Paternò
and Santoro [59] on system safety. To accomplish this, we
modify the way strategic knowledge is interpreted in task

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 3

Executing

Ready

Reset

Done

EndCondition ˄ RepeatCondition ˄ ¬ CompletionCondition

Endcondition ˄ CompletionCondition

StartCondition

˄ CompletionCondition

StartCondition ˄ Precondition

˄ ¬ CompletionCondition

(a)

Executing

Ready

StartCondition Reset

EndCondition

Done

(b)

Fig. 1. Formal semantics of an EOFM (a) activity’s and (b) action’s execution state presented as finite state transition systems [45]. States are represented as
rounded rectangles. Transitions appear as arrows between states that are labeled with Boolean expressions. Arrows starting with a dot point to initial states.

analytic behavior models to replicate Reason’s [54] slips and
evaluate their impact on the system using model checking.
We first discuss the infrastructure in which this technique
was implemented. We then describe our method. Benchmark
results are presented which show how the method scales. A
patient-controlled analgesia (PCA) pump application is then
used to illustrate how our method can be used to find problems
in a human-automation interactive system. Results and avenues
of future work are discussed.

II. EOFM AND THE FORMAL VERIFICATION OF HAI

We introduced an architectural framework [43], [44] to
evaluate HAI formally using task analytic models of human
behavior, models of human missions (i.e. goals), HDIs, device
automation, and the operational environment. Human task
models are created using an intermediary language called
Enhanced Operator Function Model (EOFM) [45], an XML-
based human task modeling language derived from the Opera-
tor Function Model (OFM) [56], [63]. EOFMs are hierarchical
and heterarchical representations of goal driven activities that
decompose into lower level activities, and finally, atomic
actions. Actions are typically observable, singular ways the
human operator can interact with the device. However, EOFM
also supports local variables, where the assignment of a value
to a local variable can represent a cognitive and perceptual
action. A decomposition operator specifies the temporal re-
lationships between and the cardinality of the decomposed
activities or actions (when they can execute relative to each
other and how many can execute).

EOFMs express strategic knowledge explicitly as conditions
on activities. Conditions can specify what must be true before
an activity can execute (preconditions), if it can repeat execu-
tion (repeat conditions), and what is true when it completes
execution (completion conditions).

EOFMs can be represented visually as a tree-like graph [64]
(see examples in Figs. 3 and 8). Actions are rectangles and
activities are rounded rectangles. An activity’s decomposition
is presented as an arrow, labeled with the decomposition
operator, that points to a large rounded rectangle containing
the decomposed activities or actions. In the work presented

here, four of the nine decomposition operators [45] are used:
(a) ord – all activities or actions in the decomposition must
execute in the order they appear; (b) or seq – one or more
of the activities or actions in the decomposition must execute
and only one can execute at a time; (c) optor par – zero or
more of the activities or actions in the decomposition must
execute and their execution can overlap; and (d) xor – exactly
one activity or action in the decomposition must execute.

Conditions (strategic knowledge) on activities are repre-
sented as shapes or arrows (annotated with the logic) con-
nected to the activity that they constrain. The form, position,
and color of the shape are determined by the type of condition.
A precondition is a yellow, downward-pointing triangle; a
completion condition is a magenta, upward-pointing triangle;
and a repeat condition is an arrow recursively pointing to the
top of the activity. More details can be found in [45].

EOFM has formal semantics which specify how an instanti-
ated EOFM model executes (Fig. 1). Specifically, each activity
or action has one of three execution states: waiting to execute
(Ready), executing (Executing), and done (Done). An activity
or action transitions between each of these states based on
its current state; its start condition (StartCondition – when it
can start executing based on the state of its immediate parent,
its parent’s decomposition operator, and the execution state of
its siblings); its end condition (EndCondition – when it can
stop executing based on the state of its immediate children
in the hierarchy and its decomposition operators); its reset
condition (Reset – when it can revert to Ready based on the
execution state of its parents); and, for an activity, the activity’s
strategic knowledge (the Precondition, RepeatCondition, and
CompletionCondition). See [45] for more details.

Instantiated EOFM task models can be automatically trans-
lated [45] into the language of the Symbolic Analysis Lab-
oratory (SAL) [65] using the EOFM formal semantics. The
translated EOFM can then be integrated into a larger system
model using a defined architecture and coordination protocol
[43], [45]. Formal verifications are performed on this complete
system model using SAL’s Symbolic Model Checker (SAL-
SMC). Any produced counterexamples can be visualized and
evaluated using EOFM’s visual notation (see [64]).

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 4

We next discuss the design philosophy behind our erroneous
behavior generation method and describe how it can be auto-
matically incorporated into this infrastructure.

III. ERRONEOUS HUMAN BEHAVIOR GENERATION

In Reason’s taxonomy [54], slips occur due to attention
failures and can manifest as omissions, repetitions, and com-
missions. Our erroneous human behavior generation method
models these slips as occurring due to a human operator not
properly attending to the strategic knowledge contained in pre,
repeat, and completion conditions. This was done by making
changes to the EOFM’s formal semantics. In this design, the
original semantics (Fig. 1) were given additional transitions
(Fig. 2) to describe when an activity could erroneously switch
between execution states. Each new transition represents the
erroneousness analog of a non-erroneous transition, where
the erroneous transition is conditioned on the same start
or end condition as well as the negation of any strategic
knowledge (pre, completion, or repeat condition) used by the
non-erroneous transition. This allows for the generation of
slips as omissions, repetitions, and commissions. Further, the
transitions were designed to limit the number of erroneous
behaviors considered in any given analysis.

A. Omissions

Omissions occur when the human operator fails to attend
to when he or she should perform an activity and thus does
not perform that activity [54]. Thus, an omission can occur in
two ways: (1) The human is not attending to when the activity
should be performed and thus does not perform it; or (2) The
human is not attending to the performance of an activity and
finishes it too early.

To replicate the first condition, our method adds an er-
roneous Executing to Done transition to the EOFM formal
semantics (Fig. 2). This encapsulates the circumstances where
the human operator is not paying attention to when the
activity should be performed (not properly attending to the
environmental and system conditions encoded into the Com-
pletionCondition) and does not perform it.

To represent the second condition, our methods includes an
erroneous Ready to Done transition (Fig. 2). This models the
situations where the human operator is not paying attention to
when an already executing activity should continue executing
(fails to correctly attend to the CompletionCondition) and stops
executing the activity prematurely.

These transition are only relevant if the activity has a
CompletionCondition.

B. Repetitions

An erroneous repetition occurs when a human operator
looses his or her place when executing an activity and er-
roneously repeats it [54]. Our erroneous behavior generation
methods models this as an erroneous Executing to Executing
transition (Fig. 2). This models a situation where a human
operator is not properly attending to the systems and envi-
ronmental conditions encoded in the RepeatCondition and the

Executing Done

Ready

EndCondition ˄ ¬ (RepeatCondition ˄ ¬ CompletionCondition) ˄ Count < Max,

Count++

Endcondition ˄ ¬ CompletionCondition

˄ Count < Max,

Count++

StartCondition

˄ ¬ CompletionCondition

˄ Count < Max,

Count++

StartCondition

˄ ¬ (Precondition ˄ ¬ CompletionCondition)

˄ Count < Max,

Count++

Erroneous Transitions

Repetition ComissionOmission

Fig. 2. Additional EOFM activity formal semantic transitions for generating
erroneous behavior beyond the normative transitions shown in Fig. 1(a).

CompletionCondition and erroneously repeats the execution of
the activity. This transition is only relevant if the activity has
a RepeatCondition.

