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Abstract

Failures in complex, safety-critical systems often arise as a result of interactions between

the elements of the system, including its human operator. Two sub-disciplines, human-

automation interaction (from human factors engineering) and formal methods (from com-

puter science) have attempted to address these types of problems from two different di-

rections. Human-automation interaction researchers use tools such as task analysis and

models of erroneous human behavior to investigate the way human operators interact with

automation in order to design systems that facilitate safe, human work. Formal methods

researchers use well defined mathematical modeling and proof techniques to verify that

system models (often with concurrent interacting processes) do or do not exhibit desired

properties. Model checking is a particular type of formal verification which proves that

a system does or does not exhibit a specified property by searching for a violation in a

system’s entire statespace. It returns a counterexample (execution trace) illustrating any

violation it discovers.

This work shows that it is possible to automatically predict the contribution of both

normative and automatically generated erroneous human behavior to failures in human-

automation interactive systems using formal verification. We have developed a computa-

tional method which utilizes task analytic models, formal system modeling, model check-

ing, and taxonomies of erroneous human behavior to automatically incorporate erroneous

human behavior patterns into normative task models, allowing analysts to formally verify
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system safety properties with both normative and erroneous human behavior. As part of

this research, we developed a novel human task behavior modeling language (called the

Enhanced Operator Function Model (EOFM)) with a defined formal semantics and a vi-

sual notation for graphical display. This allows normative human behavior to be modeled

as a hierarchy of activities and actions, where actions can be sequenced using a superset of

the temporal relationships supported by similar modeling paradigms. We have also devel-

oped two erroneous human behavior generation methods which allow instantiated EOFMs

to be systematically manipulated in order to encompass erroneous human behavior consis-

tent with Hollangel’s phenotypes of erroneous human behavior and Reason’s attentional

slips. In order to allow instantiated EOFMs (either normative or erroneous) to be formally

verifiable, we have developed a translator which converts instantiated EOFMs into the for-

mal modeling language of the Symbolic Analysis Laboratory, thus allowing task behavior

models to be formally verified. We have also developed an architectural framework for

formally modeling human-automation interactive systems which coordinates the behavior

of formal models of (translated) human task behavior, human mission goals, device au-

tomation, the human-device interface, and the operation environment. Finally, we have

developed a novel visualization which uses the architectural framework and the EOFM’s

visual notation to convey the information contained in a model checker counterexample.

We describe the motivation and design for each element of our method. We provide

validation testing results which confirm that our method is behaving as we intended. We

present benchmarks that show how our method scales. We also demonstrate the different

ways in which our method can be used to evaluate human-automation interactive systems

with several realistic applications: a patient controlled analgesia pump, an automobile with

a cruise control, a radiation therapy machine, and an aircraft on approach. These appli-

cations are used to show how the method can be adapted to verify systems that require

different elements of our architectural framework. They are also used to demonstrate how



vi

different instantiations of architectural elements can be incorporated into application sys-

tem models to facilitate different analyses, the evaluation of different designs, and the

exploration of design interventions for correcting problems discovered using our method.
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Chapter 1

Human-automation Interaction

and Formal Verification∗

Complex, safety-critical systems involve the interaction of automated devices and goal-

oriented human operators in a dynamic environment. Failures in such systems are often

not due to a single component, but rather elements of the system (including human oper-

ators) interacting in unexpected ways. The human-automation interaction is particularly

important to the operation of safety critical systems as poor human-automation interaction

has contributed to failures in complex systems in a number of domains including aviation

[12, 80, 105], process control [146], and medicine [125]. For example human-automation

interaction has played an important role in the crashes of American Airlines Flight 965

[126] and China Air 140 [168]; the grounding of the Royal Majesty cruise ship [144]; the

disaster at Three Mile Island [158]; and the death of medical patients with the Therac-25

[130].

Human factors researchers have developed methods for characterizing, analyzing, and

experimenting with human-automation interaction in order to help make automated sys-

tems safe for human work. Computer science researchers have developed mathematically

∗This chapter is derived from [32]

1



Chapter 1. Human-automation Interaction and Formal Verification 2

robust modeling languages, algorithms, and methods for finding computer hardware or

software design flaws, even those resulting from the interaction of concurrent processes.

Formal methods encompass one such set of technologies. Both human-automation in-

teraction and formal methods are discussed next to set the stage for a discussion of the

intersection of these two fields.

1.0.1 Human-automation Interaction

The field of human-automation interaction is concerned with the design of automated sys-

tems to facilitate safe, human work [171]. Problems with human-automation interaction

can occur for a number of different reasons. Automation can be brittle [176] in that the

device automation and/or the human-device interface does not work correctly, does not

perform as efficiently, or does not behave as intended under certain environmental or op-

erational conditions (as was the case in the crash Air France Flight 296 [50]). These is-

sues arise because operational conditions or device behavior were not anticipated by the

designer; the device automation design was simplified due to schedule, economic, or tech-

nological limitations; or the device automation and/or human-device interface were not

implemented in accordance with the design [176].

Human-device interfaces may not provide enough feedback about the state of the de-

vice automation [143] and/or the human operator may not properly understand how the

automation works [165]. This mode confusion, where the human operator is unable to

keep track of the state or mode of the device automation, is dangerous because it can re-

sult in automation surprise, where the operator’s situation awareness is disrupted by the

device automation behaving in an unexpected way [151, 165]. Further, mode confusion

can lead to the human operator either performing inappropriate actions (errors of commis-

sion) or omitting necessary ones (errors of omission) [165]. Thus, operators of complex,
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automated systems must work to maintain mode awareness in order to avoid such errors

[71]: a task that can be very difficult for human operators given the large number of mode

combinations, variety of behaviors a given mode can exhibit, and the range and quantity of

information displayed in some systems [165].

As systems become more automated, this can change the tasks of the human operator:

where he supervises the system rather than control it directly. In such situations, human

operators may not have been trained in the tasks necessary to administer the automation

[86]. They may fixate on a specific task while neglecting others, such as passively mon-

itoring the system [11, 141, 166, 170, 183]. They may also alter their task behavior such

that they become too dependent on automation (a condition known as automation bias) and

therefore acquire and evaluate system information less vigilantly [140, 152].

Issues can also arise as a result of incompatibilities between the behavior of the device

(both its automation and human-device interface) and the cognition of the human operator.

Many erroneous human behaviors have predictable cognitive causes [159] which can re-

late to human working memory, human knowledge, human perception, or human physical

coordination. It is possible to prevent some human errors through changes to the behavior

of the device’s automation and human-device interface [22, 45, 61, 62].

Thus, problems with human-automation interaction can arise as a result of interactions

between the different elements that make up the system: the goals, cognition, and task

behaviors of the human operator; the automated system and its human-device interface;

and the constraints imposed by the operational environment. Researchers have addressed

these issues from different directions. Cognitive work analysis is concerned with identify-

ing constraints in the operational environment that shape the mission goals of the human

operator [179]; cognitive task analysis is concerned with describing how human operators

normatively and descriptively perform goal oriented tasks when interacting with an auto-

mated system [124, 167]; and modeling and analytic frameworks use this information to
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make predictions about human performance [123], look for discrepancies between human

mental models and device automation behavior [69], and design human-device interfaces

that reveal accurate device and environmental information while requiring reduced human

operator cognitive effort to interpret [179].

1.0.2 Formal Methods

Formal methods are a set of “well defined” mathematical languages and techniques for

the modeling, specification, and verification of systems [182]. Systems (often computer

software or hardware) are modeled using mathematically based languages, specifications

are formulated to describe desirable system properties, and a verification process math-

ematically proves whether or not the model satisfies the specification. Formal methods

have been used successfully in a number of applications, especially computer hardware

and software. While there are a number of different ways in which models can be both

manually and automatically verified, two particular computer software technologies, auto-

mated theorem provers and model checkers, have proven useful for the formal verification

of large complex systems.

Theorem proving is a deductive technique that closely resembles the traditional pencil-

and-paper proof activity: from a set of axioms, using a set inference rules, one builds

theories and proves theorems to verify correctness claims about the system under investi-

gation, with the help of a proof assistant program. While theorem proving cannot be fully

automated in practice for the most expressive logics (such as higher order logics), some

smaller fragments are more amenable to mechanized proofs. Satisfiability (SAT) solvers

[64] and satisfiability modulo theories (SMT) solvers [66] are equipped with powerful de-

cision procedures able to solve very complex problems from areas such a propositional

logic and linear algebra.
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Model checking is a highly-automated approach used to verify that a formal model of

a system satisfies a set of desired properties (a specification) [56]. A formal model de-

scribes a system as a set of variables and transitions between variable states. Specification

properties are usually represented in a temporal logic (discussed below) using the formal

system model variables to construct propositions. Verification is performed automatically

by exhaustively searching a system’s state space in order to determine if these propositions

hold. If there is a violation, an execution trace called a counterexample is produced. This

counterexample depicts a model state (the value of the model’s variables) corresponding to

a specification violation along with a list of the incremental model states leading up to the

violation.

A temporal logic is a set of rules and symbols that allows time to be expressed and

reasoned about as part of a logical framework: where time is represented by a sequence

of states [79]. For model checking purposes, a temporal logic formula is composed of

boolean propositions about the model variables and modal operators. Modal operators

usually specify the temporal relationships between propositions. The two most common

temporal logics (Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)) make

use of the modal operators described in Table 1.1. There are a variety of different specifi-

cation languages and/or modal logics of which these operators represent the most common

concepts. See Emerson [79] for more detail.

1.0.3 Analysis Types to Date

Because both human factors and formal methods are concerned with the engineering of

robust systems that will not fail under realistic operating conditions, researchers continue

to merge techniques from the two fields in order to use the powerful verification techniques

offered by formal methods to analyze human-automation interaction. This chapter next
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Table 1.1: Frequently used temporal logic operators.

Operator Type Name Usage Interpretation

Path Quantifier All A ψ Starting from the current state, all future paths satisfy ψ.
Exists E ψ Starting from the current state, there is at least one path that

satisfies ψ.
Temporal Operator NeXt X ψ ψ is true in the next state of a given path.

Future F ψ ψ is eventually true in some future state of a given path.
Global G ψ ψ will always be true in a given path.
Until φ U ψ φ will be true until ψ is true for a given path.

Note. In all of the above, a path is taken to mean a valid temporally ordered sequence of states for a given
model. φ and ψ are two propositions about either a state or path in the model that can evaluate to either true
or false.

reviews the research conducted in the intersection of these two areas and addresses how

formal verification can be used to inform analyses of human-automation interaction. This

work can be categorized based on the type of analyses the formal methods have been used

to support. These are: formal verification of human-device interfaces; the detection and

prevention of mode confusion and automation surprise; formal verification of human task

and workflow as part of a system model; and formal verification of human cognition as

part of a system model.

1.1 Formal Verification of Human-device Interfaces

Some work has focused on how to model human-device interfaces using formal constructs

so that their correctness can be evaluated using formal verification. While these analyses

do not consider human models as part of the process, they provide guarantees that the

human-device interface will behave in the way it was intended and/or in ways that support

safe human-automation interaction.

Human-device interfaces are formally modeled as finite state transition systems [153].

There are many different ways in which this has been accomplished. Statecharts are for-
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mal transition systems that support hierarchies, parallelism, and communication that have

been used model interfaces [68]. Interactors are object-oriented interface building blocks

that have an internal state and communicate by generating and responding to events [93].

Physiograms are used exclusively for modeling physical device interfaces [74]. Table and

matrix specification paradigms like the Operational Procedure Model (OPM) [173] and

ADEPT [172] define interfaces based on their input-output behavior. Abstractions have

been developed for formally modeling human computer interfaces (HCIs) defined in soft-

ware development environments such as Visual Basic and Java Swing [76, 77]. Despite the

diversity of modeling techniques, all generally treat the interface as having a specific state

(a specific valuation of variable values) that can transition to different states based on hu-

man operator actions, device automation, and/or environmental factors. Some paradigms

(such as the interactor) specifically model the rendering of information on the interface

display and thus explicitly model what information is available to the operator in any given

interface state.

Generic temporal logic property patterns have been developed for specifying desirable

properties of human-device interfaces. Campos and Harrison [46] identified four related

categories of properties that could be expressed in temporal logic and thus formally veri-

fied for human-device interface models: reachability, visibility, task related, and reliabil-

ity. Reachability properties make assertions about the ability of the interface to eventually

reach a particular state. Visibility properties assert that visual feedback will eventually re-

sult from an action. Task related properties describe human behaviors that the interface is

expected to support: usually the ability to achieve a particular goal represented by a state or

set of states in the interface model. Reliability properties describe desirable interface prop-

erties that support safe human-automation interaction. Within each of these categories,

specific patterns have been identified for checking specific properties (see Table 1.2 for

some examples).
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Table 1.2: Formally verifiable interface specification properties.

Category Property Informal Description

Reachability State inevitability It will always be true that a specific interface state will
eventually be reached [2].

Weak reachability A specific action will always result in a change in the in-
terface state [154].

Strong reachability A specific action will allow for the possibility of a future
change in interface state [154].

Visibility Feedback A specific action will always result in a change in interface
state that is available to the human operator [48, 154].

Continuous feedback All human operator actions must produce a change in in-
terface state that is available to the human operator and
must do so before any additional actions can be performed
[154].

Task related Weak task completeness There is at least one action sequence from a specific initial
interface state that will eventually achieve a specific goal
[2, 154].

Strong task completeness For any given possible sequences of actions from a specific
initial interface state, there is a set of additional actions
which will eventually achieve a specific goal [2].

Weak task connectedness From any interface state, there is at least one action se-
quence that will achieve a specific goal [2].

Strong task connectedness From any interface state, there is at least one action se-
quence that will eventually achieve a specific goal with a
specific final action [2].

Undo / Reversibility The effects of a specific action can be undone with a sin-
gle additional action or eventually undone with at least one
sequence of actions [2, 48, 154].

Reliability Behavioral consistency A specific action will always result in a change in interface
state that adheres to a specific characterization [48].

Rule set connectedness There is at least one situation in which the interface sup-
ports the ability to perform a specific action through the
interface (such as clicking a button) [2].

Deadlock freedom The interface will never reach a state that will never accept
human operator input [2].

State floatability There is a sequence of actions that can cause the interface
to go from one specific interface state to another without
ever reaching an undesirable state [2].

Note. In the above, a goal describes a specific interface state or a predicate representing a set of interface
states. Temporal logic patterns for formally specifying each of these properties can be found in the cited
literature.
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This work has been extended to heuristically assess usability using formal verification

or the output of formal verifications. Hussey et al. [106] identified four usability properties

(from [135]) that could be evaluated in this way: task efficiency, reuse, robustness, and

flexibility. Task efficiency describes how efficiently a human operator can perform a task

as measured by the number of actions taken to reach a goal state (information that can by

extracted from a counterexample). An interface that supports reuse will allow human oper-

ators to achieve multiple goals using similar behaviors. This has been formally measured

by comparing execution traces that achieve different goals and looking for shared action se-

quences between them. An interface that is robust will help prevent human operators from

making errors and will allow them to recover should one occur. This has been evaluated

by formally verifying properties such as deadlock freedom, state floatability, and undo/re-

versibility (Table 1.2). A flexible system allows the human operator to achieve goals in

different ways, formally measured by the number of alternate action sequences the human

operator can use to achieve a goal.

Kamel and Aït-Ameur [117] showed how four usability properties (originally from

[59]) specific to multimodal human-device interfaces could be evaluated formally: com-

plementarity, assignation, redundancy, and equivalence. Complementarity asserts that the

human operator will be able to reach a given state from a specific initial state using dif-

ferent modalities. A modality can be considered assigned to a specific state (assignation)

if it is the only modality capable of reaching that interface state. Two or more modalities

are equivalent if both allow the interface to reach a specific state. Two or more modalities

are redundant if they are equivalent and can be used in parallel to reach a specific state.

Kamel et al. [118] also provided temporal logic patterns for verifying the “adaptability” of

a multimodal interface: for a give initial state (which may encompass a condition where a

particular modality is not available), the human operator will always be able to eventually

find a way to reach a goal state.
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1.2 Formal Verification and Mode Confusion

Researchers have investigated how formal verification can predict and help prevent mode

confusion and automation surprise.

1.2.1 Using Formal Verification to Identify Mode Confusion

There are several general approaches for using formal verification to detect potential mode

confusion. The first explicitly models the device automation’s behavior along with the

human operator’s abstracted mental model of how that automation works. The two mod-

els are then checked (either manually or using model checking) to find inconsistencies

between the two models: when the human operator’s mental model state does not match

the automation model state. Degani, Heymann, Oishi and colleagues [67, 68, 147, 148]

showed how inconsistencies could be algorithmically discovered between state chart rep-

resentations of the human operator’s mental model and device automation in a variety of

applications including an aircraft autopilot [68], a cruise control system [67], and an air-

craft auto-land system [147]. Sherry et al. [174] used matrix-based representations of both

the device automation’s input-output behavior and the human operator’s mental model of

that input-output behavior and showed how they could be algorithmically compared to find

inconsistencies for an aircraft’s mode control panel. These types of analyses have be per-

formed automatically using model checkers. Rushby et al. [163, 164] used Murφ [73] and

Buth [41] used FDR2 [85] to find known mode issues with the MD-88 autopilot.

Another approach assumes a formal model of the human-device interface and the de-

vice automation. These models are systematically searched for display conditions and

automation behaviors hypothesized to cause mode confusion. Leveson et al. [131] showed

how system requirements modeled using state machine languages could be systematically

examined for such properties. They illustrated their method with a robot control system.
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This process has been automated using a variety of model checker and automated theo-

rem provers [42, 116, 134] to find potential mode confusion problems in a flight guidance

system. Campos and Harrison [47] showed how human operator expectations about the be-

havior of a system (an aircraft mode control panel) could be encoded in temporal logic, and

violations of those expectations could be found using the Symbolic Model Verifier (SMV)

[138] model checker for a formal system model consisting of a human-device interface

(written using interactors) and a device automation model.

A third approach encodes the human operator’s knowledge about how he accom-

plishes goals with the system through the human-device interface. This is accompanied

by a human-device interface and device automation model. All are checked for condi-

tions where the interface will not allow the human-operator to accomplish any given goal.

Wheeler [181] illustrated how such a method could be performed manually for an alarm

clock example. Bredereke and Lankenau[36, 37] automated this type of evaluation using

Communicating Sequential Processes (CSP) [99] and the FDR2 model checker [85]. Do-

ing this, they were able to find a number of potential mode confusion issues with an electric

wheel chair. Javaux [108] showed how implicit learning could be used to model how the

knowledge represented in a human operator’s mental model (modeled formally) degrades

over time due to a lack of repeated exposure to all of the automated device’s modes. Javaux

showed how this can lead to mental models that facilitate mode confusion and automation

surprise in an autopilot system.

1.2.2 Generating Human-device Interfaces that Prevent Mode

Confusion

Researchers have proposed ways of generating human-device interfaces that do not exhibit

properties associated with mode confusion. These methods assume that the human opera-
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tors must have the information necessary to maintain a correct mental model through the

human-device interface. Thus, a mental model representing an abstraction of the system’s

device automation that does not facilitate mode confusion becomes a specification for the

information content and behavior of the human-device interface. Crow et al. [60] discussed

how mental models constructed through results from questionnaires given to human opera-

tors can be progressively abstracted and/or refined and checked with a model checker until

a “safe minimal mental model” is found: the least complex mental model that does not

facilitate mode confusion. Heymann and Degani [97] proposed an algorithmic means of

achieving such a model. First, a state chart representation of the system’s automation is

constructed. Then, each state is assigned to one of several specification classes: aggregate

states that the analyst hypothesizes the human operator must distinguish between. This

model is then systematically reduced by combining states within specification classes in

a way that avoids inconsistencies indicative of mode confusion. Combéfis and Pecheur

[57] showed how such a process could be performed automatically without the need for

specification classes.

1.3 Formal Verification and Task Analytic Models

Task analytic models are generated as part of a task analysis and can be used to model

human task behavior as sequences of activities with respect to the fulfillment of goals.

Task analytic models do not encompass sophisticated models of human cognition, and

thus are not concerned with modeling cognitive concepts such as human attention and the

mechanisms involved in human long- and short-term memory. They can, however, model

abstractions of these in order to model human behavior as a simple input-output system

where inputs can come from the human mission, the operation environment, or human

device interfaces; and outputs are human actions.
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These models have been used in the evaluation of single and multiple operator systems

for a variety of purposes including intent inferencing [40], usability evaluation [110, 129],

intelligent tutoring [53], timing analysis of human tasks [110], alerting systems [16], and

controlling agents in simulations [87]. Because of their widespread use, researchers have

attempted to use formal methods to verify that the human behavior encompassed by task

analytic models will always accomplish the desired goals and/or avoid dangerous system

operating conditions. Extensions of this work allow erroneous human behavior to be in-

corporated into task models so that its impact can be evaluated as part of the formal verifi-

cation.

1.3.1 Formal Verification with Task Analytic Models of Normative

Human Behavior

Some researchers have modeled human tasks in the native formal notation utilized by the

analysis package they are employing. Degani et al. [70] incorporated human task mod-

els into state chart models of a human-device interface and used them to explore human

operator behavior during an irregular engine-start on an aircraft. Basnyat et al. [14, 15]

used a Petri net-based formalism called Interactive Cooperative Objects (ICO) to model

human task behavior as part of larger system models (a waste fuel delivery plant and a

satellite control system) to verify properties critical to the system’s safe operation. Reso-

lutions to discovered problems came in the form of barrier systems to monitor the system

and prevent it from transitioning to unsafe states [14] or through modification to operator

training materials [15]. Gunter et al. [89] encoded patterns of human task behavior into

CSP concurrently with system and environment models (also encoded in CSP) to verify

safety properties of a portable Automated Identification and Data Capture (AIDC) device

used to identify and record data about patients and equipment in the hospital. They showed
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that a "protection envelope" could be incorporated into the system’s automation to ensure

that the modeled normative human task behavior would never result in situations where

incorrect or corrupted data could be entered into the AIDC device.

To facilitate model development and analyses that make use of task analytic models,

researchers have used task analytic modeling notations to model human tasks which are

then translated into the needed formalism. Palanque et al. [150] showed how task models

written in User Action Notation (UAN) [94] could be translated into ICO and used to

verify task behaviors for interacting with an automated teller machine (ATM). Fields [82]

developed a custom notation for modeling hierarchies of activities in human tasks along

with the temporal relationships between them. Aït-Ameur et al. [3, 4] and Paternò et

al. [155, 157] have translated ConcurTaskTrees [156] into formal models and performed

formal verification with larger system models. Aït-Ameur’s work used a theory prover

(called event B) to verifying human interaction with a software dialog box for converting

currencies. Paternò et al. translated CTT models of multiple human operators managing

runway traffic into LOTOS [78] and then into a formal model where it could be checked as

part of a system model encompassing the behavior of the interface, its automation, and the

environment being managed.

1.3.2 Formal Verification with Models of Erroneous Human Behavior

Rather than look for specification violations that occur with normative human behavior

models, Fields [82], [17], and Bolton and Bass et al. [25, 34] have investigated how pat-

terns of erroneous behavior (based on the phenotypes of erroneous actions [100]) can be

manually incorporated into formal task analytic models. These models could then be inte-

grated with the analyses described above in order to use formal verification to investigate

whether these errors impact the fulfillment of specification properties.
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1.4 Formal Verification and Cognitive Models

Instead of modeling human tasks, researchers have modeled human cognition as part of

a formal system model for use in formal verification. The goal is to model the cognitive

process the operator employs to decide what actions he will use to interact with the system.

These methods let the analyst to formally verify that the system will always allow the

operator to achieve his goals with a set of cognitive behaviors. These methods can identify

situations where the human operator fails to achieve his desired goals or drives the system

into dangerous operating conditions.

Lindsay and colleagues [51, 128, 132] have investigated the use of the Operator Choice

Model (OCM) in such an analysis. The OCM describes the process human operators use

to scan or search human-device interfaces for information, determine if that information

is worthy of additional interest, decide how to proceed in light of the assessed informa-

tion, and execute a plan of actions. This method was used to model the human operator’s

cognitive process for identifying and attempting to resolve conflicts in a simple air traffic

control task. Patterns of human behavior were encoded into temporal logic and a model

checker was used to check that these behaviors were cognitively valid (were compatible

with their cognitive model) and would not result in the operator failing to resolve a conflict

or accidentally creating a conflict between aircraft.

Blandford, Curzon, and colleagues have focused on creating Programmable User Mod-

els (PUMs) [184] that capture the knowledge and cognitively plausible behavior that an

operator might use when interacting with an automated system and implementing them as

part of a formal system model [21, 23, 44]. PUMs encompass the goals the operator wishes

to achieve with the system, his beliefs and knowledge about the operation of the system, the

information available to him from the human-device interface, and the actions he can use

to interact with the system. When executing, the human operator model must use knowl-
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edge about the system and the currently available information to select actions to fulfill its

goals. Such models have been used with human initiated systems (where system behavior

is solely driven by its human operator) [23] and evaluated using formal verification with

both theorem provers [43] and model checkers [160].

These formal PUM analyses have been used to obtain different insights about systems.

Butterworth et al. [43] showed how specification properties related to system safety, live-

ness, and usability could be investigated using PUMs and formal verification for a simple

web browsing task. Butterworth et al. [43] used PUMs and formal verification with the

same application to identify the type of knowledge a human operator requires in order to

successfully fulfill his goals. PUMs and formal verification have been used to identify cog-

nitively plausible errors based on a human operator model interacting with an automated

system. These include repetition of actions, omission of actions, committing actions too

early, replacing one action with another, performing one or more actions out of order, and

performing an unrelated action [61]. Means of identifying post-completion errors (special

types of omission errors in which the operator forgets to perform actions that occur after the

completion of a high level goal) have also been identified and illustrated using a model of

a vending machine [62]. Design rules were applied to address these errors, and their effec-

tiveness was evaluated using the same formal verification process [61, 62]. Work has also

investigated using PUMs to model different classes of human operator (expert vs. novice)

[63] in order to investigate when different types of operators may perform different errors

when interacting with an ATM. Keystroke-level timing analysis (similar to that used by

KLM-GOMS [110]) have also been added into their framework and used to evaluate tim-

ing performance of a human operator interacting with the ATM [162]. PUM models have

also been extended so that formal verification can investigate how humans might make er-

rors due to issues related to salience, cognitive load, and cognitive interpretation of spatial

cues [160, 161], illustrated with the same ATM model. Basuki et al. [19] used heuristics
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for modeling human operator habituation, impatience, and carefulness and showed how

they could be used to find human errors for interacting with the vending machine model

from Curzon and Blandford [62].

1.5 Limitations of Current Techniques and Technologies

1.5.1 Limitations of Formal Verification

Despite its power, there are a number factors which limit what formal verification can do.

1.5.1.1 Limitations of Model Checking

One of the challenges facing model checking verification is the state explosion problem.

As the complexity of the modeled system increases, the memory and time required to store

the combinatorially expanding state space can easily exceed the available resources. One

way this has been addressed is through the development of extremely efficient means of

representing a system’s state space, referred to as symbolic model checking [39]. Other

techniques allow select portions of the state space to be searched without compromising

the accuracy of the verification. The best known of these depend on partial order reduction

[103], symmetry [88] and abstraction techniques such as abstract interpretation [58] and

counterexample-guided abstraction refinement [55].

A second major limitation of model checking is the expressive power of its modeling

formalisms. Traditional model checking is applied to systems that can be modeled with

discrete variables. However, complex systems can have continuous quantities. While the

field of hybrid systems has been developed to address this issue [95], current techniques

can handle systems models with no more than a half-dozen continuous variables. With

respect to the modeling of time, discrete-state models can be augmented with a set of
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clocks [96]. While this technique can be used to model clock synchronization problems in

digital systems, only very simple models can be fully verified.

One of the most compelling outputs of a model checker is a counterexample: an ex-

ecution trace illustrating exactly how a specification was violated. In most analysis envi-

ronments this is a list of the model variables and the values they assume at each step in the

execution trace. This output can be cumbersome to interpret. There have been a few at-

tempts to remedy this problem. Traviando [119] uses message sequence charts to visualize

model checker counterexamples. Loer and Harrison [133] used a table to display coun-

terexample information, where changes in variable values were highlighted. A number of

animations and sequence diagrams have also been discussed [3, 133].

1.5.1.2 Limitations of Automated Theorem Proving

In principle, theorem proving does not suffer from the same limitations as model checking.

However, theorem proving is not a fully automated process: the analyst guides the proof

while exploiting automation to reuse routine proof techniques. The more expressive the

logic used to model and reason about the system, the less automation is possible. Thus,

theorem proving requires significant effort by highly trained experts who guide the verifi-

cation process. Further, because the proof process must be guided, theorem proving is less

likely to find emergent features that are not anticipated by the analyst.

1.5.1.3 Examples in the Literature

These limitations are reflected in the covered literature as the majority of the applications

of formal verification in human-automation interaction are very simple: franc to euro cur-

rency converters [3, 4], interface widgets [5, 38], automated teller machines [63, 149],

aircraft mode control panels [47, 68, 163, 174], and air conditioner programming inter-

faces [57] to name a few. Work by Bolton and Bass [27, 31] and Blandford et al. [23],
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who both attempted to representatively model more complex systems (such as a patient

controlled analgesia (PCA) pump and calender program respectively), ultimately resorted

to a series of model compromises and abstractions in order for the verification process to

be tractable. There have also been very few attempts at evaluating hybrid systems (see

[147] and [148]).

1.5.2 Tradeoffs Between Formal Human-automation Interaction

Verification Techniques

Each of these approaches has advantages and disadvantages. The human-device interface

verification and mode confusion work does not explicitly describe human operator behav-

ior (treating them as unbounded) and thus must be used to evaluate very simple and/or

heavily abstracted representations of device automation in order to avoid being limited by

the size of the system model. Because human behavior is not explicitly modeled, these

techniques can only be used to find system conditions theorized to be preconditions to

erroneous human behavior.

The cognitive modeling work avoids some of these limitations by bounding human

behavior based on models of cognition. By explicitly modeling the cognitive processes hu-

man operators use to interact with the system, formal verification can be used to find unsafe

system operating conditions, and predict when the system facilitates erroneous behavior.

By constraining the system around plausible human behavior, higher fidelity models can

be evaluated.

The task modeling work similarly constrains operator behavior. The task analytic mod-

els used in these analyses only describe the explicit human behavior (not the cognition).

Thus processes that use them can make use of more complex system models than those

used in the cognitive modeling techniques. However, any erroneous human behavior the
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analyst wants to consider must be manually incorporated into the task analytic models.

1.5.3 General Limitations of Formal Verification of Human-

automation Interaction

There are also several general limitations for the use of formal verification for evaluat-

ing the safe operation of human-automation interactive systems. Firstly, the task behavior

models used either rely on the formal modeling notation [14, 15, 70] or on notations not

common in the human factors literature [3, 4, 82, 155, 157] which do not support all of

the different ordinal and parallel relationships that can exists between actions in human

task behavior. Secondly, none of the existing work utilizes an architectural framework ca-

pable of allowing system models to be constructed around all of the human-automation

interaction concepts: the human task behavior, the human mission or goals, the device

automation, the human device interface, and the operational environment. Thus none of

the discussed analyses allow for easy interchange of different models of these elements in

order to perform multiple analyses while exploring a design. Thirdly, little of the discussed

literature addresses the computational limitations of the analysis techniques making it dif-

ficult for practitioners to determine the scalability of the analyses. Finally, all the work

discussed which incorporates erroneous human behavior requires either modeling cogni-

tion (which adds complexity) [51, 61, 62, 128, 132, 160, 161] or manual intervention to

apply erroneous behavior patterns to task analytic models (which may miss many potential

erroneous behaviors) [17, 82].

The remainder of this document discusses a research effort that addresses these issues.
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1.6 Research Objectives: A Method to Evaluate the Role

of Human-automation Interaction in System Failure

1.6.1 Operation Concept

This work is focused on extending the analyses that can be performed using formal ver-

ification and task analytic models. If an analyst is interested in evaluating how human

behavior may contribute to system failure (the violation of system safety properties) then

he will want to be able to evaluate realistic normative and erroneous human behavior in

light of varying goals or missions and different system operating conditions and behav-

iors. Further, he may wish to run multiple analyses in order to assess how different human

goals or behaviors from the human affect system safety. He may also wish to evaluate

the safety implications for different human-device interfaces, device automation designs,

or environments either to evaluate different designs, operating conditions, or to identify

potential interventions that can fix problems discovered during formal verification.

An infrastructure capable of supporting these analyses should have a number of fea-

tures. It should allow task analytic models of human behavior to be represented in a way

characteristic of existing task analytic modeling constructs in order to allow task analysis

experts (mostly human factors engineers) to implement these models. Task models should

be capable of supporting the temporal orderings and parallelism from existing task model-

ing paradigms. Task models should also have a formally defined semantics which would

ensure that a model’s meaning would be unambiguous and capable of being implemented

in a formal modeling notation.

The human task behavior model should be able to be integrated with a larger system

model encompassing other system components of interest to an analyst such as human op-

erator goals or missions, device automation behavior, the human-device interface, and the
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operational environment. Thus the task model should be capable of interfacing and coordi-

nating its behavior with the other system components. Because a human-device interface

is, by definition, the means by which a human operator can perform actions that impact the

system, the human-task behavior model should have information about the human-device

interface necessary for performing the task such as what actions the interface can receive

(such as button presses) and what information it provides.

Analyst may want to run multiple analyses using different task behavior models, human

missions, human device interfaces, device automation behaviors, or operational environ-

ments in order to evaluate different designs or to identify potential interventions that may

eliminate discovered problems. Thus the formal system model should facilitate the ability

to easily incorporate alternative configurations of any of these elements.

Because erroneous human behavior can occur in unexpected circumstances, the abil-

ity to generate erroneous human behavior for use in formal verifications is advantageous.

Thus, there should be a theoretically driven means of systematically altering the structure

or interpretation of task analytic models so that they would be capable of generating realis-

tic erroneous human behavior. This allows erroneous human behavior to be systematically

included in formal verifications with task behavior models without the need for low level

detailed cognitive models.

Task model constructs should be used to present formal verification results to analysts

so that they can be interpreted using the same representation in which the models were

developed.

Finally, because of the restrictions formal verification places on the complexity of sys-

tem models, analysts should have access to information which allows them to interpret how

task behavior modeling impacts system model complexity, and thus potentially limits what

can be formally verified.
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1.6.2 The Method

To address these issues we have developed a method (Figure 1.1) which extends the model

checking verification process. In it, a human analyst examines documentation and other

information gleaned from the evaluation of a target system. He creates models of the nor-

mative human task behavior using a novel task analytic representation. This task model

can then run through an automatic human erroneous behavior prediction process in order

to produce an erroneous human behavior model capable of generating erroneous human

behavior. The analyst can choose whether he wants to use the erroneous or normative

human behavior model in the remaining process. Our automated process, the task model

translator, then converts the chosen human task behavior model into a formal human task

model which can be incorporated into a larger formal system model. The analyst creates

(or uses existing) formal system models of the mission, human-device interface, device au-

tomation, and environment. He also creates temporal logic specifications representing the

system qualities he wants to be true. The formal system model and the system specification

are run through the model checker which produces a verification report. If a violation of a

specification is found, the report will contain a counterexample. The counterexample and

the original human task behavior model can then be processed by our automated visualizer

which illustrates the sequence of human behaviors and related system states that led to the

violation.

1.6.3 Contributions

This method is capable of both formally verifying and discovering problems in human-

automation interactive systems while incorporating models of both normative and gener-

ated erroneous human behavior. We demonstrate this with a number of different applica-

tions which show how the method can be adapted to verify systems that require different
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Figure 1.1: Method for predicting how both normative and erroneous human behavior may
contribute to system failure using model checking.

elements of our architectural framework, and how different instantiations of architectural

elements can be incorporated into application system models to facilitate different anal-

yses and the exploration of different designs. In several situations, we illustrate how the

architecture can be exploited in order to identify potential interventions that correct prob-

lems discovered with the method. The following chapters discuss each of the method’s

elements in detail and discusses how they satisfy the goals from the operational concept.

When appropriate, benchmarks are given to provide insights into the scalability of the

method. Chapters also illustrate the use of the method in the evaluation of the different ap-

plications. Each chapter discusses future work that could be conducted to extend concepts
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and technologies discussed in the chapter.

Chapter 2 introduces the EOFM: a hierarchical, generic, platform independent, XML-

based, task analytic modeling language. We present the syntax of EOFM which incorpo-

rates features from Operator Function Model [139] and extends them with additional task

sequencing options. The EOFM’s visual syntax is illustrated using an example of program-

ming a digital alarm clock. We also present the EOFM’s formal semantics which represents

a mathematically based, unambiguous interpretation of the meaning of the EOFMs model-

ing constructs. The potential future extensions of the language are discussed.

Chapter 3 discusses the goals and rationale behind the formal system modeling ar-

chitectural framework which was composed of independent models of the human mission,

human task behavior, human-device interface, device automation, and operational environ-

ment. The chapter discusses the coordination that is required to allow EOFM task models

to interact with other components of the architecture. Finally it presents a PCA pump ex-

ample which includes models of the operator’s mission and task behavior as well as device

automation and the human-device interface. These verification procedures demonstrate the

use of our method to verify a human-automation interactive system using both an uncon-

strained human task behavior model and normative human task behavior. The PCA pump

model required multiple revisions before it was small enough to be fully verified. This

application represents a realistic upper bound on the complexity of models our method

can handle for the computation resources available to us. This application’s use in the

analyses also demonstrates a tradeoff between model complexity and verification time be-

tween unconstrained human operator models and that controlled by formal representations

of EOFM task behavior.

Chapter 4 shows how the EOFM’s formal semantics were used to construct an auto-

mated process for translating an instantiated EOFM into the formal modeling language of

SAL. This allows instantiated EOFMs to be automatically incorporated into a formal sys-
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tem model which can be used in formal verification. We use formal verification to validate

that the translator is producing SAL code that conforms to the EOFM’s formal seman-

tics (see Appendix B). We also report on an evaluation of the scalability of the translation

algorithm. We then present an automobile cruise control example to illustrate how an in-

stantiated EOFM can be integrated into a larger system model that includes the human op-

erator’s mission, device automation, human-device interface, and operation environment.

Using our method, we were able to identify a problem with the system and formally verify

that a solution which, with modifications to the human-device interface and task behavior

model, corrected it.

While there is a plethora of literature on erroneous human behavior (see [115]), the

two most prominent perspectives are those offered by Hollnagel [100] and Reason [159]:

where Hollnagel classifies erroneous human behavior based on how the observable man-

ifest (their phenotypes) and Reason classifies them based on their cognitive causes (their

genotypes). Chapters 5 and 6 show how these two perspectives on erroneous human behav-

ior can be used to generate erroneous human behavior by either permuting an instantiated

EOFM’s task structure to generate Hollnagel’s phenotypes using the instantiated EOFM’s

information about the human device interface (Chapter 5) or by modifying the formal se-

mantics of the instantiated EOFM to generate Reason’s attentional slips (Chapter 6). In

both chapters, the error generation process is described and the chapter discusses how the

erroneous human behavior generation was incorporated as an option to be automatically

generated by the EOFM to SAL translator. Each chapter also presents an application that

illustrate the types of system problems that can be found using the particular erroneous be-

havior generation technique (a radiation therapy machine in Chapter 5 and the PCA pump

in Chapter 6). Both examples included models of the operator’s mission and task behavior

as well as device automation and the human-device interface. In both applications, safety

properties verified to true when the normative human behavior model was used. However,
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violations were discovered with the system models containing the generated erroneous hu-

man behavior models. In Chapter 5 this was corrected by changing the device automation.

In Chapter 6 the correction occurs through changes to the human-device interface. Chapter

6 discusses the tradeoffs between the two erroneous behavior generation techniques.

In Chapter 7, we present a novel visualizer which allows counterexamples produced

by SAL for models utilizing translated EOFM task behavior models using the EOFM’s

visual notation, the architectural framework, and concepts from general counterexample

visualizers. The chapter discusses the rationale and operation concept for the visualizer

and presents a design prototype. The chapter then demonstrates how the visualizer com-

municated information relevant to diagnosing problems in the cruise control application,

the radiation therapy machine, and the PCA pump. Thus the chapter demonstrates the ca-

pabilities of the visualizer for diagnosing problems in formal system models containing

normative human behavior as well as both types of generated erroneous behavior.