C. Commissions

A commission occurs when a human operator has his or
her attention captured by something else in the environment
and erroneously executes an activity [54]. Our method gen-
erates this via an erroneous Ready to Executing transition.
This transition is conditioned on situations where a human
operator’s attention is captured by states other than those
associated with the correct evaluation of the Precondition and
CompletionCondition. This transition is only relevant if the
activity has a Precondition or CompletionCondition.

D. Controlling the Number of Erroneous Transitions

Too many erroneous transitions could result in an un-
bounded human task behavior model which would defeat the
benefit of having a task model. Thus, the analyst can limit the
number of erroneous transitions using an upper bound (Max).
A variable (Count) keeps track of the number of erroneous
transitions. An erroneous transition can only be undertaken if
the current number of erroneous transitions is less than the
maximum (Count < Max). Every time an erroneous transition
occurs, Count is incremented by one (Count++).

E. Implementation

Our Java-based EOFM to SAL translator [45] was modified
to optionally incorporate these erroneous transitions into the
translated SAL version of an instantiated EOFM. The trans-
lator takes the maximum number of erroneous acts (Max)
as input from the analyst. Max is represented as a constant
and an enumerated type is used to represent the range of
the possible number of erroneous transitions. The human
operator’s formal representation has a local variable for the
number of erroneous transitions that have occurred (Count).

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 5

optor_par

Action1

¬ C1 C1

aActivity1

¬ C1

(a)

optor_par

¬ (C1 ˄ C2) C1 ˄ C2

aActivity1

optor_par

 Action1

¬ C1 C1

aActivity2

¬ C1

optor_par

 Action2

¬ C2 C2

aActivity3

¬ C2

¬ (C1 ˄ C2)

(b)

optor_par

¬ (C1 ˄ C2 ˄ C3 ˄ C4) C1 ˄ C2 ˄ C3 ˄ C4

aActivity1

¬ (C1 ˄ C2 ˄ C3 ˄ C4)

optor_par

¬ (C1 ˄ C2) C1 ˄ C2

aActivity2

¬ (C1 ˄ C2)

optor_par

Action1

¬ C1 C1

aActivity3

¬ C1

optor_par

Action2

¬ C2 C2

aActivity4

¬ C2

optor_par

¬ (C3 ˄ C4) C3 ˄ C4

aActivity5

¬ (C3 ˄ C4)

optor_par

Action3

¬ C3 C3

aActivity6

¬ C3

optor_par

Action4

¬ C4 C4

aActivity7

¬ C4

(c)

Fig. 3. Instantiated EOFM normative task structures used as inputs to verification benchmark experiments. Activities begin with the letter “a” and atomic
actions do not. (a) The human operator must perform Action1 until condition C1 is true. (b) The human operator must perform Action1 and Action2 until C1
and C2 are true respectively. (c) The human operator must perform Action1, Action2, Action3, and Action4 until C1, C2, C3 and C4 are true respectively.

When writing the transition logic for each activity, this imple-
mentation adds transitions (guards and variable assignments)
for each of the dotted lines in Fig. 22. The variable assignment
for each erroneous transition is identical to its non-erroneous
counterpart in the SAL code except that it adds an assignment
that increments the erroneous transition count.

When the translated model is incorporated into a larger
formal system model and model checking is performed, the
returned counterexample may not be of interest to the an-
alyst for a variety of reasons (such as the infeasibility for
an intervention). In this situation, the analyst may wish to
rerun the analysis without considering a specific erroneous
behavior. The analyst can accomplish this by manually editing
the translated erroneous human behavior model to remove
the undesired erroneous transition. Given the way EOFM
formal semantics are implemented in SAL, each erroneous

2This is in addition to the other, normative (un-dotted) transitions from Fig.
1 that are already produced by the translator [45].

transition is represented by a single guard (the condition on
the transition) and a set of assignments under the guard. Thus,
to remove any given erroneous transition, an analyst need only
delete or comment out the associated guard and assignments.

IV. BENCHMARKS

One of the main concerns with model checking analyses
is statespace explosion [7]. Thus, benchmarks were collected
to determine how the erroneous behavior generation process
affected the scalability of the method in terms of statespace
size and verification time. The erroneous behavior generation
can add complexity to an instantiated EOFM task behavior
by adding additional transitions to the previously normative
model, thus allowing for more reachable states. The number
of erroneous transitions is influenced by two factors: the max-
imum number of erroneous transitions (Max) and the number
of strategic knowledge conditions (pre, repeat, and completion
conditions) in the EOFM task analytic model. Thus, both
factors are accounted for in the benchmark experiments.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 6

To account for the complexity associated with the number of
strategic knowledge conditions, we constructed three different
instances of EOFM normative task behavior models (Fig. 3),
where the number of strategic knowledge conditions increases
from the simplest to the most complex: Fig. 3(a) has 3, Fig.
3(b) has 9, and Fig. 3(c) has 21. All three of these models
assume that the human operator is interacting with a simple
system in which he is trying to make conditions become true.
The human must perform Action1 until the condition C1 is true
(in all three tasks in Fig. 3), Action2 until the C2 is true (for
the tasks in Figs. 3(b) and (c)), Action3 until the condition
C3 is true (for the task in Fig. 3(c)), and Action4 until the
condition C4 is true (for the task in Fig. 3(c)). An optor par
decomposition operator (zero or more of the activities/actions
in the decomposition must execute and their execution can
overlap) was used in all of the decompositions in all three task
models because it is the decomposition operator associated
with largest number of model states [45].

To account for the complexity associated with the maximum
number of allowable erroneous transitions (Max), we varied
the maximum number of erroneous acts (between 0 and 16)
for each of the task structures in Fig. 3. The SAL translator was
used to create a formal model for each unique combination,
where each translated model was paired with models that
updated the state of the appropriate conditions (C1, C2, C3,
and C4) in response to human actions (see Fig. 4).

SAL-SMC was used to formally verify each model against
a valid specification ((1) for models using the task in Fig.
3(a) and (2) for models using the tasks in Figs. 3(b) and
(c)) on a computer workstation with 16 gigabytes of RAM, a
3.0 gigahertz dual-core Intel Xeon processor, and the Ubuntu
9.04 desktop. Both the total number of visited states and
the verification times that were reported by SAL-SMC are
presented in Fig. 5.

G¬(aActivity1 = Executing∧Action1 = Executing) (1)

G¬(aActivity1 = Executing∧aActivity2 = Executing) (2)

Both the number of visited states and the verification time
increased linearly with Max (see Fig. 5). The correlation
between Max and the number of visited states yielded R2 ≈ 1
for all three data sets. The correlation between Max and the
verification times for the task models in Figs. 3(a), 3(b), and
3(c) produced R2 values of 0.96, 0.93, and 0.82 respectively.