Chapter 9 presents an extended application of the method: an aircraft on approach. This

application’s formal system model contained all elements of the architectural framework:

human mission, human task behavior, device automation, human-device interface, and en-

vironment. In this example we show how the flexibility of the method and architectural

framework can be exploited to investigate the design of a system by interchangeably using

different instances of architectural elements between analyses. In doing this, the system is

evaluated with multiple normative human task behaviors, multiple erroneous human task

behaviors, and multiple device automation behaviors. In the latter case, the analyses show

how the impact of degraded and/or erroneous automation behavior can be evaluated with

our method. In all analyses, solutions to discovered problems are discussed, some of which

involve formal verifications with models containing new or modified human missions, au-

tomation behaviors, or human task behaviors.

Finally Chapter 9 discusses the contributions of this work and outlines how future work
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could evaluate and extend the method. It also discusses how the formal verification of

human-automation interaction could be further developed in general.



Chapter 2

The Enhanced Operator Function Model:

Syntax and Formal Semantics∗

When designing for human-automation interaction, human factors engineers generally do

not use formal models, but rather task analytic methods to represent human operator be-

haviors. Task analytic models represent descriptive and normative human behavior for in-

teracting with an automated system as sequences of activities with respect to the fulfillment

of goals [124, 167]. These types of models have been used in the specification, implemen-

tation, and analysis of single- and multi-operator systems [16, 28, 53, 87, 110, 129, 178].

Such models are heterarchical as there can be a number of independent goals and strategies

to achieve them. They can be hierarchical in that goals decompose into lower level activ-

ities and ultimately atomic actions. Further, conditions specify constraints under which

activities and actions can execute. Logical operators can also be used to control how many

activities or actions can execute and what temporal relationship exists between them. Infor-

mation from external sources (the operational environment, the human operator’s mission,

human-device interfaces, other human team members, etc.) can be used in the definition

of conditions.
∗This chapter is derived from [28] and [33]

29
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This chapter present the EOFM language, its syntax, and its formal semantics all of

which are used in a variety of examples in subsequent chapters.

2.1 Enhanced Operator Function Model

There are several task analytic modeling paradigms such as Operator Function Model

[139], ConcurTaskTrees (CTTs) [154], hazard networks [16], User Action Notation (UAN)

[98], and several varieties of Goals, Operators, Methods, and Selection rules (GOMS)

[110]. Collectively these techniques encompass the following features [28]:

• Activities can be modeled as sequences of actions or as part of more complex hier-

archies of activities which can ultimately decompose into atomic actions.

• Observable human actions (such as pushing a button, turning a wheel, or flipping a

switch) are supported by all techniques but some also support human cognitive or

perceptual actions (such as remembering a number or noticing an alarm).

• Different cardinalities for how many sub-activities or actions can execute in a given

decomposition: zero or more, one or more, exactly one, or all.

• Different temporal orders that control when sub-activities and actions can execute in

relation to each other: in sequence with no overlap in any order, in sequence with no

overlap in a particular order, synchronized, or executed in parallel with any potential

overlapping or interleaving.

• Different ways to represent strategic knowledge and/or conditions that control when

activities can execute, when they are completed, and when they can repeat.

• Different analysis environments and platforms.
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• Support for graphical notations that help to convey the modeled behavior.

By extending the OFM [139], the Enhanced Operator Function Model (EOFM) [28]

is a generic task analytic modeling language to support the features described above. The

OFM supports a visual and object-oriented means of representing task models. It uses

state and derived variables to specify model behavior including its handling of input and

output. It models goal-level behaviors as activities. Each activity may include conditions

that describe under what conditions it can be undertaken. Activities are decomposed into

lower-level sub-activities and, finally, actions. Operators on each decomposition specify

the cardinality of and the temporal relationships between the sub-activities or actions. The

EOFM standardizes the type of conditions that modify activities and supports the full cross

set of the cardinalities and temporal orderings discussed above. The EOFM language is

XML-based, thus making it platform independent and easy to parse. A more in depth

discussion of the design decisions that went into the EOFM can be found in [28].

2.2 Language Description

The EOFM language supports modeling the human operator as an input/output system. In-

puts may come from several sources including: the human-device interface, environment,

mission goals, and other human operators. Output variables are human actions. The oper-

ator’s task model describes how human actions may be generated based on input and local

variables.

Each human operator model is a set of EOFM task models that describe goal-level

activities. Activities decompose into lower level activities and eventually atomic actions.

Decompositions are controlled by decomposition operators that specify the cardinality of

and temporal relationship between the sub-activities or actions; allowing zero or more, one

or more, exactly one, or all to execute with all of the task analytic modeling supported
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options for ordered, sequential, parallel, or synchronized execution. Activities can have

preconditions, repeat conditions, and completion conditions (Boolean expressions written

in terms of input, output, and local variables as well as constants) which specify what must

be true before an activity can execute, when it can repeat execution, and what is true when

it has completed execution respectively. Atomic actions are either an assignment to an

output variable (indicating an action has been performed) or a local variable (representing

a perceptual or cognitive action). All variables are defined in terms of constants, user

defined types, and basic types; described below.

2.2.1 Syntax

The EOFM language’s XML syntax is defined using the Relax NG standard [54]. The

specification of its syntax, graphically depicted in Figure 2.1, has been modified from [28]

in order to support more standardized terminology and an XML structure that more closely

represents the EOFM graphical notation.

XML documents contain a single root node whose attributes and sub-nodes define the

document. For the EOFM specification, the root node is called eofms. The next level

of the hierarchy, has zero or more constant nodes, zero or more userdefinedtype nodes,

and one or more humanoperator nodes. The userdefinedtype nodes define enumerated

types useful for representing operational environment, human-device interface, and human

mission concepts. A userdefinedtype node is composed of a unique name attribute (by

which it can be referenced) and a string of data representing the type construction (the

syntax of which is application dependent). A constant node is defined by a unique name

attribute, either a userdefinedtype attribute (the name attribute of a userdefinedtype node)

or basictype attribute.

The humanoperator nodes represent the task behavior of the different human opera-
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file:/C:/Users/mlb4b/Documents/NetBeansProjects/HFE/examples/OFMr7a.rng <oXygen/> XML Editor

1 of 1

Start

eofms 0.. constant @ name DD ID

@ userdefinedtype DD IDREF

@ basictype DD string

DD string

0.. userdefinedtype @ name DD ID

DD string

1.. humanoperator @ name DD ID

0.. inputvariable @ name DD ID

@ userdefinedtype DD IDREF

@ basictype DD string

0.. inputvariablelink @ link DD IDREF

0.. localvariable @ name DD ID

@ userdefinedtype DD IDREF

@ basictype DD string

initialvalue DD string

1.. humanaction @ name DD ID

@ behavior autoreset

toggle

1.. eofm activity @ name DD ID

0..1 precondition DD string

0..1 completioncondition DD string

0..1 repeatcondition DD string

decomposition @ operator optor_seq

optor_par

or_seq

or_par

and_seq

and_par

ord

xor

1.. activity DD string

activitylink @ link DD IDREF

@ operator optor_seq

optor_par

or_seq

or_par

and_seq

and_par

ord

xor

sync

1.. action @ humanaction DD IDREF

@ localvariable DD IDREF

DD string

Decomposition 
operators used by both 

activity and action 
decompositions

Figure 2.1: The EOFM Relax NG Language Specification

tors. Each humanoperator has zero or more input variables (inputvariable nodes and in-

putvariablelink nodes for variables shared with other human operators), zero or more local

variables (localvariable nodes), one or more human action output variables (humanaction
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nodes) and one or more task models (eofm nodes). A human action (a humanaction node)

describes a single, observable, atomic act that a human operator can perform. A humanac-

tion node is defined by a unique name attribute and a behavior attribute which can have one

of two values: autoreset (for modeling a single discrete action such as flipping a switch) or

toggle (for modeling an action that must be started and stopped as separate discrete events

such as holding a button down and then releasing it).

Input variables (inputvariable nodes) are composed of a unique name attribute and

either a userdefinedtype or basictype attribute (defined as in the constant node). To support

the definition of inputs that can be perceived concurrently by multiple human operators

(for example two human operators hearing the same alarm issued by an automated system)

the inputvariablelink node allows a humanoperator node to access input variables defined

in a different humanoperator node using the same input variable name. Local variables

are represented by localvariable nodes, themselves defined with the same attributes as an

inputvariable or constant node, with an additional sub-node, initialvalue, a data string with

the variable’s default initial value.

The task behaviors of a human operator are defined using eofm nodes. One eofm node

is defined for each goal directed task behavior. The tasks are defined in terms of activity

nodes. An activity node is represented by a unique name attribute, a set of optional condi-

tions, and a decomposition node. Condition nodes contain a boolean expression (in terms

of variables and human actions) with a string that constrains the activity’s execution. The

following conditions are supported:

• precondition: criterion to start executing;

• repeatcondition: criterion to repeat the execution; and

• completioncondition: criterion to complete execution.
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An activity’s decomposition node is defined by a decomposition operator (an operator

attribute) and a set of activities (activity or activitylink nodes) or actions (action nodes).

The relative position of activity and action nodes to eachother in the XML hierarchy di-

rectly corresponds to their position in an the task modeling hierarchy. The decomposition

attribute specifies a decomposition operator that controls the cardinal and temporal execu-

tion relationships between the sub-activity and action nodes (referred to as sub-acts). In

order to support the required cardinalities and temporal orders, the EOFM language im-

plements the following decomposition operators: and, or, optor, xor, ord, sync. Each of

these operators have two modalities: sequential (suffixed _seq) and parallel (suffixed _par)

(Table 2.1). For the sequential mode, the sub-acts must be executed one at a time. In par-

allel mode, the execution of sub-acts may overlap in any manner. For the xor, ord, and

sync decomposition operators there is no need to include both modalities: xor and ord are

always sequential and sync is always parallel.

Table 2.1: Decomposition operators

Operator Modality

Type Semantics Sequential Parallel

and All of the sub-acts must execute and_seq and_par
or One or more of the sub-acts must execute or_seq or_par
optor Zero or more of the sub-acts must execute optor_seq optor_par
xor Exactly one sub-act must execute xor —
ord All sub-acts must execute in the order they appear in ord —
sync All sub-acts must be executed at the same time — sync

The activity nodes represent lower-level or sub-activities and are defined identically to

those higher in the hierarchy. Activity links (activitylink nodes) allow for reuse of model

structures by linking to existing activities via a link attribute which names the linked activ-

ity node.
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The lowest level of the task model hierarchy is represented by either observable, atomic

human actions or internal (cognitive or perceptual) ones, all using the action node. For an

observable human action, the name of a humanaction node is listed in the humanaction

attribute. For an internal human action, the valuation of a local variable is specified by

providing the name of the local variable in the localvariable attribute and the assigned

value within the node itself 1.

2.2.2 EOFM Visualization

The structure of an instantiated EOFM’s task behaviors can be represented visually as a

tree-like graph structure (an example appears in Figure 2.2) where actions are represented

by rectangular nodes and activities by rounded rectangle nodes. In these representations,

conditions are connected to the activity they modify: a precondition is represented by a

yellow, downward pointing triangle connected to the right side of the activity; a comple-

tioncondition is presented as a magenta, upward pointing triangle connected to the left of

the activity; and a repeatcondition is conveyed as a recursive arrow attached to the top of

the activity. These standard colors are used for condition shapes to help distinguish them

from each other and the other task structures. Decompositions are presented as arrows,

labeled with the decomposition operator, extending below an activity that points to a large

rounded rectangle containing the decomposed activities or actions.

2.2.3 EOFM Formal Semantics

We now formally describe the semantics of the EOFM language’s task models: explicitly

defining how and when each activity and action in a task structure executes.

1An example of an instantiated EOFM’s XML code for the automobile driver discussed in Chapter 4 can
be found in Appendix A
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aSetBuzzer
Alarm

NOT ToggleBuzzerButton

ord

aSelect
Buzzer

AlarmMode

DisplayedTime = DesiredBuzzerTime

ord

Toggle
Buzzer
Button

aChange
Buzzer

AlarmTime

DisplayedTime /= DesiredBuzzerTime

xor

PressPlus PressMinus

aExitSet
Buzzer

AlarmMode

ord

Toggle
Buzzer
Button

DisplayedTime /= DesiredBuzzerTime

Figure 2.2: An example EOFM for programming the buzzer time into a digital alarm clock.
The activity for setting the buzzer alarm time (aSetBuzzerAlarm) can execute if the pre-
condition specifying that the buzzer alarm button is not toggled is satisfied (NOT Toggle-
BuzzerButton). The activity is executed by performing three sub-activities in sequential
order (the ord operator): selecting the mode for setting buzzer alarm time (aSelectBuzzer-
AlarmMode), changing the buzzer alarm time (aChangeBuzzerAlarmTime), and exiting the
mode for setting the buzzer alarm time (aExitSetBuzzerAlarmMode). The mode for setting
the buzzer alarm time is selected by toggling the buzzer button (ToggleBuzzerButton). The
buzzer alarm time can be changed (a precondition), and continue to be changed (a repeat
condition), if the displayed time does not match the desired time (DisplayedTime /= De-
siredBuzzerTime). The activity executes by pressing either (the xor decomposition) the
plus or minus buttons (PressPlus and PressMinus respectively). The activity completes
(a completion condition) when the displayed time matches the desired buzzer alarm time
(DisplayedTime = DesiredBuzzerTime). The activity for exiting the mode for setting the
buzzer alarm time executes when the operator toggles the buzzer button (ToggleBuzzerBut-
ton).

An activity’s or action’s execution is controlled by how it transitions between three

discrete states:

• Ready: the initial (inactive) state which indicates that the activity or action is waiting

to execute;
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• Executing: the active state which indicates that the activity or action is executing;

and

• Done: the secondary (inactive) state which indicates that the activity has finished

executing.

While preconditions, repeatconditions, and completionconditions can be used to de-

scribe when activities and actions transition between these execution states, three addi-

tional conditions are required. These conditions support transitions based on the activity’s

or action’s position in the task structure, the execution state of its parent, sub-acts (activities

or actions into which the activity decomposes), and siblings (activities or actions contained

within the same decomposition).

• startcondition: implicit condition that triggers the start of an activity or action de-

fined in terms of the execution states of its parent and siblings.

• endcondition: implicit condition to end the execution of an activity or action defined

in terms of the execution state of its sub-acts.

• reset: implicit condition to reset an activity (have it return to the Ready execution

state).

For any given activity or action in a decomposition, a startcondition is comprised of two

conjuncts: one stipulating conditions on the execution state of its parent and the other on

the execution state of its siblings based on the parent’s decomposition operator, generally

formulated as:

(parent .state = Executing) ∧
∧

∀siblings s

(s .state 6= Executing)
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This is formulated differently in the following circumstances. If the parent’s decompo-

sition operator has a parallel modality, the second conjunct is eliminated. If the parent’s

decomposition operator is ord, the second conjunct is reformulated to impose restrictions

only on the previous sibling in the decomposition order: (prev_sibling .state = Done). If

it is the xor decomposition operator, the second conjunct is modified to enforce the condi-

tion that no other sibling can execute after one has finished:

∧
∀siblings s

(s.state = Ready)

An endcondition is also comprised of two conjuncts both related to an activity’s sub-

acts. Since an action has no sub-acts, an action’s endcondition defaults to true. The first

conjunct asserts that the execution states of the activity’s sub-acts satisfy the requirements

stipulated by the activity’s decomposition operator. The second asserts that none of the

sub-acts are executing. This is generically expressed as follows:

( ⊕
∀subacts c

(c.state = Done)

)
∧

∧
∀subacts c

(c.state 6= Executing)

In the first conjunct,
⊕

(a generic operator) is to be substituted with ∧ if the activity

has the and_seq, and_par, or sync decomposition operator; and ∨ if the activity has the

or_seq, or_par, or xor decomposition operator. Since optor_seq and optor_par enforce no

restrictions, the first conjunct is eliminated when the activity has either of these decompo-

sition operators. When the activity has the ord decomposition operator, the first conjunct

asserts that the last sub-act has executed.

The reset condition is true when an activity’s or action’s parent transitions from Done

to Ready or from Executing to Executing when it repeats execution. If the activity does not

have a parent, implying that it is at the highest level of an EOFM task model’s decomposi-

tion hierarchy, reset is true if that activity is in the Done execution state.
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The startcondition, endcondition, and reset conditions are used with the precondition,

repeatcondition, and completioncondition to define how an activity or action transitions

between execution states. This is presented in Figure 2.3 where states are represented as

nodes (rounded rectangles) and transitions as arcs. Guards are attached to each arc.

The transition criteria for an activity (Figure 2.3(a)) are described in more detail below:

• An activity is initially in the inactive state, Ready. If the startcondition and precon-

dition are satisfied and the completioncondition is not, then the activity can transition

to the Executing state. However, if the startcondition and completioncondition are

satisfied, the activity moves directly to Done.

• When in the Executing state, an activity will repeat execution when its endcondi-

tion is satisfied as long as its repeatcondition is true and its completioncondition is

not. An activity transitions from Executing to Done when both the endcondition and

completioncondition are satisfied.

• An activity will remain in the Done state until its reset condition is satisfied, where

it returns to the Ready state.

The transition criteria for an action is simpler (Figure 2.3(b)) since an action cannot

have a precondition, completioncondition, or repeatcondition. Note that because actions

do not have any sub-acts, their endconditions are always true.

2.3 Discussion

The EOFM language supports a superset of the features of other task analytic modeling

languages:

• Activities (activity nodes) are modeled as sequences of actions and/or more complex

hierarchies of activities which can ultimately decompose into atomic actions.
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Ready

Executing
endcondition 
˄ repeatcondition
˄¬ completioncondition 

startcondition ˄ precondition
˄ ¬ completioncondition

endcondition
˄ completioncondition

startcondition 
˄ completioncondition

Done

reset

(a)

Ready

Executing

startcondition

endcondition
Done

parentreset

(b)

Figure 2.3: (a) Execution state transition diagram for a generic activity. (b) Execution state
transition diagram for a generic action.

• Observable human actions are modeled as action nodes which can either represent

an observable human action (humanaction) or human cognitive or perceptual action

(the assignment to a localvariable).

• The decomposition operators support all of the following cardinalities for how many

sub-activities or actions can execute in a given decomposition: zero or more, one or

more, exactly one, or all.

• The decomposition operators support all of the following temporal orders that con-

trol when sub-activities and actions can execute in relation to each other: in sequence

with no overlap in any order, in sequence with no overlap in a particular order, syn-

chronized, or executed in parallel with any potential overlapping or interleaving.

• precondition, repeatcondition, and completioncondition nodes represent strategic

knowledge that control when activities can execute, when they are complete, and

when they can repeat.

• The use of XML makes the EOFM language platform independent.

• EOFM supports a graphical notation that can help convey the modeled behavior.
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The EOFM language specifically extends OFM [139, 178] in several ways. Firstly,

EOFM allows the analyst to explicitly define the input-output relationship between the

human task behavior and the system: defining inputs (input variables), outputs (human ac-

tions with specified behavior), and internal state (local variables and task structure). OFM

only explicitly defines the task structure from which the input and output information must

be inferred. Secondly, OFM only supports the equivalent of EOFM’s and_seq, or_seq,

xor, and ord decomposition operators. Thus, EOFM extends OFM by supporting optional

execution (the optor decomposition operators) and parallelism (operators with the _par

suffix and the sync operator). Finally, OFM does not have a formal semantics to explicitly

define how a model instantiated in it is to be interpreted, EOFM does. This is a signif-

icant contribution in that the EOFM’s formal semantics have been used as the basis of a

translator which converts instantiated EOFMs into a model checking language (see [33])

which allows them to be subject to formal verification. This is discussed in greater depth

in Chapter 4.

Because the EOFM language is specified in RELAX NG and implemented in XML, the

language should be easy to parse with existing code libraries. The wide support of these

technologies also means that analysts can make use of a number of existing tools when

working with the EOFM language. For example, we have used existing XML parsing

technology in the creation of both our java-based EOFM to SAL translation process (see

[28] and Chapter 4) and a Microsoft Office-based EOFM renderer (see [30] and Chapter 7).

We have also successfully used the RELAX NG specification with the oXygen xml editor2

which allows EOFM instantiations to be implemented in an environment that supports code

completion, code highlighting, and dynamic syntax checking.

2http://www.oxygenxml.com/
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2.3.1 Language Extensions

The EOFM language has been used successfully in a number of human-automation inter-

action analyses (see [26],[31],[29] and latter chapters). However, there are ways it could

be improved.

One feature that is supported by UAN [98] and CTT [155] is the ability for activities

to be interrupted when a higher priority activity becomes relevant due to a change in the

human-device interface or environmental conditions. For example, an automobile driver

may need to respond to traffic that has cut him off even in the midst of responding to a

light further down the road. After the higher priority activity has been addressed, UAN

and CTT support means of restarting, resuming, or abandoning any interrupted activities.

Future work should investigate how such feature can be incorporated into the EOFM.

The current implementation of the EOFM does not enforce a specific syntax for type

constructions, initial values, and condition Boolean expressions nor does it specify a stan-

dard set of basic types for defining its variables. These must conform to the syntax sup-

ported by the infrastructure the model is integrating with. Relax NG offers a variety of

ways in which standards for these modeling concepts could be enforced such as additional

XML structures and regular expressions for data formatting. Future work should investi-

gate how these might be used to further specify EOFM syntax.

The current EOFM implementation assumes that all root activities are temporally re-

lated with the equivalent of a optor_seq decomposition operator. Future work should de-

termine if this is descriptive enough, or if more options are necessary.

Although the EOFM has been designed to support multiple operators, to date it has

only been used to model single operator systems [25–28, 31, 34]. There are a number of

systems that depend on multiple human operators interacting with automation.

The current EOFM language supports the ability for multiple humanoperator nodes to
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share input information via inputvariablelink nodes. While this accomplishes the desired

goal, it requires that all inputs be defined within a given humanoperator node. This results

in a strong coupling between humanoperator nodes and associates the input exclusively

with a human operator rather than the source of that input like the environment or a human-

device interface. Similarly, multiple human operators may be able to interact with a human-

device interface that they share, allowing each to submit identical human actions to system

automation. The current implementation of the EOFM language supports this, but requires

that these human actions be defined using different names in the associated humanoperator

nodes. Thus it is the job of the modeler to ensure that these human actions are treated

the same when the language is interpreted. Finally, multi-human operator systems may

support direct communication between human operators that does not occur through a

human-device interface. The current implementation of the EOFM does not support this

feature.

These limitations could be resolved by modifying the EOFM semantics so that in-

putvariable and humanaction nodes as well as communication channels between human

operators could be defined independently of the humanoperator nodes, and referenced

where appropriate in these nodes. Future work will investigate how these features might

be incorporated into EOFM.

Another limitation comes in the way task structures (activity and action hierarchies) can

be reused between humanoperator nodes. In the current implementation, activities must be

defined in one humanoperator node and referenced in others using activitylink nodes. This

too results in strong coupling and does not support good objected-oriented design. Their

are a variety of different architectures that might be supported in a multi-operator system:

there may be multiple operators with a mixture of shared and discrepant task structures,

and there may be shared or discrepant human-device interfaces. Object-orient concepts

such as inheritance, interfaces, and polymorphism may allow these types of relationships
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to be more easily and flexibly instantiated in EOFM. Future work should investigate how

this might be accomplished.



Chapter 3

Human-automation Interaction Formal

Modeling Architectural Framework∗

Chapter 1 showed that a significant amount of work has been done in the interaction

of human-automation interaction and formal methods. While this has produced use-

ful results, the models have not included all of the components necessary to analyze

human-automation interaction. For human factors engineering (HFE) analyses of human-

automation interaction, the minimal set of components are the goals and procedures of the

human operator; the automated system and its human interface; and the constraints im-

posed by the operational environment. Cognitive work analysis is concerned with identi-

fying constraints in the operational environment that shape the mission goals of the human

operator [179]; cognitive task analysis is concerned with describing how human operators

normatively and descriptively perform goal oriented tasks when interacting with an auto-

mated system [124, 167]; and modeling frameworks such as [69] seek to find discrepancies

between human mental models, human-device interfaces, and device automation. In this

context, problems related to human-automation interaction may be influenced by the hu-

man operator’s mission, the human operator’s task behavior, the operational environment,

∗This chapter is derived from [31]
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the human-device interface, the device’s automation, and their interrelationships.

We have developed a computational framework (Figure 3.1) for the formal modeling

of human-automation interaction. This framework utilizes concurrent models of human

operator task behavior, human mission (the goals the operator wishes to achieve using the

system), device automation, and the operational environment which are composed together

to form a larger system model. Inter-model interaction is represented by variables shared

between models. Environment variables communicate information about the state of the

environment to the device automation, mission, and human task models. Mission variables

communicate the mission goals to the human task model. Interface variables convey infor-

mation about the state of the human-device interface (displayed information, the state of

input widgets, etc.) to the human task model. The human task model indicates when and

what actions a human operator would perform on the human-device interface. The human-

device interface communicates its current state to the device automation via the interface

variables. The human-device interface receives information about the state of the device

automation model via the automation state variables.

For broader applicability, the analysis framework should support modeling constructs

System Model

Human Task 
Model

Device
Automation

Model

Human-Device 
Interface 

Model

Mission Model
Environment 

Model

Mission Variables

Human Action
Variables
Interface
Variables

Interface
Variables

Automation
State Variables

Environment
Variables

Figure 3.1: Framework for the formal modeling of human-automation interaction. Arrows
between models represent variables that are shared between models. The direction of the
arrow indicates whether the represented variables are treated as inputs or output. If the
arrow is sourced from a model, the represented variables are outputs of that model. If the
arrow terminates at a model, the represented variables are inputs to that model.
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useful to the human factors engineer in order to allow him to effectively model human

missions, human tasks, and human-device interfaces. Because an engineer may wish to

rerun verifications using different missions, task models, human-device interfaces, envi-

ronments, or automation behaviors, these components should remain decoupled (as is the

case in Figure 3.1). Finally, the modeling technique must be capable of representing the

target systems with enough fidelity to allow the engineer to perform the desired verifica-

tion, and do so in a reasonable amount of time (this could mean several hours for a small

project, or several days for a more complicated one).

This chapter describes an instantiation of this framework using a model of a Baxter

Ipump Pain Management System [20], a patient controlled analgesia (PCA) pump that

administers pain medication in accordance with constraints defined by a health care tech-

nician (described in section 3.1.1). Models were developed in two phases. The first phase

involved the construction and debugging of the human-device interface, device automa-

tion, and human mission models (an environmental model was not included because of

the general stability of the environment in which an actual pump operates) with an uncon-

strained human task model serving as a placeholder for a more realistic human task model.

The protocol necessary for coordinating behavior between the human task behavior and the

other system elements was also developed in this phase. The second extended the model

produced in Phase 1 with a realistic model of the human task, completing the framework.

Even though the target device in this modeling effort was seemingly simple, the system

model that was initially developed in Phase 1 (Phase 1a) was too difficult for the model

checker to process quickly and too complex for it to verify. Thus a number of revisions

were undertaken [27]. In Phase 1b a reduced and abstracted model of the Baxter Ipump was

produced which, while capable of being used in some verifications, did so at the expense of

limiting the number of goals represented in the human mission model. This Phase 1b model

limited the usefulness of incorporating human task behavior in Phase 2. Thus, in Phase
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1c, the system model was reduced to encompass the programming procedure for a much

simpler PCA pump. In Phase 2, the incorporation of the more realistic human task behavior

actually resulted in a reduction of the total system model’s complexity, but did so at the

expense of an increase in verification time. This chapter discusses these modeling phases,

the verification results produced in them, and their associated compromises in relation to

the goals of the modeling architecture.

3.1 Methods

3.1.1 The Target System

The Baxter Ipump is an automated machine that controls delivery of sedative, analgesic,

and anesthetic medication solutions [20]. Solution delivery via intravenous, subcutaneous,

and epidural routes is supported. Medication solutions are typically stored in bags locked

in a compartment on the back of the pump.

Pump behavior is dictated by internal automation, which can depend on how the pump

is programmed by a human operator. Pump programming is accomplished via its human-

device interface (Figure 3.2) which contains a dynamic LCD display, a security key lock,

and eight buttons. When programming the pump, the operator is able to specify all of

the following: whether to use periodic or continuous doses of medications (i.e. the mode

which can be PCA, Basal + PCA, or Continuous), whether to use prescription information

previously programmed into the pump, the fluid volume contained in the medication bag,

the units of measure used for dosage (ml, mg, or µg), whether or not to administer a

bolus (an initial dose of medication), dosage amounts, dosage flow rates (for either basal

or continuous rates as determined by the mode), the delay time between dosages, and one

hour limits on the amount of delivered medication.
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Figure 3.2: A simplified representation of the Baxter Ipump’s human-device interface.
Note that the actual pump contains additional controls and information conveyances.

During programming, the security key is used to lock and unlock the compartment

containing the medication solution. The unlocking and locking process is also used as a

security measure to ensure that an authorized person is programming the pump. The start

and stop buttons are used to start and stop the delivery of medication at specific times

during programming. The on-off button is used to turn the device on and off.

The LCD display supports pump operation options. When the operator chooses be-

tween two or more options, the interface message indicates what is being chosen, and the

initial or default option is displayed. Pressing the up button allows the practitioner to scroll

through the available options.

When a numerical value is required, the interface message conveys its name and the

displayed value is presented with the cursor under one of the value’s digits. The practitioner

can move the position of the cursor by pressing the left and right buttons. He or she

can press the up button to scroll through the different digit values available at that cursor

position. The clear button sets the displayed value to zero. The enter button is used to

confirm values and treatment options.

Aside from the administration of treatment, the pump’s automation supports dynamic
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checking and restriction of operator entered values. Thus, in addition to having hard limits

on value ranges, the extrema can change dynamically in response to other user specified

values.

3.1.2 Apparatus

All formal models were constructed using the Symbolic Analysis Laboratory (SAL) lan-

guage [65] because of its associated analysis and debugging tools, and its support for both

the asynchronous and synchronous composition of different models (modules using SAL’s

internal semantics). The task model representations described next were translated into the

SAL language as a single module using a custom-built java program [33]. All verifications

were done using SAL-SMC 3.0, the SAL symbolic model checker1. Verifications were

conducted on a 3.0 gigahertz dual-core Intel Xeon processor with 16 gigabytes of RAM

running the Ubuntu 9.04 desktop.

Human task models were created using EOFM [28, 33] (see Chapter 2).

3.1.3 Verification Specification

Two specifications were employed in each of the modeling phases: both were written

in linear temporal logic and evaluated using SAL-SMC. The first (3.1), used for model

1Some model debugging was also conducted using SAL’s bounded model checker. See Chapter 4 for a
more in depth discussion of SAL.
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debugging, verifies that a valid prescription could be programmed into the pump:

G¬



iInterfacemessage = TreatmentAdministering

∧Mode = PrescribedMode

∧ FluidVolume = PrescribedFluidVolume

∧ PCADose = PrescribedPCADose

∧ Delay = PrescribedDelay

∧ BasalRate = PrescribedBasalRate

∧ 1HourLimit = Prescribed1HourLimit

∧ Bolus = PrescribedBolus

∧ ContinuousRate = PrescribedContinuousRate



(3.1)

Here, if the model is able to enter a state indicating that treatment is administering (In-

terfaceMessage = TreatmentAdministering) with the entered (or programmed) prescription

values (Mode, FluidVolume, ..., ContinuousRate) matching the prescription values gener-

ated by the mission model (variables with the Prescrived prefix), a counterexample would

be produced illustrating how that prescription was programmed.

The second specification (3.2) represented a safety property that was expected to verify

to true, thus allowing the model checker to traverse the entire state space of each phase’s

model. Because such a verification allows SAL to report the size of a model’s state space,

verifications using this specification would provide some means of comparing the com-

plexity of the models produced in each phase.

G¬


InterfaceMessage = TreatmentAdministering

∧Mode 6= Continuous

∧ Delay = 0

 (3.2)

Here, the specification is asserting that the model should never enter a state where
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treatment is administering in the PCA or Basal + PCA modes (Mode 6= Continuous) when

there is no delay between doses2. Thus, if 3.2 verifies to true, the pump will never allow

a practitioner to enter prescriptions that would allow patients to continuously administer

PCA doses to themselves [20].

3.2 Phase 1a: A Representative Model of the Ipump

3.2.1 Model Description

An initial model was created to conform to the architectural and design philosophy repre-

sented in Figure 3.2: the mission was represented as a set of viable prescriptions options;

the mission, human operator, human-device interface, and device automation were mod-

eled independently of each other; and the behavior of the automated system and human-

device interface models was designed to accurately reflect the behavior of these systems as

described in the user’s manual [20] and observed through direct interaction with the device.

An unconstrained human operator was constructed that could issue any valid human action

to the human-device interface model at any given time. Because the PCA pump gener-

ally operates in a controlled environment, away from temperature and humidity conditions

that might affect the performance of the pump’s automation, no environmental model was

included. Finally, because documentation related to the internal workings of the pump

was limited, the system automation model was restricted to that associated with the pump

programming procedure: behavior that could be gleaned from the operator’s manual [20],

correspondences with hospital staff, and direct interaction with the pump.

2A delay can only been set when the PCA or Basal + PCA modes have been selected by the human
operator. There are no delays between doses when the pump is in the Continuous mode.
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3.2.2 Model Coordination

Model infrastructure was required to ensure that human operator actions were properly

recognized by the human-device interface model. In an ideal modeling environment,

human action behavior originating from the human operator model could have both an

asynchronous and synchronous relationship with the human-device interface model. Syn-

chronous behavior would allow the human-device interface model to react to user actions

in the same transition in which they were issued/performed by the human operator model.

However, both the human operator and human-device interface models operate indepen-

dently of each other, and may have state transitions that are dependent on internal or exter-

nal conditions that are not directly related to the state of the other model. This suggests an

asynchronous relationship. SAL only allows models to be composed with each other asyn-

chronously or synchronously (but not both). Thus, it was necessary to adapt the models to

support features associated with the unused composition.

Asynchronous composition was used to compose the human operator and human-

device interface models. This necessitated some additional infrastructure to prevent the

human operator model from issuing user inputs before the human-device interface model

was ready to interpret them and to prevent the human operator model from terminating a

given input before the interface could respond to it. This was accomplished through the

addition of two Boolean variables: one indicating that input had been submitted (hence-

forth called Submitted) and a variable indicating the interface was ready to receive actions

(henceforth called Ready). This coordination occurred as follows:

• If Ready is true and Submitted is false, the human operator module sets one or more

of the human action variables to a new input value and sets Submitted to true.

• If Ready and Submitted are true, the human-device interface module responds to the

values of the human action variables and sets Ready to false.
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• If Ready is not true and Submitted is true, the human operator module sets Submitted

to false.

• If Ready and Submitted are both false and the automated system is ready for addi-

tional human operator input, the human-device interface module sets Ready to true.

3.2.3 Verification Results

Attempts to verify this model using the specifications in 3.1 and 3.2 resulted in two prob-

lems related to the feasibility and usefulness of the verification procedure. Firstly, the

SAL-SMC procedure for translating the SAL code into a binary decision diagram (BDD)

took more than 24 hours, a time frame impractical for debugging such a limited model.

Secondly, the verification process which followed the construction of the BDD eventually

ran out of memory, thus not returning a verification result.

3.3 Phase 1b: A Reduced Baxter Ipump Model

As a result of the failed verification of the model produced in Phase 1a, significant revisions

were required to make the model more tractable. These are discussed below.

3.3.1 Representation of Numerical Values

In order to reduce the time needed to convert the SAL-code model to a BDD, a number of

modifications were made to the model from Phase 1a by representing model constructs in

ways more readily processed by the model checker. As such, the modifications discussed

here did not ultimately make the BDD representation of the model smaller, but merely

expedited its construction.
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3.3.1.1 Redundant Representation of Values

Two different representations of the values programmed into the pump by the operator

were used in the human-device interface and device automation models. Because the

human-device interface required the human operator to enter values by scrolling through

the available values for individual digits, an array of integer digits was appropriate for the

human-device interface model. However, because the system automation was concerned

with dynamically checking limits and using entered values to compute other values, a nu-

merical representation of the actual value was more convenient for the automated system

model.

This redundancy burdened the BDD translator. This was remedied by eliminating the

digit array representations and using functions to enable actions from the human task model

to incrementally change individual digits within a value.

3.3.1.2 Real Numbers and Integers

In the model produced in Phase 1a, all numerical values were represented as real values

with restricted ranges. This was done because most user specified values were either in-

tegers or floating point numbers (precise to a single decimal point). No data abstractions

were initially considered because the nature of the human task (modeled in Phase 2) re-

quired manipulation of values’ individual digits. However, representing values this way

proved especially challenging for the BDD translator. Thus, all values were modified so

that they could be represented as restricted range integers. For integer variables repre-

senting floating point numbers, this meant that the model value was ten times the value it

represented. This representation allowed the values to still be manipulated at the individual

digit level, while making them more readily interpretable by the BDD translator.



Chapter 3. Formal Modeling Architectural Framework 57

3.3.1.3 Variable Ranges

In the Phase 1a model, the upper bound on the range of all value-based variables was set to

the theoretical maximum of any value that could be programmed into the pump: 999993.

However, in order to reduce the amount of work required for the BDD conversion, the range

of each numerically valued variable was given a specific upper bound that corresponded to

the maximum value it could actually assume in the device.

3.3.2 Model Reduction

In order to reduce the size of the model, a variety of elements were removed. In all cases

these reductions were meant to reduce the number of state variables in the human-device

interface or Device Automation models (slicing), or reduce the range of values a variable

could assume (data abstraction). Unfortunately, each of these reductions also affected what

human tasks could ultimately be modeled and thus verified in subsequent model iterations.

All of the following reductions were undertaken:

• In the Phase 1a model, the mission model could generate a prescription from the

entire available range of valid prescriptions. This was changed so that fewer pre-

scription options were generated in Phase 1b’s mission model: that of programming

a prescription with a continuous dosage with two options for bolus delivery (0.0

and 1.0 ml) and two continuous flow rate options (1.0 and 9.0 ml/hr). While this

significantly reduced the number of model states, it also reduced the number of pre-

scriptions that could be used in verification procedures.

• In the Phase 1a model, the human-device interface model would allow the operator

to select what units to use when entering prescriptions (ml, mg, or µg). Only the

3All lower bounds were set to 0.
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ml unit option was included in the Phase 1b model. This reduced the number of

interface messages in the model, allowed for the removal of several variables (those

related to the unit option selection, and solution concentration specification), and

reduced the ranges required for several numerical values related to the prescription.

This eliminated the option of including unit selection and concentration specification

task behaviors in the model.

• In the Phase 1a model, both the human-device interface and device automation mod-

els encompassed behavior related to the delivery of medication solution during the

priming and bolus administration procedures. During priming, the human-device in-

terface allows the operator to repeatedly instruct the pump to prime until all air has

been pushed out of the connected tubing. During bolus administration, the human-

device interface allows the operator to terminate bolus infusion by pressing the stop

button twice. This functionality was removed from the Phase 1b models, thus elimi-

nating interface message states and numerical values indicating how much fluid had

been delivered in both procedures. This eliminated the possibility of incorporating

task behavior related to pump priming and bolus administration in the model.

• The Phase 1a model mimicked the security features found in the original device

which required the human operator to unlock and lock the device on startup and en-

ter a security code. This functionality was removed from the Phase 1b model which

reduced the number of interface messages in the model and removed the numeri-

cal variable (with a 0-999 range) associated with entering the security code. This

eliminated the possibility of modeling human task behavior related to unlocking and

locking the pump as well as entering the security code in the model.

• In the Phase 1a model, the interface message could automatically transition to being

blank: mimicking the actual pump’s ability to blank its screen after three seconds
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of operator inactivity. Because further operator inaction would result in the original

device issuing a “left in programming mode” alert, a blank interface message could

automatically transition to an alert issuance. This functionality was removed from

the Phase 1b model, eliminating several interface messages as well as variables that

kept track of the previous interface message. Thus, the option of modeling operator

task response to screen blanking and alerts was removed from the model.

While these reductions resulted in the Phase 1b model being much smaller and more man-

ageable than the original, the ability to model some of the task behaviors originally asso-

ciated with the device had to be sacrificed.

3.3.3 Results

The Phase 1b model was able to complete the verification procedure with 3.1 and produce

a counterexample with a search depth of 54 in approximately 5.9 hours, with the majority

of that time (5.4 hours) used for creating the BDD representation [27]. Not surprisingly,

the model checker ran out of memory when attempting to verify 3.2.