The data and correlation measures (Fig. 5) indicate that
verification time does not scale as perfectly linearly with Max
as the statespace does. Further, there are some interesting
inconsistencies between data sets. For example, in Fig. 5(b),
verification times are very close between sequential even and
odd values of Max; in Fig. 5(c), verification time varies
significantly between even and odd numbers of Max, with
the verification taking longer for odd numbers of Max; and
in Fig. 3(a), there is no such pattern between even and odd
numbers of Max. There are a number of reasons for why
these variations could occur. Firstly, there are many operating
system processes that are concurrently executing with the
model checker which could add variation to the verification
time results. Secondly, the nature of the model checker itself

True False

ActionX

ActionX
ActionX

Fig. 4. Finite state transition description for CX where X can be 1, 2, 3 or
4. CX can start out being either true or false. If CX is true and the human
operator performs ActionX, CX becomes false. If CX is false and the human
operator performs ActionX, then CX can either become true or remain false.

will add variation to the verification time. As part of its
verification process, SAL creates a symbolic representation
of the input model optimized for checking the specification
property. Further, SAL may employ different search algorithms
to produce results as quickly as possible. As a result of this,
verification times can vary between even similar models. A
deeper exploration of this anomaly would require investigating
the algorithms SAL uses in its model checking, which exceeds
the scope of this paper. However, even with these sources of
variance, verification time did tend to increase linearly with
Max. In the context of model checking, this is a positive result
given that the erroneous behavior generation method is not
exhibiting combinatorial explosion, the primary limiting factor
for model checking analyses [7].

V. APPLICATION

To illustrate how this method can be used to discover poten-
tial system problems, we present a PCA pump programming
application, extended from [43], [44], [66]. A PCA pump is
a medical device that allows patients to control the delivery
of pain medication based on a prescription programmed into
it by a human practitioner. The HDI for the device (Fig. 6)
contains a dynamic LCD and eight buttons. This pump accepts
three prescription values: a PCA dosage in ml, a minimum
delay between dosages in minutes, and a one hour dosage
limit in ml. The device gives practitioners the option to review
prescriptions before administering treatment.

The practitioner uses the HDI to program prescription
parameters. The “Start” and “Stop” buttons start and stop the
delivery of medication (stop must be pressed twice) at certain
times during programming. The “On-Off” button is used to
turn the device on (when pressed once) and off (when pressed
twice). The LCD displays information and allows the practi-
tioners to specify prescription values. A prescription value’s
name is displayed on the LCD and the value is presented with
the cursor under one of its digits. The practitioner can change
the position of the cursor by pressing the left and right buttons.
The practitioner can press the up button to scroll through the
different digit values available at the current cursor position.
The “Clear” button sets the displayed value to zero. The enter
button is used to confirm values and treatment options.

A. Formal Modeling
All of the formal models were constructed using the Sym-

bolic Analysis Laboratory (SAL) language [65]3. The formal

3All of the models presented in this paper are available at http://sys.uic.
edu/resources/.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 7• Number of visited states and linear trend line × Verification time and linear trend line

Number of Visitted State and Linear Trend Line Verification Time and Linear Trend Line

Legend

30

35

Number of Visitted State and Linear Trend Line Verification Time and Linear Trend Line

5

10

15

20

25

30

35

N
um

be
r o

f V
is

ite
d

St
at

es

0

5

10

0 4

N
u

Ma
Errone

0

4

8

12

16

20

24

0

200000

400000

600000

800000

1000000

1200000

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 0.82

R 2 ≈ 1.00

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

1000

2000

3000

4000

5000

6000

7000

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 0.93

R 2 ≈ 1.00

0

0.05

0.10

0.15

0.20

0.25

0.30

0

50

100

150

200

250

300

350

400

450

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 1.00

R 2 = 0.96

(a)

0

4

8

12

16

20

24

0

200000

400000

600000

800000

1000000

1200000

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 0.82

R 2 ≈ 1.00

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

1000

2000

3000

4000

5000

6000

7000

0 4 8 12 16
V

erification T
im

e (s)
N

um
be

r o
f V

is
ite

d
S

ta
te

s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 0.93

R 2 ≈ 1.00

0

0.05

0.10

0.15

0.20

0.25

0.30

0

50

100

150

200

250

300

350

400

450

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 1.00

R 2 = 0.96

(b)

0

4

8

12

16

20

24

0

200000

400000

600000

800000

1000000

1200000

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 0.82

R 2 ≈ 1.00

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

1000

2000

3000

4000

5000

6000

7000

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 0.93

R 2 ≈ 1.00

0

0.05

0.10

0.15

0.20

0.25

0.30

0

50

100

150

200

250

300

350

400

450

0 4 8 12 16

V
erification T

im
e (s)

N
um

be
r o

f V
is

ite
d

S
ta

te
s

Maximum Number of
Erroneous Transitions (Max)

R 2 = 1.00

R 2 = 0.96

(c)

Fig. 5. Plot of the verification results (verification time in seconds and the number of visited states) for maximum numbers of erroneous transitions (Max)
between 0 and 16 for each of the three task structures (a), (b), and (c) from Fig. 3 presented here in (a), (b), and (c) respectively. In all plots, the number
of visited states is reported on the left y-axis and verification time is reported on the right y-axis. Linear trends lines are presented for each plot with their
corresponding R2 statistic. The ≈ symbol is used to indicate when the R2 statistic rounded up to 1.

00.00 ml

Set PCA
Dose

▲ ►◄

Start

Stop

Clear
C

On/Off

PCA pump

l

>

Fig. 6. The PCA pump HDI for programming prescriptions.

system model contained sub-models representing the practi-
tioner’s mission, the HDI, the device automation, and human
task behavior automatically translated from instantiated EOFM
task models using both their normative representation and the
erroneous human behavior generation method presented above.

1) Human mission: The practitioner’s mission was to
program prescriptions into the pump. The prescription was
represented by three values: a PCA dosage (PrescribedPCA-
Dose), a minimum delay between dosages (PrescribedDe-
lay), and a limit on the total dosage delivered in an hour
(PrescribedLimit). To control the complexity of the model,
all values (including those in prescriptions) were represented
abstractly as either being Correct or Incorrect. Every value in
a prescription was always Correct since these were the values
the practitioner was attempting to program into the pump.

2) Human-device interface: The HDI represented the state
of the LCD (Display) which indicated when the system was off
(SystemOff), when the dosage could be programmed (SetPCA-
Dose), when the delay could be programmed (SetDelay), when
the one hour limit could be programmed (SetLimit), when
prescription delivery could be started or reviewed (StartBe-
ginsRx), and when treatment was being administered (Admin).
It would also display the value (Correct or Incorrect) asso-

ciated with the SetPCADose, SetDelay, and SetLimit states.
It received human action inputs from the eight buttons: Pres-
sOnOff, PressStart, PressStop, PressLeft, PressUp, PressRight,
PressClear, and PressEnter.

3) Device automation: The model of the device automation
controlled the interface states (Fig. 7(a)) and displayed values
(Fig. 7(b)) based on internal variables and human actions.

4) Human task behavior: An instantiated EOFM was cre-
ated encompassing the following high-level goal directed
behaviors for normatively performing activities with the pump
(Fig. 8): (a) turning on the pump, (b) stopping the infusion
of medication, (c) selecting whether to start or review an
entered prescription, (d) turning off the pump, and (e) entering
prescribed values (PCA dosages, delays, and one hour limits).

The tasks most relevant to this discussion are those related
to the programming of prescription values, all of which
have the form shown in Fig. 8(e). For a given value X, the
corresponding EOFM becomes relevant when the interface for
setting that value is displayed. A practitioner first changes the
displayed value to match that from the prescription. The value
can be changed by selecting different digits with Left and
Right button presses (PressLeft and PressRight), clearing the
display by pressing the Clear button (PressClear), or changing
a digit by pressing the Up button (PressUp). The practitioner
repeats the change activity (a repeat condition) as long as the
displayed value does not match the prescription value. The
displayed value is accepted by pressing the enter key.