3.4 Phase 1c: A Simpler PCA Pump Model

While the model developed in Phase 1b did produce usable results and has subsequently

been used in the verification of additional properties (see [26]), this power came at the

expense of a reduction in the scope of the mission model. Since the mission directly influ-

ences what human behavior will execute, this limited the human task behavior that could

ultimately be verified as part of the system model. Further, the fact that the Phase 1b model

was too complex for 3.2 to be verified potentially limited any future model development

that might add complexity. To remedy these shortcoming, the model produced in Phase
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1b was further reduced to one that encompassed the programming of the most basic PCA

pump functionality while the ranges of possible values for the remaining mission model

variables were expanded to be more realistic.

3.4.1 Model Reduction

To obtain a smaller PCA model, all of the following were removed: the selection of mode

and the ability to specify a basal rate, continuous rate, bolus dosage, and fluid volume. As

a result, associated interface messages and variables were removed along with the ability

to model their programming as part of the human task behavior model. This resulted in

a model that only encompassed functionality for programming a PCA dose, programming

the delay between PCA doses, turning the pump on and off, and starting and stopping

the administration of treatment: functionality compatible with the most basic PCA pump

operations (see [9]).

Value ranges were further restricted to reduce the size of the model. Specifically, the

upper bound on the acceptable delay between PCA dosages was changed from 240 to 60

minutes. This, coupled with the other reductions, had the added benefit of allowing the

number of digits required for the programming of pump values to be reduced to 2 rather

than the original 4.

The reductions in other areas allowed the scope of the delays and PCA dosages gener-

ated by the mission model to be expanded to a more representative set. For PCA dosages,

the full range of values from 0.1 to 9.9 in 0.1 ml increments were supported. For delay

between dosages, five options were available: delays of 10, 15, 30, 45, and 60 minutes.

All pump interface functionality was retained from the previous models. Thus, the

unconstrained human task model was unchanged as was the human task and human-device

interface models’ communication protocol.
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3.4.2 Results

The Phase 1c model ran the verification procedure for 3.1 (with the eliminated variables

removed) in 6 seconds with a search depth of 22, much faster than the model from Phase

1b. The verification of the specification in 3.2 verified to true in 129 seconds with a search

depth of 259 and 78,768,682,750 visited states.

3.5 Phase 2: Incorporating Models of Human Behavior

In the second phase of modeling, we expanded our instantiation of the framework by in-

corporating a more realistic human task behavior model. We therefore replaced the uncon-

strained human operator in the Phase 1c model with a human task behavior model derived

from pump documentation [20] and training materials. This model utilized the EOFM

concepts and thus required some additional infrastructure in order to incorporate it into the

formal system model. We describe the behaviors that were modeled and report verification

results for the produced system model.

3.5.1 Human Task Behavior Modeling and Translation

The pump’s materials contained six high-level goal directed behaviors for performing a

variety of pump activities relevant to the Phase 1c model:

• Turning on the pump,

• Stopping the infusion of medication,

• Turning off the pump,

• Entering a prescribed value for PCA dosage volumes (in ml)



Chapter 3. Formal Modeling Architectural Framework 62

• Entering a prescribed value for the delay between PCA doses (in minutes), and

• Selecting whether to start or review an entered prescription.

The EOFM models describing each of these behaviors are discussed below.

3.5.1.1 Turning On the Pump

The model for turning on the pump is shown in Figure 3.3. Here, the EOFM can execute

if the interface message indicates that the system is off (InterfaceMessage = SystemOff ;

a precondition). This high level activity (aTurnOnPump) is completed by performing the

action of pressing the on/off button (PressOnOff ). The ord decomposition operator indi-

cates that all of the decomposed activities or actions must be completed in sequential order.

The EOFM has accomplished its goal (a completion condition) when the interface message

indicates that the pump is no longer off (InterfaceMessage /= SystemOff ).

aTurnOnPump

InterfaceMessage = SystemOff InterfaceMessage /= SystemOff

ord

PressOnOff

Figure 3.3: The EOFM graphical representation for turning on the pump.

3.5.1.2 Stopping Infusion

Infusion of medication can be stopped (Figure 3.4) if the interface indicates that treatment

is administering (InterfaceMessage = TreatmentAdministering). This is accomplished by
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pressing the stop button (PressStop) twice in quick succession with no other human in-

puts occurring in between. The process has completed when the interface indicates that

treatment is not administering (InterfaceMessage /= TreatmentAdministering).

aStopInfusing

InterfaceMessage = TreatmentAdministering
InterfaceMessage /= TreatmentAdministering

ord

PressStop PressStop

Figure 3.4: The EOFM graphical representation for stopping infusion.

3.5.1.3 Turning Off the Pump

The model for turning off the pump (Figure 3.5) is relevant if the interface message indi-

cates that the system is not off (InterfaceMessage /= SystemOff ). The pump is turned off

by performing two lower level activities in sequential order: stopping infusion (aStopInfu-

sion; explained above) and pressing the keys necessary to turn off the pump (aPressKeysTo-

TurnOffPump). This latter activity is completed by pressing the on/off button (PressOnOff )

twice in sequence. The entire process of turning off the pump completes when the interface

indicates that the pump is off (InterfaceMessage = SystemOff ).

3.5.1.4 Programming a Value Into the Pump

The values for PCA dosage volume and delay between dosages can be programmed into

the pump using an EOFM patterned after Figure 3.6. Thus, for a given value X, the cor-

responding EOFM becomes relevant when the interface for setting that value is displayed
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aTurnOffPump

InterfaceMessage /= SystemOff InterfaceMessage = SystemOff

ord

aStopInfusing

InterfaceMessage = TreatmentAdministering InterfaceMessage /= TreatmentAdministering

ord

PressStop PressStop

aPressKeysTo
TurnOffPump

ord

PressOnOff PressOnOff

Figure 3.5: The EOFM graphical representation for turning off the pump.

(InterfaceMessage = SetX). This is achieved by sequentially executing two sub-activities:

changing the displayed value (aChangeXValue) and accepting the displayed value (aAc-

cept). The activity for changing the displayed value can execute, and will repeatedly ex-

ecute, if the displayed value is not equal to the prescribed value (CurrentValue /= Pre-

scribedX). The value is changed by executing one or more (denoted by the or_seq decom-

position operator) of the following sub-activities: changing the digit currently pointed to by

the cursor (aChangeDigit: completed by pressing the up key (PressUp)), moving the cursor

to a different digit (aNextDigit: completed by pressing only one of (the xor decomposition

operator) the left (PressLeft) or right (PressRight) buttons), or setting the displayed value

to zero (aClearValue: completed by pressing the clear button(PressClear)). The process of

changing the displayed value completes when the displayed value matches the prescribed

value (iCurrentValue = iPrescribedX). The displayed value is accepted by pressing the en-

ter key. The entire process ends when the interface is no longer in the state for accepting

X.
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aSetX

InterfaceMessage = SetX InterfaceMessage /= SetX

ord

aChangeXValue

CurrentValue /= PrescribedX

CurrentValue /= PrescribedX

CurrentValue = PrescribedX

or_seq

aChangeDigit

ord

PressUp

aSelectNextDigit

xor

PressLeft PressRight

aClearValue

ord

PressClear

aAccept

ord

PressEnter

Figure 3.6: The EOFM graphical representation of the pattern for programming a value X
into the pump.

3.5.1.5 Starting or Reviewing a Prescription

After a prescription has been programmed the human operator is given the option to start

the administration of that prescription or to review it (where the operator works through

the programming procedure a second time with the previously programmed options dis-

played at each step). The EOFM for performing this (Figure 3.7) becomes relevant at this

point (InterfaceMessage = StartBeginsRx). It is completed by performing only one of two

activities: selecting the option to start treatment (aStartRx - performed by pressing the start

button (PressStart)) or selecting the review option (aReviewRx - performed by pressing the

enter button (PressEnter)).
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aStartOrReview

InterfaceMessage = StartBeginsRx InterfaceMessage /= StartBeginsRx

xor

aStartRx

ord

PressStart

aReviewRx

ord

PressEnter

Figure 3.7: The EOFM for choosing to start or review a prescription.

3.5.2 EOFM Translation

The EOFMs representing the human task model were translated into a SAL code module

using the EOFM’s formal semantics and the process described in Chapter 4.

The instantiated EOFM file contained 168 lines of XML code, its translated version

contained 439 lines of SAL code. While the resulting human operator module and its

associated unconstrained operator model both had the same inputs and outputs, the logic

associated with traversal of the human task structures required 48 additional variables in

the human task behavior model.

3.5.3 Results

The specification in 3.1 verified (produced the expected counterexample) in 57 seconds

with a search depth of 42. The specification in 3.2 verified to true in 10.6 hours with a

search depth of 437 and 1,534,862,538 visited states.
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3.6 Discussion

This work has shown that it is possible for human-automation interaction to be evaluated

using the architecture in Figure 3.1. However, this came as a result of tradeoffs between

the goals the architecture is designed to support:

1. Model constructs need to be represented in a useful form for human factors engineers

who will be building and evaluating many of the models;

2. The sub-models should be decoupled and modular (as in Figure 3.1) in order to allow

for interchangeability of alternative sub-models; and

3. The constructed models need to be capable of being verified in a reasonable amount

of time.

We discuss how each of these goals was impacted and how related issues might be ad-

dressed.

3.6.1 Goals 1: Model Representation Usefulness

Many of the model revisions were associated with representing model constructs in ways

that were more readily interpretable by the model checker rather than the human factors

engineer. These primarily took the form of converting floating point and digit array values

into integers in Phase 1b. Further, the extensive model reductions that were undertaken in

Phase 1c would be very cumbersome for a human factors engineer.

There are two potential ways to address this issue. One solution would be to improve

the model checkers themselves. Given that the modifications would not actually change

the number of reachable states in the system, this would suggest that the model checker

need only optimize the BDD conversion algorithms.
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Alternatively, additional modeling tools could be used to help mitigate the situation.

Such tools could allow human factors engineers to construct or import human-device in-

terface prototypes, and translate them into model checker code. This would allow the

representations necessary for ensuring a model’s efficient processing by the model checker

to be removed from the modeler’s view.

3.6.2 Goal 2: Decoupling of Architecture Sub-models

Because the protocol used to coordinate human actions between the human-device inter-

face and human task models (discussed for Phase 1a and used in all models produced in

all subsequent phases) assumes a particular relationship between variables shared by these

models, they are tightly coupled. Unless a model checker can be made to support both

asynchronous and synchronous relationships between models more elegantly, this coordi-

nation infrastructure cannot be eliminated.

However, a solution may be found in an additional level of abstraction. A toolset for

translating a human-device interface prototype into model checking code, could handle

the construction of the coordination protocol, making this process effectively invisible to

the modeler. Such a process could also allow for more efficient means of coordinating

the human-device interface and human task models: one that might not require the use of

separate models in the actual model checker code.

While the extensive model reductions from Phase 1 greatly diminished the fidelity with

which the model represented the actual PCA pump, this provides some advantages. Since

the model from Phase 2 does not suffer from the memory usage problems encountered in

Phase 1, this opens the door to the addition of other model constructs to be added allowing

for a more complete system analysis.
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3.6.3 Goal 3: Model Verifiability

We are predominantly concerned with exploring how formal methods can be used to pro-

vide insights into human factors and systems engineering concerns. If our goal were to

formally verify properties of the Baxter Ipump, the modeling compromises we made in

order to obtain a verifiable model might necessitate a change in modeling philosophy or

verification approach.

There are many barriers to the verifiability of models of realistic systems. These in-

clude large numbers of parallel processes, large ranges of discrete valued variables, and

non-discretely valued variables. The modeling efforts described here were so challenging

because the target system was dependent on a large number of user specified numerical val-

ues, all of which had very large acceptable ranges. This resulted in the scope of the model

being reduced to the point where it could no longer be used for verifying all of the original

human operator task behaviors: with the model produced in Phase 1b making minor com-

promises and the model produced in Phase 1c only allowing for behaviors associated with

basic PCA pump functionality.

As was demonstrated in Phase 2, the verifiability of the model actually increased with

the inclusion of the human task behavior as indicated by the 98% reduction in the reported

state space from the Phase 1c to the Phase 2 model. However, this came at the expense

of the verification process taking 284 times as long. Thus, in a context where verification

time is less important than the size of the model’s state space, the inclusion of the human

task behavior model may generally prove to be advantageous in the formal verification of

systems that have a human-automation interaction component, irrespective of whether the

human behavior is of concern in the verification process. Future efforts should investigate

the different factors that affect this tradeoff.

Even exploiting this advantage, the relative simplicity of the device that was modeled
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in this work makes it clear that there are many systems that depend of human-automation

interaction that would be even more challenging to verify, if not impossible, using these

techniques. While the use of bounded model checkers may provide some verification ca-

pabilities for certain systems, there is little that can be done without either using additional

abstraction techniques or future advances in model checking technology and computation

power.

It is common practice in the formal methods community to use more advanced forms

of data abstraction than those employed in this work to mitigate the complexity of variables

with large value ranges (an overview of these methods can be found in [136]). Because

the nature of the modeled human task behavior in this work was concerned with the digit

level editing of the data values, such abstractions were not appropriate for this particu-

lar endeavor. Additionally, automatic predicate abstraction techniques like those used in

counterexample-guided abstraction refinement [55] could potentially alleviate some of the

complexity problems encountered in this work without requiring changes to the models

themselves. Future work should investigate how these different abstraction techniques

could be used when modeling systems that depend on human-automation interaction in

ways that are more useful to human factors engineers.

It is clear that the multiple, large-value-ranged variables were the source of most of

the model complexity problems in the pump example, as shown in the drastic decrease in

verification performance time between the models produced in Phases 1b and 1c. Thus,

had the target system been more concerned with procedural behaviors and less on the

interrelationships between numerical values, the system model would have been much

more tractable. Future work should identify additional properties of systems dependent on

human-automation interaction that lend themselves to being modeled and verified using

the framework discussed here.

Finally, some of the performance issues we encountered can be attributed to our use of
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SAL. For example, model checkers such as SPIN [104] do not perform the lengthy process

of constructing the BDD representation before starting the checking process. Future work

should investigate which model checker is best suited for evaluating human-automation

interaction.

3.6.4 Closing Comments

The work presented here has shown that it is possible to construct models of human-

automation interaction as part of a larger system for use in formal verification processes

while adhering to some of the architectural goals in Figure 3.1 4. In making this contribu-

tion, this work has utilized a coordination protocol which allows the human task behavior

to interact with the other elements of the formal system model. It has also shown that

the incorporation of human task behavior models into system models may help alleviate

the state explosion problem in some systems that depend on human-automation interac-

tion given the significant reduction in the size of the models statespace between the formal

system model containing the unconstrained human operator and the one using normative

task behavior defined in an instantiated EOFM. In fact, the use of the two different task

behavior models (both the normative and unconstrained) illustrates the flexibility of the

architectural framework, given that the two were completely interchangeable. Although

the PCA pump application did not include a model of the environment, and no problems

with human-automation interaction were discovered, applications in latter chapters address

both of these issues.

These successes were the result of a number of compromises that produced a model

that was not as representative or modular as desired. Thus, in order for formal methods

to become more useful for the HFE community, the verification technology will need to

4More successful implementations are discussed in subsequent chapters.
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be able to support a more diverse set of systems. Further, new modeling tools may be

required to support representations that human factors engineers use. These advances will

ultimately allow formal methods to become a more useful tool for human factors engineers

working with safety critical systems.



Chapter 4

Enhanced Operator Function Model to Symbolic

Analysis Laboratory Translator∗

Chapter 3 showed that task analytic models can be incorporated into a system modeling

framework that also includes models of the human missions, human-device interfaces,

device automation, and the environment. This chapter shows how the formal semantics

of the EOFM (see [33] or Chapter 2) can be used to create a translator that automatically

converts an instantiated EOFM into a formal model that can be formally verified with

SAL’s symbolic model checker. The translation process is verified to produce code that

complies with EOFM’s formal semantics. The complexity of the formal representations of

EOFM task models are benchmarked. We also present an automobile driving case study

illustrating how this process can be used with our method to discover and to analyze a

potential intervention to correct safety properties related to the use of the cruise control.

∗This chapter is derived from [33]

73
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4.1 EOFM to SAL Translation

To be utilized in a model checking verification, instantiated EOFMs must be translated into

a model checker supported language. We use the formal semantics ([33] and Chapter 2)

to translate instantiated EOFMs into the language of the Symbolic Analysis Laboratory

(SAL). SAL is a framework for combining different tools to calculate properties of con-

current systems [65, 169]. The SAL language is supported by a tool suite which includes

state of the art symbolic (SAL-SMC), bounded (SAL-BMC), and “infinite” bounded (SAL-

INF-BMC) model checkers. Auxiliary tools include a simulator, deadlock checker, and an

automated test case generator.

The SAL language is designed for specifying concurrent systems in a compositional

way. Constants and types are defined globally within a SAL file. Discrete system com-

ponents are modeled as modules. Each module is defined in terms of input, output, and

local variables. Modules are linked by their input and output variables. Within a module,

local and output variables are given initial values. All subsequent value changes occur as

a result of transitions. A transition is composed of a guard and a transition assignment.

The guard is a Boolean expression composed of input, output, and local variables as well

as SAL’s mathematical operators. The transition assignment defines how the value of local

and output variables change when the guard is satisfied.

The EOFM to SAL translation is automated by our custom built Java program which

uses the Document Object Model [127] to parse an instantiated EOFM’s XML code and

convert it into SAL code.

For a given instantiated EOFM, the translator defines SAL constants and types using

the constant and userdefinedtype nodes. The translator creates a separate SAL module for

each humanoperator node. Input, local, and output variables are defined in each module

corresponding to the humanoperator node’s inputvariable, localvariable, and humanaction
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nodes respectively. Input and local variables are defined in SAL using the name and type

(basictype or userdefinedtype) attributes from their markup. Local variables are initialized

to their values from the markup. All output variables in the SAL module (one for each

humanaction node) are defined with a Boolean type and initialized to false: a value of true

indicates that the action is being performed.

The translator defines two Boolean variables in the humanoperator node’s module to

handle a coordination handshake with the human-device interface module (see [27], [31],

or Chapter 3):

1. An input variable interfaceReady that is true when the interface is ready to receive

input; and

2. An output variable actionsSubmitted that is true when one or more human actions

are performed.

The actionsSubmitted output variable is initialized to false.

The translator defines a SAL type, ActivityState, to represent the execution states of ac-

tivities and actions: Ready, Executing, or Done (Figure 2.3). As described previously, the

activity and action state transactions define the task (Figure 2.3). Each activity and action in

the human operator’s node structure has an associated local variable of type ActivityState.

For activities, in addition to the task model defined preconditions, repeatconditions, and

completionconditions, three other conditions are required to define the transition guards:

startconditions, endconditions and reset. The translator defines the startconditions based

on the execution state of its parent activity, the state of the activity’s siblings, and its par-

ent’s decomposition operator. The startcondition for an activity is true when the parent is

Executing, the activity is Ready, and:

1. The decomposition operator is ord and all preceding siblings are Done (it is the next

activity to execute);
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2. The decomposition operator is xor and all siblings are Ready (it is the only activity

to execute); or

3. The decomposition operator is and_seq, or_seq, optor_seq, or sync and no other

siblings are Executing (the activity cannot execute when its siblings execute).

The endcondition for an activity is true when the activity is Executing and:

1. The decomposition operator is and_seq, and_par, or sync and all child activities or

actions are Done;

2. The decomposition operator is ord and the last child activity or action is Done;

3. The decomposition operator is or_seq, or_par, or xor and all child activities or ac-

tions are not Executing with at least one being Done; or

4. The decomposition operator is optor_seq or optor_par and all child activities or

actions are not Executing.

Because the reset occurs when an activity’s parent resets, the reset transition is handled

differently than the others. When a parent activity transitions from Executing to Execut-

ing, all of the execution state variables corresponding to its sub-acts (and throughout the

hierarchy) are assigned the Ready state. Additionally, for each activity at the top of a task

hierarchy, a guard is created that checks if its execution state variable is Done. Then, in the

transition assignment, this variable is assigned a value of Ready along with the lower level

activities and actions in order to achieve the desired reset behavior.

Transitions between execution states for variables associated with action nodes are

handled differently due to the coordination handshake. For each action, a startcondition is

created using execution state variables and written as a guard for the Ready to Executing

transition (Figure 2.3(b)) with the additional condition that interfaceReady is true. In the
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transition assignment: the execution variable associated with the given action is set to

Executing; the corresponding humanaction output variable is set to the logical negation of

its value (true or false, where the change in variable value indicates that a human action

has been performed); and actionsSubmitted is set to true. Because the endcondition for

all actions is always true, the Executing to Done transition is handled by a single guard

and transition assignment, where the guard accounts for the handshake protocol. Thus the

guard specifies that actionsSubmitted is true and that interfaceReady is false: verifying

that that the interface has received submitted humanaction outputs. In the assignment,

actionsSubmitted is set to true; any execution state variable associated with an action that

has value Executing is set to Done (it is unchanged otherwise); and any humanaction output

variables that support the autoreset behavior are set to false. The reset transition occurs as

a result of the activity reset process discussed above.