The EOFM instance (Fig. 8) was translated twice into
SAL code and incorporated into the larger formal system
model: once for normative behavior (Max = 0) and once for
erroneous human behavior with a maximum of one erroneous
transition (Max = 1). The normative behavior model’s EOFM
representation was 147 lines of code. Its corresponding formal,

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 8

SystemOn

PressStop ˄ X (PressStop)

PressStart

SetPCA

Dose

Set

Delay

Set

Limit

Start

BeginsRx

PressEnter

PressEnter

PressEnterPressEnter

System

Off

Admin

PressOnOff ˄ X (PressOnOff)

PressOnOff

(a) Display

Incorrect Correct

Display = SetX ˄ PressUp

Display = SetX

˄ PressUp

Display = SetX ˄ PressUp

(b) ValueX

Fig. 7. State transition model representation of the formal model of the
PCA pump’s automation. Rounded rectangles represent states. Arrows indicate
guarded transitions between states. Transitions are labeled with transition
logic. Note that variables in transition logic with the Press prefix indicate
that a human has pressed a button on the HDI. (a) The state of LCD display.
(b) The behavior used to model the state of prescription value X, where X
can be any value associated with a prescription: PCADose, Delay, Limit.

normative representation was 475 lines of SAL code. The
erroneous behavior model was 784 lines of SAL code.

B. Specification and Verification

We use linear temporal logic [67] to construct the specifica-
tion in (3)4. This asserts that, when treatment is administering,
the entered prescription should always match the one from the
mission.

G

(Display = Admin)

⇒

 ValuePCADose = PrescribedPCADose
∧ ValueDelay = PrescribedDelay
∧ ValueLimit = PrescribedLimit

 (3)

When checked against the formal system model with the
translated normative task behavior model, it verified to true in
2 minutes and 46 seconds having visited 4,072,083 states.

The formal system model containing the erroneous human
behavior model produced a counterexample after 1 minute
and 10 seconds after visiting 1,591,373 states. We used our
visualizer [64] to diagnose the discovered problem. This
revealed the following failure sequence:

4All models were also checked to ensure that any confirmation of (3) was
not due to vacuous truth.

aTurnOn

Pump

ord

Display = SystemOff
Display ≠ SystemOff

Press

OnOff

(a)

aStop

Infusing

ord

Display = Admin
Display ≠ Admin

Press

Stop

Press

Stop

(b)

aStartOr

Review

xor

aStart

Rx

ord

Press

Start

aReview

Rx

ord

Press

Enter

Display = StartBeginsRx
Display ≠ StartBeginsRx

(c)

aTurnOff

Pump

ord

aStop

Infusing

aTurn

Off

ord

Press

OnOff

Press

OnOff

Display = StartBeginsRx
Display = SystemOff

(d)

ord

or_seq

aChange

Digit

ord

Press

Up

aSelect

NextDigit

xor

Press

Left

Press

Right

aClear

ord

Press

Clear

aAccept

ord

Press

Enter

aChange

ValueX

ValueX ≠ PrescribedX ValueX = PrescribedX

ValueX ≠ PrescribedX

Display = SetX Display ≠ SetX

aSetX

(e)

Fig. 8. Visualization of the instantiated EOFM for normatively programming
prescriptions into the PCA pump. Note that (e) represents a generic pattern
for programming value X into the pump where X can be PCADose, Delay,
or Limit. Also note that the dotted line around aStopInfusing in (d) indicates
that aTurnOffPump is referencing the activity aStopInfusing defined in (b).

1) The pump started in the off state and the practitioner had
to program in a prescription specifying a PCA dose, a
delay, and a one hour limit.

2) The practitioner turned the pump on by pressing the
on/off button, putting the pump’s interface in the PCA

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 9

dosage programming state (SetPCADose) with a dis-
played value of Incorrect.

3) The practitioner pressed the up button until the value
was Correct.

4) The practitioner accepted the PCA dosage by pressing
the enter button, causing the pump’s interface to transi-
tion to the delay programming state (SetDelay) with a
displayed value of Incorrect.

5) Rather than perform the activity for changing the delay
value until the value was Correct, the practitioner er-
roneously omitted the aChangeValueDelay activity (see
Fig. 8(e) with X = Delay), an erroneous Ready to Done
transition.

6) The practitioner accepted the Incorrect delay by pressing
the enter button, causing the pump’s interface to transi-
tion to the one hour limit programming state (SetLimit)
with a displayed value of Incorrect.

7) The practitioner pressed the up button until the value
was Correct.

8) The practitioner accepted the one hour limit by pressing
the enter button, causing the pump’s interface to tran-
sition to the state for reviewing or starting treatment
(StartBeginsRx).

9) The practitioner started treatment by pressing the start
button, causing treatment to administer (TreatmentAd-
ministering). Thus, the specification had been violated
with the pump administering treatment with an unpre-
scribed delay value.

C. Addressing the Discovered Problem

We can use our method to investigate potential interventions
that mitigate the discovered problem. One possibility is to have
the practitioner review the entered prescription every time it
changes. One way this can be accomplished is by making
changes to the device automation. For example, the pump
could be modified so that it keeps track of whether or not
the practitioner has reviewed the entered prescription or not
and will only let her start the administration of treatment after
an entered or changed prescription has been reviewed.

If we make this change to the PCA pump model, we
can re-run the verification against (3) with the erroneous
human behavior model from above. When we did this, the
specification verified to true in 23 minutes and 41 seconds
having visited 43,033,617 states.

While this solution will work, it may not always be viable.
For example, if the analyses are being conducted by a hospital
using the pump in question, the analysts may not be able to
actually modify the device automation. However, they may be
able to change the procedures and training. In such a situation,
the hospital could require that practitioners always review
a new or changed prescription once before administering
treatment.

To implement this in our models, we made changes to the
instantiated EOFM. We introduced a Boolean local variable
called Reviewed to the instantiated EOFM with an initial
value of false to allow the practitioner to keep track of
whether or not (true or false respectively) she has reviewed

a new or modified prescription. Then we modified the task
structures (originally from Fig. 8) so that Reviewed’s value
is appropriately updated when programming in a prescription
(see Fig. 9): Reviewed is set to false when the pump is turned
on (Fig. 9(a)); Reviewed is set to true when the practitioner
chooses to review a prescription, and preconditions are added
so that a prescription is administered if Reviewed is true and
reviewed if it is false (Fig. 9(b)); and Reviewed is set to false
every time the practitioner makes a change to a prescription
value (Fig. 9(c)).

The translator was re-run with the modified tasks and Max
= 1, and the translated tasks were paired with the original
mission, HDI, and automation models. When (3) was checked
against this system model, it verified to true in 30 minutes and
14 seconds having visited 44,532,648 states.

D. Multiple Erroneous Behaviors

To see how robust our solutions were to more than one at-
tention failure, we rechecked the last two models (the one with
the modified device automation and the one with the modified
task behavior) with Max = 2 against the specification in (3). In
both cases, the formal verifications failed. The model with the
modified device automation produced a counterexample after
32 minutes and 19 seconds after visiting 98,736,453 states.
The model with the modified task behavior produced one in
1 minute and 48 seconds having visited 3,655,441 states.

An examination of these results using our visualizer [64]
revealed that in both counterexamples a somewhat unrealistic
erroneous behavior was contributing to the observed failures.
In both cases, when it would have been appropriate for the
practitioner to program the delay into the pump (the task in
Figs. 8(e) and 9(c) with X = Delay), the practitioner made
a commission (an erroneous Ready to Executing transition)
with the activity for starting or reviewing a prescription
(aStartOrReview from Figs. 8(c) and 9(b)). This resulted in the
practitioner pressing the enter button (via the aStartRx activity)
without making a change to the delay value and, for the model
with the modified task behavior, setting Reviewed to true. Also
in both examples, this erroneous behavior interacted with an-
other erroneous behavior to ultimately produce the discovered
failure. In the model with the modified device automation,
the practitioner made an omission (he did not change/correct
the delay value) when reviewing the entered delay, thus
allowing an incorrect delay to be administered. In the model
with the modified task behavior, after erroneously performing
aStartOrReview (pressing enter and setting Reviewed to true),
the practitioner made an omission when programming in the
one hour limit (an erroneous Ready to Done transition for
aSetLimit from Fig. 9(c) with X = Limit). Thus, Review
was true when it came time for the practitioner to choose
between starting or reviewing the prescription (Fig. 9(b)),
resulting in the practitioner pressing start which administered
a prescription containing incorrect delay and limit values.

While theoretically possible, these failure sequences are
fairly unrealistic: it is unlikely that a practitioner would
mistake the interface state for programming in the delay for
the one for starting or reviewing a prescription. Thus, we used

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 10

aTurnOn

Pump

ord

Display = SystemOff
Display ≠ SystemOff

Press

OnOff

Reviewed

= False

(a)

ord

Press

Start

¬ Reviewed

ord

Reviewed

Press

Enter

Reviewed

= True

aStart

Rx

aStartOr

Review

xor

Display = StartBeginsRx
Display ≠ StartBeginsRx

aReview

Rx

(b)

ord

or_seq

aChange

Digit

ord

aSelect

NextDigit

xor

Press

Left

Press

Right

aClear

ord

aAccept

ord

Press

Enter

aChange

ValueX

ValueX ≠ PrescribedX ValueX = PrescribedX

ValueX ≠ PrescribedX

Display = SetX Display ≠ SetX

aSetX

Press

Clear

Reviewed

= False

Press

Up

Reviewed

= False

(c)

Fig. 9. Visualization of the modified tasks from Fig. 8 to enable the practitioner to remember if he has reviewed a new or modified prescription before
administering treatment based on the value of local variable called Reviewed. Note that the Boolean local variable Reviewed is assigned values as a mental
action at the bottom of the task model hierarchy. (a) The updated version of the task from Fig. 8(a). (b) The updated version of the task from Fig. 8(c). (c)
The updated version of the task pattern from Fig. 8(e).

our technique for eliminating undesirable erroneous behav-
iors to remove the erroneous Ready to Executing transition
of aStartOrReview (Figs. 8(c) and 9(b)) from both models.
With these changes made, both models were again checked
against the specification in (3). Both verifications produced
counterexamples.

The model with the modified device automation produced
a counterexample in 24 minutes having visited 85,868,280
states. This revealed that the practitioner made the same
error twice: when both initially programming and review-
ing the prescription, the practitioner erroneously omitted the
aChangeDelayValue activity (from the task in Fig. 8(e) with
X = Delay). Thus, the practitioner entered the incorrect delay
and failed to correct during the review process. This resulted
in a prescription with an incorrect delay being administered.

The model with the modified task behavior produced a

counterexample in 1 minute and 55 seconds having visited
5,478,564 states. When this counterexample was visualized, it
revealed that, when initially programming the prescription into
the pump, the practitioner erroneously omitted the ChangeDe-
layValue activity (from the task in Fig. 9(c) with X = Delay).
Then, when the practitioner was asked whether to review
or administer treatment, the practitioner made a commission:
when aStartOrReview (Fig. 9(b)) was executing, the aStartRx
erroneously transitioned from Ready to Executing. This also
resulted in the practitioner administering a prescription with
an incorrect delay.

These two failures are much more plausible than the ones
found before removing aStartOrReview’s erroneous Ready
to Executing transition. Unfortunately, it is not immediately
clear how the device automation or human training could be
modified to prevent these or similar failures from occurring.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 11

VI. DISCUSSION

The method presented here makes a novel contribution to
model-driven design and analysis techniques that use formal
methods to evaluate the role of human behavior in system
safety. By using task analytic behavior models, erroneous
behavior generation, formal modeling, and model checking,
the presented method gives analysts the ability to use task
analytic human behavior models to evaluate if the modeled
human behavior will or will not result in violations of system
safety. Further, by adding erroneous transitions to the for-
mal semantics of an EOFM’s activity execution state, each
representing erroneous applications of strategic knowledge
(pre, repeat, and completion conditions), we are capable of
automatically including the observable manifestation of atten-
tional failures associated with Reason’s [54] slips (omission,
repetition, or commission) in our formal verification analyses.
The number of possible erroneous transitions is constrained
by a maximum and a counter preventing generated erroneous
behaviors from making the task behavior model unbounded.
Thus, analysts can use our method to determine if their
system is safe for up to the maximum number of potentially
unanticipated erroneous behaviors associated with attentional
failures (erroneous transitions).

The PCA pump application illustrates how this method
can be used to evaluate a safety critical system that depends
on HAI. Employing this example we used our method to
demonstrate how one can show that a device is safe when
the human operator behaves normatively. We then showed
how a violation of system safety could be discovered using
the presented erroneous behavior generation technique. The
method was then used to explore different design or training
interventions that could be used to correct the discovered prob-
lem. Finally, we increased the number of erroneous behaviors
to assess how robust our designs were to additional human
operator attentional failures. After pruning our results (using
the method’s process for doing), we showed that the presented
interventions were not robust for up to a maximum of two
attentional failures.

While the method has shown itself to have utility, there are
many directions for future research.

A. Comparison with Other Task-based Approaches

When compared to the other techniques that use task
analytic models to evaluate the impact of erroneous human
behavior on system safety, our method has several advantages.
The vast majority of previous techniques have focussed on ver-
ifying system safety with normative human task behavior, and
do not consider erroneous human behavior [37]–[41], [43]–
[46], [48]–[50]. Those that do include erroneous behavior,
have typically focussed on manually inserting them into task
analytic models at locations the analysts think might cause
problems [47], [58]–[62]. Thus, our method is advantageous
in that it allows analysts to evaluate the impact of erroneous
human behaviors they might not anticipate will cause prob-
lems.

The presented method also has an advantage over the auto-
mated approach developed by Bolton et al. [51] that focussed

on generating erroneous human behaviors using Hollnagel’s
[3] zero-order phenotypes of erroneous action. While the
method presented in [51] works well for evaluating the impact
of small numbers of erroneous phenotypical behaviors on
system safety, it does a poor job of replicating higher order
attentional failures like those explored by Paternò and Santoro
[59]. However, our new method is capable of generating these
types of higher order failures without considering all of the
complex combinations of extraneous actions that would be
required to generate similarly ordered erroneous behaviors
using the technique from [51]. It is important to note that
because these two generation techniques produce different
erroneous behaviors, there may be advantages to using them
synergistically. The method in [51] can be used to generate
lower level erroneous acts and can be used to generate many
more extraneous behaviors while the method presented in
this paper could be used to explore higher order erroneous
behaviors based on attentional failures. Future work should
investigate this possibility.