Because all of the transitions are non-deterministic, multiple activities can be execute

independently of each other when any of the _par decomposition operators are used. Mul-

tiple human actions resulting from such decompositions are treated as if they occur at the

same time if the associated humanaction output variables change during the same interval

(a sequential set of model transitions) when interfaceReady is true.

4.2 Validation and Benchmarking

A series of formal verifications were performed in order to validate that the EOFM to

SAL translator was working as intended (see Appendix B). To evaluate the complexity

and scalability of EOFM task models, we generated EOFM models and investigated the

translated models’ state spaces and runtimes using SAL.

The EOFM models include a single human operator who presses keys on a human-

device interface. The autoreset behavior was used for all key press actions. For all cases,
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the human operator had a single, goal level activity that decomposed into two or more

actions via a decomposition operator.

Table 4.1: Translated EOFM instance benchmark experiments

# Subacts

Decomposition 2 8 16 24

Operator States Time States Time States Time States Time

and_seq 20 0.15 2,564 0.51 1,179,652 1.82 436,207,620 5.77
or_seq 24 0.15 3,072 0.51 1,310,720 1.85 469,762,048 6.20
optor_seq 26 0.14 3,074 0.50 1,310,722 1.76 469,762,050 6.43
xor 16 0.11 52 0.32 100 1.07 148 3.05
ord 14 0.13 38 0.46 70 1.16 102 2.62
and_par 22 0.12 13,126 0.39 86,093,446 1.75 564,859,072,966 21.48
or_par 26 0.13 13,634 0.41 86,224,514 1.56 564,892,627,394 145.52
optor_par 28 0.13 13,636 0.39 86,224,516 1.91 564,892,627,396 76.42
sync 10 0.11 10 0.21 10 0.37 10 0.67

Note. Time is measured in seconds.

To ensure that the verification process would search a model’s entire state space, we

created an LTL specification that would not produce a counterexample. This stated that

the model could never have an execution state variable indicating that a specific action is

executing (action1State) without its corresponding human action output (PressKey1) being

true:

G(¬(action1State = actExecuting ∧ PressKey1 6= true))

Using SAL’s symbolic model checker (SAL-SMC) on a single core 2.8 gigahertz ma-

chine with 8 gigabytes of RAM running Ubuntu Linux, we ran 9 benchmarking trials.

Table 4.1 shows the size of the state-space and runtimes for the entire set of singleton

operators. The results are consistent with the interleavings of actions associated with the

decomposition operators. For example, there is one more interleaving allowed for optor

than for or1. Also, the number of synchronous actions executed at the same time has no
1The number of reachable states is multiplied by two, because each interleaving produces an additional
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impact on the size of the state space.

In terms of scalability, the symbolic model checker can handle large state spaces (over

half a trillion for some of the parallel operators). However the size of the state space,

the time to check the LTL query, and the type of decomposition operator interact to im-

pact the runtime. With the and_par, or_par, and optor_par decomposition operators, the

statespaces are roughly the same size; however the runtimes vary by a factor of 7 between

and_par and or_par.

4.3 Application: Cruise Control System

To illustrate the use of an EOFM model to find human-automation interaction related prob-

lems, we present a formal model of driving with a simple automobile cruise control system

(Figure 4.1) in which a car is traveling down a street toward a traffic light. The distance of

the car from the light is represented in intervals corresponding to its relative position: Very

Very Far, Very Far, Far, Merging, Close, Very Close, and At Intersection. At the Merging

interval, a ramp intersects with the road allowing any traffic on the ramp to merge.

At Intersection Very Close Close

Traffic 
Light Car

Merging Far Very Far Very Very Far

Merging 

Car

Figure 4.1: Cruise control model scenario.

The driver of the car wants to drive safely down the road. The driver’s goal is to drive

at his desired speed while avoiding merging traffic and safely responding to traffic lights.

reachable state where the key is pressed and the corresponding action is first executing and then transitions
to done.
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He can drive at one of 3 speeds (Slow, Moderate, or Fast) using a gas pedal to increase and

decrease the gas. Increasing the gas (pressing the gas pedal) causes the car to accelerate to

the next faster speed. Decreasing the gas decelerates the car to the next slower speed. The

driver can release the gas pedal (which causes the car to decelerate until it stops) and can

press the break. The driver can enable or disable the cruise control using available buttons.

Cruise control can also be disabled by pressing the break. When enabled, the cruise control

will keep the car moving forward at its current constant speed unless the driver increases

the gas. In this situation, the driver controls the car’s speed above the cruise speed.

The formal system model architecture [27, 34] includes the human-device interface,

device automation, operational environment, and human mission. It also contains the hu-

man task behavior which is translated from an instantiated EOFM for the three modeled

driving tasks: driving at the desired speed, avoiding merging traffic, and responding to a

traffic light. Formal verification is performed on this system model using SAL-SMC to

ensure that the driver will never run a red light.

At each interval, the driver can perform a single action, or synchronous set of actions, in

response to the information he is receiving from the rest of the model. Once these actions

have been committed, the human-device interface, device automation, and environments

update: the light is allowed to change, merging traffic may arrive on the ramp, and the car

advances one interval down the road if it has not stopped. Next we discuss each component

of this system model, how each is modeled formally, and the instantiated EOFM.

4.3.1 Human-device Interface

The human-device interface receives actions from the human operator and provides feed-

back from the device automation in response. Through the human-device interface, the

driver can: increase the gas (IncreaseGas), decrease the gas (DecreaseGas), release the
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gas pedal (ReleaseGas), press the break (Break), press the enable cruise control button

(EnableCruise), and press the disable cruise control button (DisableCruise). The driver

receives information as inputs from the human-device interface: the position of the pedal

(Pedal); the speed of the car (CarSpeed); and whether the car has accelerated, decelerated,

or remained at a constant speed (CarAcceleration).

The driver can directly control the state of the human-device interface’s gas pedal (Fig-

ure 4.2). The pedal has four different states (Unpressed, PressedToSlow, PressedToModer-

ate, and PressedToFast) representing its position. These directly correspond to a car speed

(Stopped, Slow, Moderate, or Fast respectively). The initial state of the pedal (Pressed-

ToSlow, PressedToModerate, or PressedToFast) determines the initial speed of the car. If

the human operator increases the gas then the state of the pedal is set to the next higher

state. If he decreases the gas, the state of the pedal is set to the next lower state. The pedal

transitions to the Unpressed state when the driver releases the gas.

Unpressed

PressedToSlow

PressedTo
Moderate

PressedToFast

IncreaseGas

IncreaseGas

IncreaseGas

DecreaseGas

DecreaseGas

DecreaseGas

ReleaseGas

Figure 4.2: State transition diagram depicting the formal model’s behavior for the gas
pedal (Pedal). States are depicted as rounded rectangles. Arcs with Boolean expressions
attached represent guards on transitions between states. Arrows with a dot point to valid
initial states.
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4.3.2 Device Automation

The device automation tracks the status of the cruise control (Figure 4.3). Cruise is Enabled

when the driver presses the enable cruise button and Disabled when he presses the disable

cruise button or presses the break.

Enabled

Disabled

EnableCruise DisableCruise OR Break

Figure 4.3: State transition diagram depicting the formal model’s behavior for the state of
the cruise control (Cruise). States are depicted as rounded rectangles. Arcs with Boolean
expressions attached represent guards on transitions between states. Arrows with a dot
point to valid initial states.

Enabling the cruise control also sets the cruise speed in the device’s automation (Fig-

ure 4.4) where the cruise speed directly corresponds to the speed of the car when cruise is

enabled.

Human operator input to the gas pedal and the state of the cruise control also impact

how the device automation controls the speed of the car (Figure 4.5): a property visible

to the human operator via the speedometer. The driver can increase the car’s speed by

increasing the gas even when the cruise control is enabled. The application of the break

stops the car. When the driver decreases the gas (without applying the break), the car’s

speed decreases when Cruise is Disabled or when Cruise is Enabled and the CruiseSpeed is

below the car’s current speed. When the driver removes his foot from the gas (as indicated

by the Pedal being Unpressed), the car slows by two speed increments below the current

speed unless Cruise is Enabled and at an intermediary speed. In this case, the car will

remain at or slow down to the CruiseSpeed.
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EnableCruise AND 
CarSpeed = Moderate

EnableCruise AND 
CarSpeed = Stopped

EnableCruise AND 
CarSpeed = Fast

Stopped

Slow

Moderate

Fast

EnableCruise AND 
CarSpeed = Slow

Figure 4.4: State transition diagram depicting the formal model’s behavior for the state
of the cruise speed (CruiseSpeed). States are depicted as rounded rectangles. Arcs with
Boolean expressions attached represent guards on transitions between states. Arrows with
a dot point to valid initial states.

The state of the car’s acceleration (Figure 4.6) is directly tied to changes in the state of

the car’s speed. If the car’s speed has decreased then the car has Decelerated. If the car’s

speed has increased then the car has Accelerated. If there has been no change in the car’s

speed, the car has remained at a ConstantSpeed.

4.3.3 Operational Environment

The environment model encompasses the state of the traffic light, the state of merging

traffic, and the relative position of the car to the traffic light.

The state of the traffic light changes between its three colors in response to a modulo

8 counter (Figure 4.7). The light is Green when the counter is between 0 and 3, Yellow

when the counter is 4, and Red when the counter is between 5 and 7. Any counter value is

a valid initial state. At every step in the model’s execution, when the environment model
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Stopped

Slow

Moderate

Fast

IncreaseGas

IncreaseGas

IncreaseGas

Break

NOT Break AND DecreaseGas AND
(Cruise = Disabled 
OR Cruise=Enabled AND 

CruiseSpeed < Slow)

NOT Break AND DecreaseGas AND
(Cruise = Disabled 
OR Cruise=Enabled AND 

  CruiseSpeed < Moderate)

NOT Break AND DecreaseGas AND
(Cruise = Disabled 
OR Cruise=Enabled AND 

CruiseSpeed < Fast)

NOT Break AND 
Pedal = Unpressed AND 
(Cruise = Disabled OR
(Cruise = Enabled 
AND CruiseSpeed < Moderate))

NOT Break AND 
Pedal = Unpressed AND 
(Cruise = Disabled OR
(Cruise = Enabled 
AND CruiseSpeed < Slow))

NOT Break AND
Pedal = Unpressed AND
(Cruise = Enabled 
AND CruiseSpeed = Moderate)

NOT Break AND
Pedal = Unpressed AND
(Cruise = Enabled 
AND CruiseSpeed = Slow)

Figure 4.5: State transition diagram depicting the formal model’s behavior for the state of
the car’s speed (CarSpeed). States are depicted as rounded rectangles. Arcs with Boolean
expressions attached represent guards on transitions between states. Arrows with a dot
point to valid initial states.

is allowed to update, the light counter increments.

When the car is at the Merging interval, there may be merging traffic based on the

transition logic in Figure 4.8. Initially there is no merging traffic. When the car is at

the Merging interval, there can either be no merging traffic or a single merging car. The

Merging state will automatically transition back to NotMerging when the environmental

model next updates.

The environment model tracks the relative distance, or the interval, of the car from the

traffic light (Figure 4.9). The car starts at the VeryVeryFar interval and proceeds through
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ConstantSpeed

Accelerated
ΔCarSpeed > 0

Decelerated
ΔCarSpeed < 0

ΔCarSpeed = 0

ΔCarSpeed = 0

Figure 4.6: State transition diagram depicting the formal model’s behavior for the state of
the car’s acceleration (CarAcceleration). States are depicted as rounded rectangles. Arcs
with Boolean expressions attached represent guards on transitions between states. Arrows
with a dot point to valid initial states.

the intervals incrementally every time the environmental model updates if the car is not

stopped. Once the AtIntersection interval is reached, the entire system model is at its final

state.

4.3.4 Human Mission

The human mission model controls how fast the human operator wants to drive via the

MissionSpeed variable. It is initialized to Slow, Moderate, or Fast.

4.3.5 Human Task Behavior Model

An instantiated EOFM describes the human driver task behavior using a single humanop-

erator. This human operator driver has access to input variables from:

1. The environment model: the traffic light’s color (TrafficLight) and its relative interval

distance (TrafficLightDistance);
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Yellow Red

Green

0 1 2 3

4 5 6 7

Figure 4.7: State transition diagram depicting the formal model’s behavior for the traffic
light (TrafficLight). States are depicted as rounded rectangles. Arcs with Boolean expres-
sions attached represent guards on transitions between states. Arrows with a dot point to
valid initial states.

NotMerging

Merging

TrafficDistance = Merging

TrafficDistance = Merging

Figure 4.8: State transition diagram depicting the formal model’s behavior for the presence
of merging traffic (Traffic). States are depicted as rounded rectangles. Arcs with Boolean
expressions attached represent guards on transitions between states. Arrows with a dot
point to valid initial states.

2. The human-device automation and interface models: the car’s speed (CarSpeed), the

car’s acceleration (CarAcceleration), and the state of the gas pedal (GasPedal); and

3. The mission model: mission speed (MissionSpeed).

The driver model generates humanaction outputs representing actions performed

through the human-device interface: increasing the gas (IncreaseGas), decreasing the gas

(DecreaseGas), releasing the gas (ReleaseGas), making no change to the gas (NoChange),

pressing the break (Break), enabling the cruise control (EnableCruise), and disabling the
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VeryVeryFar VeryFar
CarSpeed /= Stopped

Far

CarSpeed /= Stopped

Merging
CarSpeed /= Stopped

Close VeryClose
CarSpeed /= Stopped

At Intersection

CarSpeed /= Stopped

CarSpeed /= Stopped

Figure 4.9: State transition diagram depicting the formal model’s behavior for the relative
distance/interval of the car to the traffic light (TrafficLightDistance). States are depicted
as rounded rectangles. Arcs with Boolean expressions attached represent guards on tran-
sitions between states. Arrows with a dot point to valid initial states. A thick black line
around a node indicates a final state.

cruise control (DisableCruise).

Three goal directed task models were constructed2: one for driving at the desired speed

(Figure 4.10), one for avoiding merging traffic (Figure 4.11), and one for responding to the

light (Figure 4.12).

The task model for driving at the desired speed (Figure 4.10) has root activity aDriveAt-

DesiredSpeed. This has both a precondition and repeatcondition that control when it can

execute and when it can repeat execution: when there is no merging traffic and either the

traffic light is green or the car is not close to the intersection. Execution will stop (com-

pletioncondition) if the traffic light is not green and the car is close to the traffic light, or if

2A full code listing can be found in Appendix A
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traffic is merging.

The driver performs this activity using one or more methods (the or_seq decomposition

operator): accelerating (aAccelerate), decelerating (aDecelerate), or maintaining the cur-

rent speed (aMaintainSpeed). Accelerating can be performed repeatedly if the car’s speed

is less than the mission speed. This activity completes when the car’s speed reaches or

surpasses the mission speed, or if the driver must respond to the light or merging traffic.

The driver accelerates by increasing the gas (the ord decomposition operator indicates a

sequential order; but with one action, only the one action is performed).

The driver can start or continue decelerating if the car’s speed is greater than the desired

(mission) speed. The activity completes when the car’s speed is less than or equal to

the desired speed, or the driver needs to respond to the light or traffic. Deceleration is

accomplished by one of two activities (the xor decomposition operator): decreasing the

gas (aDecreaseGas) or disabling the cruise control (aDisableCruise). If the gas pedal is

pressed, the driver can decrease the gas. The driver can disable the cruise control if it is

enabled: the pedal is not pressed and the car has not just decelerated.

The driver can maintain speed as long as the car’s speed matches the desired speed. The

activity completes if the car’s speed does not match the desired speed, or the driver needs

to respond to the light or traffic. The driver maintains speed by either enabling the cruise

(aCruise) or holding the current speed (aHoldSpeed). If the cruise control does not appear

to be enabled (indicated by the pedal being pressed), it can be enabled by synchronously

performing (the sync decomposition operator) the actions for enabling the cruise control

and releasing the gas pedal. The driver can tell that the cruise control has been enabled if

the car does not decelerate when he removes his foot from the gas pedal. The driver holds

the current speed by making no change to the gas pedal.

The driver can avoid merging traffic (aAvoidMergingTraffic; Figure 4.11) when traffic

is merging by performing one of two activities: if the car is not at its minimum speed, the
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driver can let the merging traffic go in front (aLetCarGoInFront), or if the car is not at

its maximum speed, the driver can let the merging traffic in behind (aLetCarGoBehind).

Letting the traffic pull in front is achieved by (a) decreasing the gas (via aDecreaseGas) if

cruise is not enabled or (b) disabling cruise (via aDisableCruise) if it is enabled. Letting

the traffic in behind is achieved by increasing the gas.

aAvoid
Merging
Traffic

Traffic = Merging

xor

aLetCar
GoInFront

CarSpeed > Slow

xor

aDecrease
Gas

Pedal = Pressed

ord

DecreaseGas

aDisable
Cruise

Pedal = Unpressed 
AND CarAcceleration /= Decelerated

ord

DisableCruise

aLetCar
GoBehind

CarSpeed < Fast

ord

IncreaseGas

Figure 4.11: Visualization of the EOFM for avoiding to merging traffic.

The driver responds to the traffic light (aRespondToLight in Figure 4.12) if the traffic

light is not green and the car is close or very close to it by performing one or more of

three activities: waiting to respond to the light until the car is closer (aWaitTillCloser),

performing a break stop (aBreakStop), or performing a roll stop (aRollStop). If the car is

close to the traffic light, the driver can wait until the light is closer by making no change to

the car’s gas pedal.
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If the traffic light is not green, the car is very close to the light, and the car has not

decelerated, the driver can quickly slow by breaking.

If the car is close to the traffic light and the car is going fast, the driver can let the

car slowly roll to a stop by first ceasing to supply gas to the car (aRemoveGas) and then

stopping at the intersection (aStopAtIntersection). He removes the gas supply by either

releasing the gas (via aReleaseGas) if cruise is not enabled, or disabling cruise (via aDis-

ableCruise) if it is.

The driver no longer considers stopping at the intersection when the light is green.

Otherwise the driver performs a break stop (via aBreakStop) if the car has not decelerated

or continues to roll to a stop if it has.

4.3.6 EOFM to SAL Translation

The EOFM instance was translated into SAL code and incorporated into the larger formal

system model. In its original XML form, the human task behavior model was represented

in 168 lines of code (43 lines were devoted to closing XML tags). The translated SAL

version of the model was represented in 439 lines of code (2.6 times more lines of code

than the XML EOFM Language representation).

4.3.7 Specification and Verification

To ensure safety, we wanted to check that the car would never reach the intersection while

moving when the traffic light was red. This was represented in LTL as follows:

G¬


TrafficLightDistance = AtIntersection

∧ Car 6= Stopped

∧ TrafficLight = Red

 (4.1)
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The attempt to verify this specification using SAL-SMC resulted in a counterexample

illustrating a violation. This occurred as follows:

1. The car starts VeryVeryFar from the traffic light going Slow with a ConstantSpeed

acceleration. The pedal is PressedToSlow and cruise is Disabled. The traffic light is

Green and the driver wants to maintain a Moderate speed.

2. Because the current speed is too slow, the driver increases his speed by increasing

the gas (IncreaseGas via the aDriveAtDesiredSpeed and aAccelerate activities; Fig-

ure 4.10). The car proceeds to the VeryFar interval having Accelerated to a Moderate

speed.

3. Now at his desired speed, the driver engages the cruise control (synchronously per-

forming EnableCruise and ReleaseGas via the aDriveAtDesiredSpeed, aMaintain-

Speed, and aCruise activities; Figure 4.10). The car thus proceeds to the Far position

at a Moderate ConstantSpeed.

4. The driver makes no changes to the speed of the car (NoChange via the aDriveAt-

DesiredSpeed, aMaintainSpeed, and aHoldSpeed activities). The car proceeds to the

Merging position at a Moderate ConstantSpeed, where traffic is attempting to merge.

5. The driver lets the traffic in behind by increasing the gas (IncreaseGas via the

aAvoidMergingTraffic and aLetCarGoBehind activities; Figure 4.11). The car ad-

vances to the Close interval having Accelerated to the Fast speed. The traffic light

turns Yellow.

6. The driver responds to the light by executing releasing his foot from the gas to per-

form a roll stop (ReleaseGas via the aRespondToLight, aRollStop, aRemoveGas, and

aReleaseGas activities; Figure 4.12). The car proceeds to the VeryClose interval hav-

ing Decelerated to the Slow speed. The light turns Red.
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7. Having felt the car decelerate when he released the gas, the driver attempts to con-

tinue rolling to a stop at the intersection by making no change (NoChange via the

aRespondToLight, aRollStop, aStopAtIntersection, and aRollToAStop activities; Fig-

ure 4.12). However, the car has reached its cruising speed (Moderate) and has con-

tinued to the AtIntersection interval at a Moderate ConstantSpeed.

Thus the specification has been violated with the car reaching the intersection without

having stopped when the light is red.

4.3.8 Redesign

We can use our methodology to explore potential solutions to the discovered problem. A

possible explanation for the above problem is that the driver does not remember that the

cruise control is engaged and therefore cannot properly perform a roll stop. In the current

implementation, the only way the driver can tell that the cruise control is engaged is if the

gas pedal is not pressed and the car is not decelerating.

The car designer can add an indicator light with the state of the cruise control. In

the formal model, this can be represented by a new variable (Cruising) which indicates

whether cruise control is Enabled or Disabled. The driver’s task model then changes to

check this variable before executing a roll stop. To model this change a Cruising input-

variable node is added to the driver’s humanoperator node. In the aDriveAtDesiredSpeed

activity (Figure 4.10) the preconditions for aDecreaseGas and aCruise check that cruis-

ing is Disabled and the precondition for aDisableCruise checks that cruise is Enabled.

In the aAvoidMergingTraffic (Figure 4.11) activity, the precondition on aDecreaseGas and

aDisableCruise check that cruise is Disabled and Enabled respectively. Finally, in the aRe-

spondToLight (Figure 4.12) activity, the precondition to aReleaseGas and aDisableCruise

check that cruise is Disabled and Enabled respectively. The decomposition of aDisable-
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Cruise also changes to the sync decomposition operator to support the actions for disabling

the cruise control and releasing the gas pedal.

An EOFM instantiation modified to reflect these changes was translated into SAL and

incorporated into the compatibly modified system model. When SAL-SMC was run using

this new model and the specification in 4.1, it verified to true. Thus the minor modifications

to the human-device interface and the human task behavior model eliminated the potential

human-automation interaction problem discovered in the previous verification.

4.4 Discussion

The EOFM task modeling language is defined formally and its formal description has

been used to construct a translator to support model checking. Translated models can be

incorporated into larger system models so that they can be formally verified. We have

demonstrated that this process can be used to discover and correct problems related to

human-automation interaction.

4.4.1 Benchmarking and Model Complexity

The reported benchmarks highlight the tradeoffs associated with modeling different tem-

poral orderings of human behavior. In order to assess this, one must qualify the frequency

that each decomposition operator is used in task analytic modeling, and in what contexts

each is most appropriate. This will help provide a better understanding of what types of

systems are best suited for the analysis presented here.

Bolton and Bass [31] indicate that, rather than add to the complexity of formal system

models, the formal representation of the human task models reduces model complexity

for systems that depend on human-automation interaction by constraining the reachable

state space to that associated with modeled human behavior. This suggests that the de-
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composition operators associated with higher model complexity in Table 4.1 would simply

fail to constrain the system model as tightly as the less complex decomposition operators.

This could limit the types of applications that can be formally verified using the method

discussed here. Future work should explore this possibility.

There may also be potential for reducing the state space complexity of the translated

EOFM models. In the current implementation, the formal model represents every transi-

tional step of an activity’s execution state as a single model transition in the formal model.

While this accurately adheres to the formal semantics of the language, it necessitates that

the formal model has a discrete state for every intermediary transition in the task model

hierarchy. These intermediary transitions are of no consequence to the other elements of

the system model, which are only concerned with the resulting human actions. Thus, the

complexity of the formal task model representation could be reduced by decreasing the

number of internal transitions required to traverse an instantiated EOFM’s translated task

structure during execution. Future work should investigate the feasibility of this.

4.4.2 Compactness of the EOFM Language

The increase in code size between the EOFM language representation and its translated

SAL code version illustrates how much more compact the EOFM language is for modeling

human task analytic behavior. This coupled with the fact that the EOFM language structure

closely mimics the hierarchical nature of the task analytic modeling paradigm suggests that

it may be easier to model human task behavior using the EOFM-like languages than with

native model checking code. Future work should investigate whether analysts can develop

task models more efficiently using EOFM. This is discussed in more thoroughly in Chapter

9.



Chapter 5

Phenotypical Erroneous Human

Behavior Generation∗

The discussion up to this point has used examples showing how our method can be used

with normative human task behavior models to find human-automation interaction related

system problems. However, many system failures involving human behavior occur (at least

partially) as a result of erroneous human behavior [12, 80, 105, 125, 126, 130, 144, 146,

158, 159, 168]. This chapter discusses the literature on the classification and modeling of

erroneous human behavior and discusses a way in which this can be used to describe the er-

roneous human behavior model generation process from the method, where phenotypes of

erroneous human behavior [100] are automatically incorporated into instantiated EOFMs.

This allows an analyst who is using our method to evaluate the impact of potentially un-

predicted erroneous human behavior on system safety properties. Our implementation is

validated, and benchmarks are provided to provide insight into how the analyses may scale

in relation to the number of generated erroneous behaviors. The process is also illustrated

with a radiation therapy machine application which makes use of the human mission, hu-

man task behavior, device automation, and human-device interface. The use of the gen-

∗This chapter is derived from [29]
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erated erroneous human behavior in the formal system model resulted in a specification

violation. Changes to the device automation were able to eliminate this violation even with

the inclusion of the erroneous human behavior.

5.1 Erroneous Human Behavior Taxonomies

Erroneous behavior has been classified based on how they arise from human decision mak-

ing, cognition, and task execution [100, 142, 159]. Many classifications rely on a models

of cognition or decision making [142, 159]. However, Hollnagel [100] relies exclusively

on the observable manifestation of erroneous human behavior. Instantiated EOFMs do not

have to model the low level perceptual, motor, and cognitive processes but do model hu-

man task behavior hierarchically down to the atomic, observable action level. Thus they

are compatible with Hollnagel’s [100] phenotypes of erroneous action.

Hollnagel [100] classified erroneous human behavior based on how it observably man-

ifests as divergence from planned or normative sequences of actions. All erroneous be-

haviors are composed of one or more erroneous actions, all capable of being detected by

observing the performance of a single act in a plan. These “zero-order” phenotypes in-

clude: prematurely starting an action, delaying the start of an action, prematurely finishing

an action, delaying the completion of an action, omitting an action, skipping an action,

re-performing a previously performed action, repeating an action, and performing an un-

planned action (an intrusion). Higher order phenotypes are composed of two or more

zero-order phenotypes.

The phenotypes for delaying, prematurely starting, or prematurely finishing an action

specifically refer to time, not currently supported by formal verification with our method

[26]. However, all of the other zero-order phenotypes relate to the performance or non-

performance of actions, all supported by the formal semantics and structure of the EOFM.
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In this work, we introduce a method that automatically generates these phenotypes as part

of an instantiated EOFM that captures normative behavior.

5.2 Automatic Phenotypical Erroneous Human Behavior

Generation

The error generation process must be capable of replicating Hollnagel’s 1993 zero-order

phenotypes of erroneous human behavior for omitting, skipping, re-performing, repeating

or intruding an action for each original action in an instantiated EOFM. To allow for more

complex erroneous human behaviors, error generation must be capable of chaining zero-

order erroneous human acts. Because an unbounded number of erroneous acts could result

in an unbounded human task behavior model, the error generation process must support

a mechanism for constraining the number of erroneous acts that can be performed in the

formally translated erroneous human behavior model. In order to facilitate analysis with

our method, the error generation structure should be represented in the EOFM language

thus making it compatible with EOFM to SAL translation process and counterexample

visulization.

To create and erroneous human behavior model, a pattern for generating zero-order

phenotypes for omissions, skips, re-performances, repetitions, and intrusions are incorpo-

rated into an instantiated EOFM by replacing each atomic action (Actionx) with a cus-

tomized structure (Actionx’) (Figure 5.1). This design includes an upper bound on the

number of erroneous acts (EMax) and a variable (ECount) that keeps track of the num-

ber of erroneous acts that the task model has performed. Any activity that represents an

erroneous act has a precondition asserting that it cannot be performed unless the current

number of performed erroneous actions is less than the maximum (ECount < EMax). Ev-
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ery time an activity representing an erroneous act executes, ECount is incremented by one

(ECount++).

Actionx’

or_seq

Correct
Action

ord

Actionx

Omission

ECount < EMax

ord

DoNothing

Commission1

ECount < EMax

xor

. . .

ECount++ ECount++

. . .

BecomesActionx

Actionn

CommissionEMax

ECount < EMax

xor

ECount++

. . .Action1 Actionx . . . Actionn. . .Action1 Actionx

Figure 5.1: Visualization of the EOFM structure used to generate a zero-order phenotypical
erroneous human behavior.

Actionx’ decomposes into several addition activities, allowing Actionx’ to complete

execution if one or more of these activities executes (the or_seq decomposition operator).

CorrectAction allows the original correct action (Actionx) to be performed. The Omission

activity allows a human operator to perform the erroneous act of omitting the original ac-

tion, represented as the DoNothing action. The Commission activities each allow a single

erroneous action to be performed (the xor decomposition operator), where the set of erro-

neous actions corresponds to the n human actions available to the human operator. There

are ECount Commission activities, thus allowing up to ECount erroneous actions to occur

in place of the original action.

This design allows the specified zero-order erroneous behavior phenotypes to be gener-

ated and/or considered when the EOFM is evaluated in terms of its formal semantics. Skips

and omissions occur through the execution of the Omission activity. Repeating the current

action, re-performing a previously completed action, or performing an intrusion can oc-

cur by executing either the current action, a previously performed action, or some other
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action respectively through one of the Commission activities. Multiple erroneous actions

can occur before, after, or instead of the correct action due to the or_seq decomposition

and multiple erroneous acts can occur between error generating structures for different ac-

tions. Thus, the use of this structure allows for single erroneous actions as well as more

complicated erroneous behaviors to be generated.

Our Java-based EOFM to SAL translator [33] was modified to optionally incorporate

erroneous acts into any instantiated EOFM. The translator takes the maximum number

of erroneous acts (EMax) as input from the analyst and traverses the EOFM structure,

replacing each action with its corresponding error generative structure (Figure 5.1). To

accommodate the verification process, the translator represents EMax as a constant and the

range for the number of possible erroneous acts (0 to EMax) as a type. It modifies each

human operator by adding a local variable representing the current number of performed

erroneous acts (ECount) and a DoNothing human action.

The translator produces two files as output. The first is an EOFM XML file represent-

ing the created erroneous human behavior model (separate from the model of normative

behavior). The second is the translated SAL representation of this model, created by the

modified translator.

5.3 Testing and Benchmarks

A variety of tests and benchmarks were performed to determine if the error generation pro-

cess as implemented would generate the desired erroneous human behavior (see Appendix

C) and shed light on how the error generation process impacted model complexity.

For the model complexity analyses, a simple instantiated EOFM was constructed in

which a single activity (aParent) with no conditions decomposes into a single action (a)

with an ordered (ord) decomposition operator. Model complexity was assessed using the
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translated task model which was incorporated into a formal system model containing a

human-device interface that could accept the human operatorŠs action. This was checked

against a valid specification using SAL-SMC. Model complexity should vary based on

both the number of actions the human operator can perform and the maximum number

of erroneous acts (EMax). Thus, both were varied (1 to 4 actions, and 0 to 4 maximum

erroneous acts) in a full cross product in these tests in order to obtain metrics of complexity

(number of states) and verification time. Using SAL’s symbolic model checker (SAL-

SMC) on a dual core 2.8 gigahertz machine with 16 gigabytes of RAM running Ubuntu

Linux, we ran 20 trials (Table 5.1).

Table 5.1: Verification benchmarks (statespace size and verification time) for phenotypical
erroneous human behavior generation.

Maximum Erroneous Acts

] Human 0 1 2 3 4

Actions ] States Time ] States Time ] States Time ] States Time ] States Time

1 10 0.09 96 0.27 360 0.36 1152 0.44 3360 0.58
2 10 0.09 122 0.29 650 0.41 3042 0.57 13122 0.81
3 10 0.09 148 0.32 1008 0.48 6144 0.74 34816 1.14
4 10 0.09 174 0.34 1430 0.55 10710 0.90 74850 1.49

Note. All times are given in seconds.

Thus, it is clear that both the number of actions the human operator can perform and

the maximum number of erroneous acts increase the complexity of the model. Figure 5.2

show that the complexity of the model seems to increase exponentially with the maximum

number of erroneous acts, where complexity increase faster as the number of actions the

human operator can perform increases.
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0 1 2 3 4 1 2

4 Human A 10 174 1430 10710 74850 0.09 0.27
3 Human A 10 148 1008 6144 34816 0.09 0.29
2 Human A 10 122 650 3042 13122 0.09 0.32
1 Human A 10 96 360 1152 3360 0.09 0.34

1 Human A 2 Human A 3 Human A 4 Human Actions 1 Human A 2 Human A
0 Maximum  10 10 10 10 10 10

1 Maximum  96 122 148 174 96 122

2 Maximum  360 650 1008 1430 360 650
3 Maximum  1152 3042 6144 10710 1152 3042
4 Maximum  3360 13122 34816 74850 3360 13122
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Figure 5.2: Plot of the maximum number of erroneous acts vs. the number of states for
EOFMs with 1-4 human actions on both linear-linear and log-linear coordinates.

5.4 Application

To demonstrate how this type of error generation can be used, we evaluate a model of a

human operated radiation therapy machine (see for example [130]). This device is a room-

sized, computer-controlled, medical linear accelerator. It has two treatment modes: the

electron beam mode is used for shallow tissue treatment, and the x-ray mode is used for

deeper treatments - requiring electron beam current approximately 100 times greater than

that used for the electron beam mode. The x-ray mode uses a beam spreader (not used in

electron beam mode) to produce a uniform treatment area and attenuate radiation of the

beam. An x-ray beam treatment application without the spreader in place can deliver a

lethal dose of radiation.

5.4.1 Human-device Interface

The human-device interface model (Figure 5.3) includes interactions with the 5 relevant

keyboard keys (‘X’, ‘E’, Enter, Up and ‘B’) and the information on the monitor. The in-

terface states (InterfaceState) starts in Edit where the human operator can press ‘X’ or ‘E’

(PressX or PressE) to select the xray or electron beam mode and transition to the Confir-
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mXrayData or ConfirmEBeamData states respectively. When in the ConfirmXrayData or

ConfirmEBeamData states, the appropriate treatment data is displayed (DisplayedData),

and the human operator can confirm the displayed data by pressing enter (advancing to the

PrepareToFireXray or PrepareToFireEBeam states) or return to the Edit state by pressing

up (PressUp) on the keyboard. In the PrepareToFireXray or PrepareToFireEBeam states,

the human operator must wait for the beam to become ready (BeamState), at which point

he can press ‘B’ (PressB) to administer treatment by firing the beam. This transitions the

interface state to TreatmentAdministered. The operator can also return to the previous data

confirmation state by pressing up.

5.4.2 Device Automation

The device automation model (Figure 5.4) controls the power level of the beam (Beam-

Level), the position of the spreader (Spreader), and the firing of the beam (BeamFireState).

The power level of the beam (BeamLevel) is initially not set (NotSet). When the human

operator selects the xray or electron beam treatment mode, the power level transitions to

the appropriate setting (XrayLevel or EBeamLevel respectively). However, if the human

operator selects a new power level, there is a delay in the transition to the correct power

level, where it remains in an intermediary state (XtoE or EtoX) at the old power level before

automatically transitioning to the new one. The position of the spreader (Spreader) starts

either in or out of place (InPlace or OutOfPlace). When the human operator selects the

xray or electron beam treatment mode, the spreader transitions to the appropriate setting

(InPlace or OutOfPlace respectively). The firing state of the beam (BeamFireState) is ini-

tially waiting to be fired (Waiting). When the human operator fires the beam (pressing ‘B’

when the beam is ready), the beam fires (Fired) and returns to its waiting state.
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Edit

Confirm
EBeamData

Confirm
XrayData

PrepareTo
FireEBeam

PrepareTo
FireXray

Treatment 
Administered

PressUp PressEnter

PressX PressE

PressEnter PressUp

BeamState = BeamReady 
˄ PressB

BeamState = BeamReady 
˄ PressB

NotReady Ready

InterfaceState = PrepareToFireXray
˅ InterfaceState = PrepareToFireEBeam

InterfaceState ≠ PrepareToFireXray
˅ InterfaceState ≠ PrepareToFireEBeam

InterfaceState

DisplayedData

NoData

EBeamDataXrayData

InterfaceState = Edit 
˄ PressX

InterfaceState = Edit 
˄ PressE

InterfaceState = ConfirmXrayData
˄ PressUp

InterfaceState = ConfirmEBeamData
˄ PressUp

BeamState

PressUpPressUp

Figure 5.3: State transition representation of the formal human-device interface model.
Rounded rectangles represent states. Arrows between states represent transitions. Dotted
arrows indicate initial states.

5.4.3 Human Mission

The human mission identifies the desired treatment (TreatmentType equaling Xray or

EBeam).

5.4.4 Human Task Behavior

Three goal directed task models describe the administration of treatment with the radiation

therapy machine (Figure 5.5): selecting the treatment mode (aSelectXorE), confirming
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EBeamPowerLevelXRayPowerLevel

NotSet

XRayLevel

XtoE

EBeamLevel

EtoX

InterfaceState = Edit ˄ PressX InterfaceState = Edit ˄ PressE

InterfaceState = Edit 
˄ PressE

InterfaceState = Edit 
˄ PressX

InterfaceState = Edit ˄ PressX InterfaceState = Edit ˄ PressE

InterfaceState = Edit ˄ PressX

InterfaceState = Edit 
˄ PressE

OutOfPlace InPlace

BeamState = Ready ˄ PressB

Fired Waiting

BeamLevel

SpreaderBeamFireState

Figure 5.4: State transition representation of the formal device automation model.

treatment data (aConfirm), and firing the beam (aFire).

These models access input variables from the human-device interface (the interface

state (InterfaceState), the displayed treatment data (DisplayedData), and the ready status

of the beam (BeamState)) and the mission (treatment type (TreatmentType) to generate the

human actions for pressing the appropriate keyboard keys.

When the interface is in the edit mode (aSelectXorE), the practitioner can select the

appropriate treatment mode based on the mission TreatmentType by performing either the

PressX or PressE actions. When the interface is in either of the two data confirmation states

(aConfirm) the practitioner can choose to confirm the displayed data (if the displayed data

corresponds to the desired treatment mode) by pressing enter or return to the Edit state by

pressing up. When the interface is in either of the states for preparing to fire the beam

(aFire), the practitioner can choose to fire the beam if the beam is ready by pressing ‘B’ or

return to the previous interface state by pressing up.
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aSelect
XorE

InterfaceState = Edit InterfaceState /= Edit

xor

aSelect
Xray

TreatmentType = Xray

ord

PressX

aSelect
EBeam

TreatmentType = EBeam

ord

PressE

aFire

InterfaceState = PrepareToFireXray OR
InterfaceState = PrepareToFireEBeam

InterfaceState /= PrepareToFireXray AND
InterfaceState /= PrepareToFireEBeam

xor

aFire
Beam

BeamState = Ready

ord

PressB

aGoBack

ord

PressUp

InterfaceState = ConfirmEBeamData OR
InterfaceState = ConfirmEBeamData

InterfaceState /= ConfirmEBeamData AND
InterfaceState /= ConfirmEBeamData

xor

aConfirmD
ata

ord

Press
Enter

aGoBack

ord

PressUp

(TreatmentType = EBeam 
AND DisplayData = EBeamData) 

OR (TreatmentType = Xray 
AND DisplayData = XRayData)

aConfirm

Figure 5.5: Visualization of the EOFMs for interacting with the radiation therapy machine:
selecting the treatment mode (aXorE), confirming treatment data (aConfirm), and firing the
beam (aFire).