B. Comparison with Other Methods
Bolton et al. [51] discuss several other techniques that

allow erroneous human behaviors to be considered in formal
verification analyses that do not make use of task models.
These include techniques that only use a model of the HDI [8]–
[11], [17]–[20], methods that use human mental models as part
of larger system models [14]–[16], [21]–[23], and approaches
that use cognitive architectures as part of the system model
[24]–[34]. Bolton et al. note that there are tradeoffs between
these and the task model-based approaches. Techniques that
only use HDI models can find any possible failure sequence
and are often more scalable than other approaches, but provide
little insights into why an erroneous behavior occurs and may
not be suitable for evaluating systems (such as aircraft or
medical devices) where design interventions cannot eliminate
all potential system problems. Approaches that use mental
models are particularly good at finding system conditions
that could produce mode confusion, but do not explicitly
model the impact of erroneous behaviors. Methods that use
cognitive architectures explicitly model the cognitive mecha-
nisms behind erroneous behavior and thus provide insights into
why a problematic erroneous behavior can occur. However,
these methods require that the cognitive mechanisms for the
erroneous behavior be explicitly incorporated into the model
and use modeling approaches that are not commonly employed
by the human factors and systems engineering communities.
Finally, task model-based analyses (like the one described
in this paper) also provide insights into why an erroneous
behavior occurs, but make use of human behavior models that
systems engineers more commonly use. However, they may
not scale as well as other approaches.

There may be utility in developing a framework that could
support all of these methods. In such a framework, an an-
alyst could deploy each of the techniques where she felt it
was appropriate. Future work should investigate how these
techniques could be incorporated into an integrated framework
with heuristics for guiding analysts towards the methods that
are most appropriate for the system they are evaluating.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 12

C. Scalability

A significant increase in the statespace size and verification
times was observed between the normative human behavior
model (4,072,083 states evaluated in 2 minutes and 46 sec-
onds) and the one with a maximum of 1 erroneous transition
(43,033,617 states evaluated in 23 minutes and 41 seconds).
Such increases are likely to limit the applicability of the
presented method. However the benchmark results indicate
that the method scales linearly with the maximum number
of erroneous transitions. Thus, the method presented here
scales much better than the phenotypical erroneous behavior
generation method in [51] which scaled exponentially with
an increase in the maximum number of allowable erroneous
actions. Thus, the method presented here would likely be
applicable to more complex systems.

Despite this advantage, improvements in scalability would
still increase the applicability of the method. The EOFM
to SAL translation process includes all of the intermediary
transitions associated with the execution state of activities
(Figs. 1 and 2). It is conceivable that the execution state
of each activity could be represented exclusively in terms of
the execution states of actions. Additionally, the mechanisms
that implement the coordination protocol used to compose
the translated human task behavior model with the other
models in the formal system model [43] add to the statespace.
More efficient means of achieving the desired behavior may
exist. Alternative modeling architectures, like those based on
synchronous observers (see [42]), may prove to be more
statespace-efficient. Future work should investigate these and
other methods for potentially improving the scalability of the
presented method.

D. Method Extensions

The method presented here only depends on the interpre-
tation of activity level strategic knowledge. Thus, although
the method is capable of generating omission, repetition, or
commission that can result from slips related to strategic
knowledge, it is not capable of replicating ordering errors
(a type of commission) for activities contained in an ord
decomposition or other violations of task execution order
encoded into activities’ and actions’ start, end, and reset
conditions. Future work should investigate how to accomplish
this. Additionally, the method only addresses erroneous human
behaviors that can be replicated with an erroneous transition
between execution states (Fig. 2). However, there may be
erroneous transitions associated with a non-transition (a lack
transition between execution states when there should be one).
Specifically, an omission could occur if the human operator
doesn’t properly attend to when an activity should transition
between Ready and Executing, and stay in the Ready state.
Future work should investigate how to replicate this behavior
in our method.

EOFM formal semantics do not allow for task models to be
abandoned or resumed. This is problematic because erroneous
transitions can lead to task deadlock (a case where the task
cannot continue executing) which is unrealistic. Real human
operators may attempt to abandon, resume, or restart tasks

the system will not let them perform. Future work should
investigate how to incorporate this behavior into EOFM.

The erroneous behavior generation process discussed here
is only capable of replicating capture slips for activities in
a particular peer group: either within a given decomposition,
or all parent level activities. However, capture slips can also
manifest as a human operator performs all or part of a
completely unrelated activity, especially if the activities occur
under similar circumstances or are composed of similar se-
quences of behavior [54]. Future work should investigate how
such slips could be incorporated into our erroneous behavior
generation process.

Reason’s Generic Error Modeling System [54] classifies
erroneous behaviors beyond the slip designations that have
been discussed here. Specifically, slips only relate to erroneous
behaviors that occur as a result of attentional failures that
cause the human operators to incorrectly perform tasks that
they know how to perform correctly. A different class of
erroneous behaviors, mistakes, occur when the human operator
intentionally performs an erroneous behavior because he does
not know how to perform a task correctly. This can occur
either because of rule-based or knowledge-based failures. Rule
based mistakes occur when the human performs a valid rule or
schema for achieving a goal in an incorrect place or performs
an invalid rule. Failures at the knowledge level occur when the
human operator has incorrect knowledge about the domain or
environment. Future work should investigate how to generate
mistakes as part of our infrastructure.

E. Use in Design

The various analyses that were presented demonstrate how
the method can be used to evaluate different designs or system
conditions: normative, erroneous, and modified human task
behavior models were evaluated as well as two different
implementations of the device automation. However, as was
observed in the analyses with a maximum of two erroneous
transitions, it is not always clear how counterexample results
can be used to influence design. In fact, all model checking
analyses suffer from this problem. Since a counterexample
only shows a single path of failure, and a model checker will
always produce the same counterexample for the same input
model and specification, it may not be clear how to modify
the design of a device to not only correct the discovered
problem but also correct all problems of a similar nature or
form without introducing new problems.

For example, in the application presented in this paper,
the model checker found a counterexample in which the
practitioner performed an omission when programming a delay
into the PCA pump. However, there are likely other erroneous
behaviors that could potentially result in a practitioner pro-
gramming in an incorrect prescription (e.g., performing an
omission when programming in a PCA dosage or one hour
limit). Thus, to find other possible failure scenarios, the analyst
would need to change the analysis by removing the specific
omission from consideration. One way of accomplishing this
would be to remove the contributory erroneous transition from
the translated version of the instantiated EOFM using the

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 13

approach described in section III-E (in the SAL code, this
would be as simple as commenting out the erroneous Ready
to Done transition associated with aChangeValueDelay). Using
this approach (iteratively removing contributory erroneous
transitions), an analyst could discover all of the potential
erroneous transitions that could result in a property violation.

However, even with such insights, an analyst may have
trouble comparing the information contained in multiple coun-
terexamples and synthesizing it into design interventions.
Thus, advances in counterexample visualizations [64] and
other formal modeling decision aids may help analysts perform
this task. Future work should investigate how these technolo-
gies could be used to help analysts design model-checking-
discovered problems out of their systems.

ACKNOWLEDGMENT

The project described was supported in part by Grant Num-
ber T15LM009462 from the National Library of Medicine
(NLM), NASA Cooperative Agreement NCC1002043, and
NASA award NNA10DE79C. The content is solely the re-
sponsibility of the authors and does not necessarily represent
the official views of the NIA, NASA, the NLM, or the National
Institutes of Health.

REFERENCES
[1] T. B. Sheridan and R. Parasuraman, “Human-automation interaction,”

Reviews of human factors and ergonomics, vol. 1, no. 1, pp. 89–129,
2005.

[2] R. Parasuraman, T. Sheridan, and C. Wickens, “A model for types and
levels of human interaction with automation,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 30,
no. 3, pp. 286–297, 2000.

[3] E. Hollnagel, “The phenotype of erroneous actions,” International
Journal of Man-Machine Studies, vol. 39, no. 1, pp. 1–32, 1993.

[4] H. Hussmann, G. Meixner, and Z. Detlef, Model-Driven Development
of Advanced User Interfaces. Berlin: Springer, 2011.

[5] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal
verification to evaluate human-automation interaction, a review,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, in press.

[6] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8, 10–22, 24, 1990.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cam-
bridge: MIT Press, 1999.

[8] J. C. Campos and M. D. Harrison, “Systematic analysis of control panel
interfaces using formal tools,” in Proceedings of the 15th International
Workshop on the Design, Verification and Specification of Interactive
Systems. Berlin: Springer, 2008, pp. 72–85.

[9] G. D. Abowd, H. Wang, and A. F. Monk, “A formal technique for
automated dialogue development,” in Proceedings of the 1st Conference
on Designing Interactive Systems. New York: ACM, 1995, pp. 219–
226.

[10] J. C. Campos and M. D. Harrison, “Formally verifying interactive sys-
tems: A review,” in Proceedings of the Fouth International Eurographics
Workshop on the Design, Specification, and Verification of Interactive
Systems. Berlin: Springer, 1997, pp. 109–124.

[11] M. Thomas, “The story of the therac-25 in lotos,” High Integrity Systems,
vol. 1, no. 1, pp. 3–15, 1994.

[12] D. A. Norman, “The problem with automation: Inappropriate feedback
and interaction, not over-automation,” Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences, vol. 327, pp.
585–593, 1990.

[13] N. B. Sarter and D. D. Woods, “How in the world did we ever get into
that mode? Mode error and awareness in supervisory control,” Human
Factors, vol. 37, no. 1, pp. 5–19, 1995.

[14] B. Buth, “Analyzing mode confusion: An approach using FDR2,” in
Proceeding of the 23rd International Conference on Computer Safety,
Reliability, and Security. Berlin: Springer, 2004, pp. 101–114.

[15] A. Degani and M. Heymann, “Formal verification of human-automation
interaction,” Human Factors, vol. 44, no. 1, pp. 28–43, 2002.

[16] J. Rushby, “Using model checking to help discover mode confusions and
other automation surprises,” Reliability Engineering and System Safety,
vol. 75, no. 2, pp. 167–177, 2002.

[17] J. C. Campos and M. D. Harrison, “Model checking interactor specifi-
cations,” Automated Software Engineering, vol. 8, no. 3, pp. 275–310,
2001.

[18] A. Joshi, S. P. Miller, and M. P. Heimdahl, “Mode confusion analysis of
a flight guidance system using formal methods,” in Proceedings of the
22nd Digital Avionics Systems Conference. Piscataway: IEEE, October
2003, pp. 2.D.1-1–2.D.1-12.

[19] N. G. Leveson, L. D. Pinnel, S. D. Sandys, S. K., and J. D. Reese,
“Analyzing software specifications for mode confusion potential,” in
Proceedings of the Workshop on Human Error and System Development.
Glasgow: University of Glasgow, 1997, pp. CD–ROM.

[20] J. C. Campos and M. D. Harrison, “Modelling and analysing the
interactive behaviour of an infusion pump,” in Proceedings of the Fourth
International Workshop on Formal Methods for Interactive Systems.
Potsdam: EASST, 2011.

[21] J. Bredereke and A. Lankenau, “Safety-relevant mode confusions–
modelling and reducing them,” Reliability Engineering and System
Safety, vol. 88, no. 3, pp. 229–245, 2005.

[22] D. Javaux, “A method for predicting errors when interacting with finite
state systems. How implicit learning shapes the user’s knowledge of a
system,” Reliability Engineering and System Safety, vol. 75, pp. 147–
165, 2002.

[23] P. H. Wheeler, “Aspects of automation mode confusion,” Master’s thesis,
Massachusetts Institute of Technology, Cambridge, 2007.

[24] A. Blandford, R. Butterworth, and J. Good, “Users as rational interacting
agents: Formalising assumptions about cognition and interaction,” in
Proceedings of the 4th International Eurographics Workshop, on the
Design, Specification and Verification of Interactive Systems, vol. 97.
Berlin: Springer, 1997, pp. 45–60.

[25] A. Blandford, R. Butterworth, and P. Curzon, “Models of interactive
systems: A case study on programmable user modelling,” International
Journal of Human-Computer Studies, vol. 60, no. 2, pp. 149–200, 2004.

[26] R. Butterworth, A. Blandford, and D. Duke, “Demonstrating the cogni-
tive plausibility of interactive system specifications,” Formal Aspects of
Computing, vol. 12, no. 4, pp. 237–259, 2000.

[27] ——, “The role of formal proof in modelling interactive behaviour,”
in Proceedings of the 5th International Eurographics Workshop on the
Design, Specification and Verification of Interactive Systems. Berlin:
Springer, 1998, pp. 87–101.

[28] P. Curzon and A. Blandford, “From a formal user model to design rules,”
in Proceedings of the 9th International Workshop on Interactive Systems.
Design, Specification, and Verification. London: Springer, 2002, pp. 1–
15.

[29] ——, “Formally justifying user-centered design rules: A case study
on post-completion errors,” in Proceedings of the 4th International
Conference on Integrated Formal Methods. Berlin: Springer, 2004,
pp. 461–480.

[30] P. Curzon, R. Rukšėnas, and A. Blandford, “An approach to formal ver-
ification of humancomputer interaction,” Formal Aspects of Computing,
vol. 19, no. 4, pp. 513–550, 2007.

[31] R. Rukšėnas, P. Curzon, J. Back, and A. Blandford, “Formal modelling
of cognitive interpretation,” in Proceedings of the 13th International
Workshop on the Design, Specification, and Verification of Interactive
Systems. London: Springer, 2007, pp. 123–136.

[32] R. Rukšėnas, J. Back, P. Curzon, and A. Blandford, “Formal modelling
of salience and cognitive load,” in Proceedings of the 2nd International
Workshop on Formal Methods for Interactive Systems. Amsterdam:
Elsevier Science Publishers, 2008, pp. 57–75.

[33] R. Rukšenas, J. Back, P. Curzon, and A. Blandford, “Verification-guided
modelling of salience and cognitive load,” Formal Aspects of Computing,
vol. 21, no. 6, pp. 541–569, 2009.

[34] T. A. Basuki, A. Cerone, A. Griesmayer, and R. Schlatte, “Model-
checking user behaviour using interacting components,” Formal Aspects
of Computing, pp. 1–18, 2009.

[35] B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. London:
Taylor and Francis, 1992.

[36] J. M. Schraagen, S. F. Chipman, and V. L. Shalin, Cognitive Task
Analysis. Philadelphia: Lawrence Erlbaum Associates, Inc., 2000.

[37] S. Basnyat, P. Palanque, B. Schupp, and P. Wright, “Formal socio-
technical barrier modelling for safety-critical interactive systems design,”
Safety Science, vol. 45, no. 5, pp. 545–565, 2007.

[38] S. Basnyat, P. Palanque, R. Bernhaupt, and E. Poupart, “Formal mod-
elling of incidents and accidents as a means for enriching training
material for satellite control operations,” in Proceedings of the Joint

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 14

ESREL 2008 and 17th SRA-Europe Conference. London: Taylor and
Francis Group, 2008, pp. CD–ROM.

[39] J. C. Campos, “Using task knowledge to guide interactor specifications
analysis,” in In Proceedings of the 10th International Workshop on
Interactive Systems. Design, Specification, and Verification. Berlin:
Springer, 2003, pp. 171–186.

[40] Y. Aı̈t-Ameur, M. Baron, and P. Girard, “Formal validation of HCI
user tasks,” in Proceedings of the International Conference on Software
Engineering Research and Practice. Las Vegas: CSREA Press, 2003,
pp. 732–738.

[41] Y. Aı̈t-Ameur and M. Baron, “Formal and experimental validation
approaches in HCI systems design based on a shared event B model,”
International Journal on Software Tools for Technology Transfer, vol. 8,
no. 6, pp. 547–563, 2006.

[42] E. J. Bass, M. L. Bolton, K. Feigh, D. Griffith, E. Gunter, W. Man-
sky, and J. Rushby, “Toward a multi-method approach to formalizing
human-automation interaction and human-human communications,” in
Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics. Piscataway: IEEE, 2011, pp. 1817–1824.

[43] M. L. Bolton and E. J. Bass, “Formally verifying human-automation
interaction as part of a system model: Limitations and tradeoffs,”
Innovations in Systems and Software Engineering: A NASA Journal,
vol. 6, no. 3, pp. 219–231, 2010.

[44] ——, “A method for the formal verification of human interactive
systems,” in Proceedings of the 53rd Annual Meeting of the Human
Factors and Ergonomics Society. Santa Monica: HFES, 2009, pp.
764–768.

[45] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach
to model checking human-automation interaction using task-analytic
models,” IEEE Transactions on Systems, Man, and Cybernetics, Part
A, vol. 41, no. 5, pp. 961–976, 2011.

[46] M. L. Bolton and E. J. Bass, “Using model checking to explore checklist-
guided pilot behavior,” International Journal of Aviation Psychology,
vol. 22, no. 4, pp. 343–366, 2012.

[47] R. E. Fields, “Analysis of erroneous actions in the design of critical
systems,” Ph.D. dissertation, University of York, York, 2001.

[48] F. Paternò, C. Santoro, and S. Tahmassebi, “Formal model for coopera-
tive tasks: Concepts and an application for en-route air traffic control,”
in Proceedings of the 5th International Conference on the Design,
Specification, and Verification of Interactive Systems. Vienna: Springer,
1998, pp. 71–86.

[49] F. Paternò and C. Santoro, “Integrating model checking and HCI tools to
help designers verify user interface properties,” in Proceedings of the 7th
International Workshop on the Design, Specification, and Verification of
Interactive Systems. Berlin: Springer, 2001, pp. 135–150.

[50] P. Palanque, R. Bastide, and V. Senges, “Validating interactive system
design through the verification of formal task and system models,” in
Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineer-
ing for Human-Computer Interaction. London: Chapman and Hall,
Ltd., 1996, pp. 189–212.

[51] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Generating phe-
notypical erroneous human behavior to evaluate human-automation
interaction using model checking,” International Journal of Human-
Computer Studies, vol. 70, no. 11, pp. 888–906, 2012.

[52] P. M. Jones, “Human error and its amelioration,” in Handbook of systems
engineering and management. Malden: Wiley, 1997, pp. 687–702.

[53] G. Baxter and E. Bass, “Human error revisited: Some lessons for
situation awareness,” in Proceedings of the Fourth Annual Symposium
on Human Interaction with Complex Systems. Piscataway: IEEE, 1998,
pp. 81–87.

[54] J. Reason, Human Error. New York: Cambridge University Press, 1990.
[55] F. Paternò, C. Mancini, and S. Meniconi, “Concurtasktrees: A dia-

grammatic notation for specifying task models,” in Proceedings of the
IFIP TC13 International Conference on Human-Computer Interaction.
London: Chapman and Hall, Ltd., 1997, pp. 362–369.

[56] C. M. Mitchell and R. A. Miller, “A discrete control model of operator
function: A methodology for information display design,” IEEE Transac-
tions on Systems Man Cybernetics Part A: Systems and Humans, vol. 16,
no. 3, pp. 343–357, 1986.

[57] E. J. Bass, S. T. Ernst-Fortin, R. L. Small, and J. Hogans, “Architecture
and development environment of a knowledge-based monitor that facil-
itate incremental knowledge-base development,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 34,
no. 4, pp. 441–449, 2004.

[58] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal methods
to predict human error and system failures,” in Proceedings of the 2nd
International Conference on Applied Human Factors and Ergonomics.

Las Vegas: Applied Human Factors and Ergonomics International, 2008,
pp. CD–ROM.

[59] F. Paternò and C. Santoro, “Preventing user errors by systematic analysis
of deviations from the system task model,” International Journal of
Human-Computer Studies, vol. 56, no. 2, pp. 225–245, 2002.

[60] R. Bastide and S. Basnyat, “Error patterns: Systematic investigation of
deviations in task models,” in Task Models and Diagrams for Users
Interface Design. Berlin: Springer, 2007, pp. 109–121.

[61] S. Basnyat and P. Palanque, “A task pattern approach to incorporate user
deviation in task models,” in Proceedings of the first ADVISES Young
Researchers Workshop. Roskilde: Risφ National Laboratory, 2005, pp.
10–19.

[62] P. Palanque and S. Basnyat, “Task patterns for taking into account
in an efficient and systematic way both standard and erroneous user
behaviours,” in IFIP 13.5 Working Conference on Human Error, Safety
and Systems Development. Norwell: Kluwer Academic Publisher, 2004,
pp. 109–130.

[63] D. A. Thurman, A. R. Chappell, and C. M. Mitchell, “An enhanced
architecture for OFMspert: A domain-independent system for intent
inferencing,” in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics. Piscataway: IEEE, 1998, pp. 955–960.

[64] M. L. Bolton and E. J. Bass, “Using task analytic models to visualize
model checker counterexamples,” in Proceedings of the 2010 IEEE In-
ternational Conference on Systems, Man, and Cybernetics. Piscataway:
IEEE, 2010, pp. 2069–2074.

[65] L. De Moura, S. Owre, and N. Shankar, “The SAL language manual,”
Computer Science Laboratory, SRI International, Menlo Park, Tech.
Rep. CSL-01-01, 2003.

[66] M. L. Bolton, “Automatic validation and failure diagnosis of human-
device interfaces using task analytic models and model checking,”
Computational and Mathematical Organization Theory, pp. 1–25, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s10588-012-9138-6

[67] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science, J. van Leeuwen, A. R. Meyer, M. Nivat, M. Paterson,
and D. Perrin, Eds. Cambridge: MIT Press, 1990, ch. 16, pp. 995–1072.

Matthew L. Bolton (S’05-M’10) received the B.S.
in computer science in 2003, the M.S. in systems
engineering in 2006, and the Ph.D. in systems en-
gineering in 2010 from the University of Virginia,
Charlottesville, USA.

He is an Assistant Professor of industrial engineer-
ing in the Department of Mechanical and Industrial
Engineering at the University of Illinois at Chicago.
His research is primarily focused on the development
of tools and techniques for using human perfor-
mance modeling, task analysis, and formal methods

to analyze, design, and evaluate complex, safety-critical systems.

Ellen J. Bass (M’98-SM’03) received the B.S.
Eng. and B.S. Econ. degrees from the University
of Pennsylvania, Philadelphia, the M.S. degree from
the State University of New York at Binghamton,
and the Ph.D. degree from the Georgia Institute of
Technology, Atlanta.

She is a Professor in the College of Information
Science and Technology and the College of Nursing
and Health Professions at Drexel University. She
has 30 years of industry and research experience in
human-centered systems engineering in the domains

of air transportation, meteorology, healthcare and informatics. The focus
of her research is to develop theories of human performance, quantitative
modeling methodologies, and associated experimental designs that can be
used to evaluate human-automation interaction in the context of total system
performance. The outcomes of the research can be used in the systems
engineering process: to inform system requirements, procedures, display
designs and training interventions and to support system evaluation.