5.4.5 EOFM to SAL Translation

The EOFM instance was translated twice into SAL code and incorporated into the larger

formal system model: once for normative behavior and once for erroneous human behavior

with a maximum of one erroneous act. The normative behavior model’s EOFM represen-

tation was 74 lines of XML code. Its corresponding formal representation was 166 lines of

SAL code. The produced erroneous EOFM model was 240 lines of XML code. Its formal

representation was 641 lines of SAL code.
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5.4.6 Specification and Verification

We specify that we never want the radiation therapy machine to irradiate a patient by ad-

ministering an unshielded xray treatment using Linear Temporal Logic as follows:

G¬


BeamFireState = Fired

∧ BeamLevel = XRayPowerLevel

∧ Spreader = OutOfPlace

 (5.1)

When checked against the formal system model with the translated normative task

behavior model, it verified to true in less than one second having visited 1648 states.

The formal system model containing the erroneous human behavior model produced a

counterexample after 38 seconds illustrating the following failure sequence:

1. The model initialized with the interface in the edit state with no displayed data and

the beam not ready; the beam power level not set; the spreader out of place; the beam

fire state waiting; and the human mission indicating that the human operator should

administer electron beam treatment.

2. When attempting to select the electron beam mode, the practitioner erroneously

pressed ‘X’ instead of ‘E’ (via a generated Commission activity in aSelectXorE from

Figure 5.5). This caused the interface to transition to the xray data confirmation state

and display the xray treatment data. The spreader was also moved in place and the

beam was set to the xray power level.

3. Because the incorrect data was displayed, the practitioner pressed up to return the

interface to the edit mode.

4. The practitioner selected electron beam treatment mode by pressing the ‘E’ key. The

interface transitions to the electron beam data confirmation state and displayed the
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electron beam treatment data. The spreader was moved out of place and the beam

prepared to transition to the electron beam power level (XtoE in Figure 5.5).

5. The practitioner confirmed the treatment data by pressing enter and the interface

transitioned to the electron beam’s waiting to fire state.

6. The beam became ready.

7. The practitioner fired the beam by pressing ‘B’. Because the beam power level had

not yet transitioned to the electron beam power level, the beam fired at the xray

power level with the spreader out of place.

5.4.7 Redesign

One way of correcting this discovered system failure is by modifying when the beam be-

comes ready in the human-device interface. This can be done by adding the additional

constraint that the beam will not transition to ready unless it is set to the correct power

level (Figure 5.6).

Ready NotReady

InterfaceState ≠ PrepareToFireXray
˅ InterfaceState ≠ PrepareToFireEBeam

(InterfaceState = PrepareToFireXRay ˄ BeamLevel = XRayLevel)
˅ (InterfaceState = PrepareToFireEBeam ˄ BeamLevel = EBeamLevel)

Figure 5.6: State transition diagram depicting the modified formal model’s human-device
interface indications of the beams ready state.

When this modified model was incorporated into the system model with the erroneous

human behavior model and checked against (5.1), it verified to true in 42 seconds having

visited 45290 states.
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5.5 Discussion

The generation process meets all of its requirements, allowing it to be integrated into our

method for the formal verification of human-automation interaction:

1. Using an EOFM task structure to replace every action in an instantiated EOFM, we

are capable of generating zero-order phenotypes of erroneous human action: omit-

ting an action, skipping an action, re-performing a previously completed action, re-

peating the last performed action, or intruding an action.

2. The use of the structure in each action, and the use of the or_seq decomposition

operator (which allows one or more sub-activities to execute) in the error generation

structure allow multiple zero-order phenotypical erroneous acts to generate all of

Hollnagel’s first-order phenotypes except for time compression.

3. The number of possible erroneous act is constrained by a maximum and a counter

preventing generated errors from making the task behavior model unbounded.

4. The erroneous behavior generation structure is represented in EOFM constructs and

is thus compatible with the EOFM to SAL translator and counterexample visualizer.

The radiation therapy machine example illustrates how this process can be used to

find potential system problems due to erroneous human behavior in human-automation

interactive systems. In fact, the discovered problem is very similar to one discovered in the

Therac-25 radiation therapy machine which resulted in the death of several people [130].

Similar problems have also resulted in injury and death with a number of modern radiation

therapy machines [24].
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5.5.1 Statespace Complexity Optimization

The fact that the complexity of the model increases exponentially with the maximum al-

lowable number of erroneous acts indicates that analysts will be limited in the number of

erroneous acts they can introduce in a formal verification.

This is seen in the radiation therapy application in the increase in state space from

the system model with normative behavior (1648 states) to the system model with the

erroneous human behavior (45290 states) which had 27 times the number of states. For

comparison, a system model with an unconstrained human operator had 4400 states, more

than the model with normative model, but significantly less than that used by the erroneous

human behavior model. All of this suggest that future work should investigate ways to

increase the efficiency of the erroneous human behavior model.

In the current implementation there are situations where non-erroneous acts are counted

as erroneous. For example, the correct action could be executed through a Commission ac-

tivity without the CorrectAction activity executing. Similarly, the current structure allows

for the same erroneous acts to be performed in multiple ways. For example, the same

erroneous act could be performed through different Commission activities. The structure

and translation process used to generate erroneous human behavior should be optimized to

reduce redundancy and the size of the formal system model.

Given that an unconstrained human operator should theoretically support many more

action sequences than an erroneous human behavior model with a maximum of one er-

roneous act. This would suggest that the intermediary transitions in the implementation

of the SAL version of an instantiated EOFM are adding significantly to the complexity to

the model. As was discussed in [33] and Chapter 4, it may be possible to eliminate many

of the intermediary transitions and variables associated with an instantiated EOFM’s SAL

representation. Future work should investigate whether these types of improvements will
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substantially reduce model complexity.

Although the erroneous human behavior model has the distinct disadvantage of pro-

ducing a more complex formal system model than the unconstrained one, it is important

to note that it is still useful in that it provides insights that an unconstrained model does

not. For example, the erroneous human behavior model gives analysts context for when

an error may occur for a given task, which may suggest particular solutions to discovered

problems specifically related to the human-device interface or the human task. Further, the

erroneous human behavior model allows analysts to check certain properties that could not

be checked with an unconstrained model. For the radiation therapy example, consider a

specification asserting that the practitioner will always administer treatment in the mission

specified mode. A system model containing erroneous human behavior could verify this

for up to the specified maximum number of allowable erroneous acts. However, an uncon-

strained model could not. Future work should investigate what the tradeoffs are between

the use of these two types of models.

5.5.2 Excluding Specific Erroneous Behaviors

Given the nature of formal verification with model checking and the fact that the error

generation process is done automatically, it is conceivable that an analyst will receive a

counterexample illustrating a system problem involving an erroneous human behavior that

he is not interested in or that can not be corrected. In this situation, the analyst may wish

to rerun the analysis without considering a specific erroneous behavior.

In the current implementation this can be achieved by modifying the specification to

ensure that the unwanted behavior is never executed. This can be accomplished with the

following specification:

(G(ErroneousAct = Ready))⇒ (OriginalSpecification) (5.2)
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This asserts that, for the EOFM Action or Activity representing the erroneous act the ana-

lyst wishes to ignore (ErroneousAct) and the original desired specification (OriginalSpec-

ification), the erroneous act never executing (G(ErroneousAct = Ready)) will imply that

the original specification will always be true:

For example, where PressX_14 represents the action for erroneously pressing ‘X’ in-

stead of ‘E’ when selecting the treatment mode, we can apply this to the un-corrected

model of the Therac-25 containing the erroneous human behavior model as:

(G(PressX_14 = Ready))⇒

G¬


BeamFireState = Fired

∧ BeamLevel = XRayPowerLevel

∧ Spreader = OutOfPlace


 (5.3)

This specification verifies to true in 80 seconds having visited 42578 states.

Note that (5.2) can be modified to exclude additional erroneous acts simply by adding

them to the expression the left of the implication operator.

Future work will investigate other means of allowing analysts to exclude specific or

groups of erroneous acts from formal verifications.

5.5.3 Erroneous Human Behavior Generation

Our method currently does not support Hollnagel’s [100] phenotypes for delaying, or pre-

maturely starting or finishing an action. Future work should investigate if these types of

erroneous behaviors can be incorporated.

Because Hollnagel’s phenotypes only concern observable human behavior, and because

our method does not support a realistic model of human memory or cognition, the current

implementation only impacts human actions, and does not affect the assignment of local

variables which are typically used to model memory actions in instantiated EOFMs. Future
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work should investigate how memory errors could be incorporated into our method.

Hollnagel’s phenotypes generally assume that human behavior is executing sequen-

tially, with no parallelism or synchronization between human actions. For this reason, the

current method does not support the erroneous behavior generation for synchronized hu-

man actions (those in a sync decomposition), and does not support synchronized erroneous

actions, such as a human performing two erroneous actions synchronously or performing

the correct action synchronously with erroneous actions. Future work should investigate

how these types of erroneous acts might be incorporated.

While the process discussed here is well suited to the generation of single erroneous

actions, generating more complex erroneous behaviors requires a significant number of

erroneous acts. This would greatly increase model complexity, and treats more unlikely

action sequences equal to ones that are more cognitively probable (see [159]). Chapter 6

explores an alternative error generation process that begins to addresses this issue.



Chapter 6

Strategic Knowledge-based Erroneous

Behavior Generation

Our phenotypical erroneous human behavior generation technique (Chapter 5) is capable

of reproducing all of Hollnagel’s zero-order phenotypes that relate to the performance or

non-performance of actions. While this takes advantage of the EOFM’s task structure

representation capabilities, it does not address erroneous human behaviors that may arise

due to strategic (i.e., conditions under which activities and actions should be considered)

knowledge. Reason [159], as part of his Generic Error Modeling System, outlined a set

of erroneous behaviors called slips in which a person fails to notice conditions which re-

sult in a failure to perform an activity or action normatively due to either inattention or

overattention (attending at the inappropriate time). A person can omit an action or high

level activity by failing to notice that the necessary conditions for performing the activity

are true, possibly due to interruption or not attending to information at the right time. A

person may erroneously repeat an action or high level activity after losing his place in a

task. A person may also have his attention “captured” by something else (external or inter-

nal to the person) which results in him performing (committing) an inappropriate action or

activity either in addition to or instead of an appropriate one.

115
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From a completely observable perspective, this means that a slip can manifest as:

• An omission, the failure to perform all or part of an activity;

• A repetition, the repeated performance of an activity or action; or

• A commission, the inappropriate performance of an activity or action.

Our phenotypical erroneous human behavior generation process is particularly well

suited to replicating single action slips as it is fully capable of generating omissions, repe-

titions, and other commissions for single atomic actions, and two or more of these can be

chained together to form more complex erroneous behavior. However, replicating these at

an activity level of abstraction would require a maximum number of erroneous acts large

enough to support the chaining of multiple zero-order phenotypes to replicate the correct

execution of activities in an erroneous context. This approach would significantly increase

the complexity of the model (see Section 5.3) and it would introduce a number or erroneous

action sequences beyond those associated with the above cognitive justifications.

This chapter discusses how the strategic knowledge represented in EOFM conditions

can be manipulated to generate Reason’s [159] slips at the activity level. We validate our

implementation of the process. We also benchmark the process in order to evaluate how

the incorporations of erroneous behavior can impact model complexity. The PCA pump

example from [31] (Chapter 3) is revisited, and we show how this new erroneous behavior

generation process can be used to discover a previously unseen system failure using our

method. We show how the human-device interface could potentially be modified to prevent

the discovered failure from occurring.
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6.1 Automatic Strategic Knowledge-based Erroneous

Human Behavior Generation

This erroneous human behavior generation process should be capable of replicating the

manifestation of Reason’s [159] slips for omitting, repeating, or committing activities or

actions based on misapplication of EOFM strategic knowledge contained in pre, repeat,

and completion conditions. Because an unbounded number of erroneous acts could result

in an unbounded human task behavior model, the error generation process must support

a mechanism for constraining the number of erroneous acts that can be performed in the

formally translated erroneous human behavior model. In order to facilitate analysis, the

EOFM to SAL translation process, and counterexample interpretation, the error structure

should be compatible with the EOFM language and translator.

These strategic knowledge-based erroneous behaviors were incorporated into translated

EOFM task representations by making changes to the formal semantics (Figure 6.1). In this

design, addition transitions (dotted arrows in Figure 6.1) are added to the formal semantics

in order to describe erroneous conditions in which an activity can switch between execution

states. This design includes an upper bound on the number of erroneous acts (KMax) and

a variable (KCount) that keeps track of the number of erroneous acts that a task model

has performed. An erroneous transition can only be undertaken if the current number

of erroneous transitions is less than the maximum (KCount < KMax). Every time an

erroneous transition occurs, KCount is incremented by one (KCount++).

Each new transition represents the erroneousness analog of a non-erroneous transi-

tion, where the erroneous transition is conditioned on the same start or end condition as

its analog as well as the negation of any strategic knowledge (pre, completion, or repeat

condition) used by any non-erroneous transition.

Omissions can occur when an activity completes its execution too early. An activity can
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Ready

Executing
endcondition 
˄ repeatcondition
˄¬ completioncondition 

startcondition ˄ precondition
˄ ¬ completioncondition

endcondition
˄ completioncondition

startcondition 
˄ completioncondition

Done

reset

KCount < KMax ˄ startcondition 
˄ ¬ (precondition ˄ ¬ completioncondition),

KCount++

KCount < KMax ˄ startcondition 
˄ ¬ completioncondition,

KCount++

KCount < KMax ˄ endcondition 
˄ ¬ completioncondition,

KCount++
KCount < KMax ˄ endcondition 

˄ ¬ (repeatcondition ˄¬ completioncondition),
KCount++

Figure 6.1: Modified formal semantics for automatically generating knowledge-based er-
roneous human behavior. Arrows with solid lines represent the original formal semantic
transitions. Arrows with dotted lines represent additional (erroneous) transitions.

erroneously complete (transition from Executing to Done) if the end condition is true and

the completion condition is not (endcondition∧¬completioncondition)). This transition is

eliminated if an activity does not have a completion condition.

Omissions can also occur when an activity fails execute at all. An activity cannot

execute (transition from Ready to Done) if the start condition is true and the completion

condition is not. This transition persists even if there is no completion condition.

An erroneous repetition occurs when an activity erroneously repeats its execution. An

activity can erroneously repeat (transition from executing to executing) if the end con-

dition is true and either the repeat condition is false or the completion condition is true

(endcondition ∧ ¬(repeatcondition ∧ ¬completioncondition)). This last clause is removed

from the guard when an activity does not have a repeat condition.

A commission can occur when an activity erroneously executes. An activity can

erroneously execute (transition from Ready to Executing) if the start condition is true

and either the precondition is false or the completion condition is true (startcondition ∧
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¬(precondition∧¬completioncondition)). This transition is eliminated if the activity does

not have a precondition.

Thus, this design allows each of observable manifestations of Reason’s [159] slips to

be generated when an instantiated EOFM executes. Omissions can occur through an erro-

neous Ready to Done transition or an erroneous Executing to Done transition. Repetitions

can occur via an erroneous Executing to Executing transition. Finally, commissions can

occur through an erroneous Ready to Executing transition.

Our Java-based EOFM to SAL translator [33] was modified to optionally incorporate

these erroneous transitions into the translated SAL version of an instantiated EOFM. The

translator takes the maximum number of erroneous acts (KMax) as input from the ana-

lyst. When the SAL file is written, this maximum is represented as a SAL constant, and

an enumerated type is created representing the range of the possible number of erroneous

transitions. When a human operator’s module is written, it is given a local variable rep-

resenting the count of erroneous transitions (KCount). When writing the transition logic

for each activity, this implementation adds transitions (guards and variable assignments)

associated with each of the dotted lines in Figure 6.1. The variable assignment for each

erroneous transition is identical to its non-erroneous counterpart in the SAL code, with the

exception that it adds the assignment which increments the erroneous transition count.

6.2 Testing and Benchmarks

Tests and benchmarks were performed to determine if the error generation process as im-

plemented would generate the desired erroneous transition of activity execution state (see

Appendix D) and evaluate how the error generation process impacted model complexity.

For the model complexity analyses, a simple instantiated EOFM was constructed in

which a single activity (aParent) which decomposes into a single action (a) with an ordered
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(ord) decomposition operator. This translated EOFM interacts with a simple human-device

interface model which can receive all human operator actions. The human operator also

receives Boolean inputs (precondition, repeatcondition, and completioncondition) from the

human-device interface model which give (aParent) access to simulated pre, repeat, and

completion conditions that can change between true and false (or remain unchanged) at

each step in a system model’s execution. Because model complexity should vary based

on the maximum number of erroneous transitions (KMax), this was varied in these tests

in order to obtain metrics of complexity (number of states) and verification time. Using

SAL’s symbolic model checker (SAL-SMC) on a dual core 2.8 gigahertz machine with 16

gigabytes of RAM running Ubuntu Linux, we ran 5 trials (with a maximum of between 0

and 4 erroneous transition). The results are reported in Figure 6.2.

# States Verification Time (s)
0 46 0.1 0.1 46
1 208 0.12 0.12 208
2 394 0.14 0.14 394
3 586 0.15 0.15 586
4 778 0.16 0.16 778
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Figure 6.2: Plot of the maximum number of erroneous transitions vs. the number of system
model states and transition time.

These results indicate that both the size of the statespace and the verification time in-

crease linearly with the number of erroneous transitions.
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6.3 Application

To demonstrate how this type of error generation can be used, we revisit the simplified

Patient Controlled Analgesia (PCA) Pump example produced in Phase 2 of the modeling

effort discussed in [31] and Chapter 3.

6.3.1 Formal Modeling

All of the formal models were constructed using the Symbolic Analysis Laboratory (SAL)

language [65]. Formal models of the mission were represented as a set of viable prescrip-

tion options (realistic PCA dosages and delays). The mission (prescription), human task,

human-device interface, and device automation were independently modeled. Because the

PCA pump generally operates in a controlled environment, no environmental model was

included. Because of the limited available pump documentation, the system automation

model was restricted to pump programming procedures. For more information about this

modeling process, model granularity, and the rationale behind the modeling decisions see

[27, 31] and/or Chapter 3. Note that because this particular application was not concerned

with how a practitioner programs a specific prescription into the pump, but the circum-

stances under which he may make an error, this version of the model was modified slightly

to decrease its complexity with only a subset of prescription options placeholding for more

realistic ones. PCA doses were restricted to between 1 and 10 ml (in 1 ml increments) and

delays were restricted to be within 1 and 20 minutes (in 1 minute increments). The human

mission was also restricted to allowable PCA doses of 5 and 10 ml and prescribed delays

of 10 and 20 minutes.



Chapter 6. Strategic Knowledge-based Erroneous Behavior Generation 122

6.3.2 Task Modeling

An instantiated EOFM was created encompassing the following high-level goal directed

behaviors for performing a variety of pump activities:

• Turning on the pump,

• Stopping the infusion of medication,

• Turning off the pump,

• Entering a prescribed value for PCA dosage volumes (in ml)

• Entering a prescribed value for the delay between PCA doses (in minutes), and

• Selecting whether to start or review an entered prescription.

A description of each of these can be found in [31] and/or Chapter 3. The tasks most

relevant to this discussion are those related to the programming of PCA dosages and de-

lays, both of which have the form shown in 6.3. For a given value X, the corresponding

EOFM becomes relevant when the interface for setting that value is displayed. A practi-

tioner first changes the displayed value to that from the prescription. The value could be

changed by selecting different digits with presses to the Left and Right buttons (PressLeft

and PressRight), clearing the display by pressing the Clear button (PressClear), or chang-

ing a digit by pressing the Up button (PressUp). The practitioner can continue to execute

the change activity (a repeat condition) as long as the displayed value does not match the

prescription value. The displayed value is accepted by pressing the enter key.

6.3.3 EOFM to SAL Translation

The EOFM instance was translated twice into SAL code and incorporated into the larger

formal system model: once for normative behavior and once for erroneous human behavior
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aSetX

InterfaceMessage = SetX InterfaceMessage /= SetX

ord

aChangeXValue

CurrentValue /= PrescribedX

CurrentValue /= PrescribedX

CurrentValue = PrescribedX

or_seq

aChangeDigit

ord

PressUp

aSelectNextDigit

xor

PressLeft PressRight

aClearValue

ord

PressClear

aAccept

ord

PressEnter

Figure 6.3: State transition representation of the formal device automation model.

with a maximum of one erroneous transition. The normative behavior model’s EOFM

representation was 132 lines of code. Its corresponding formal, normative representation

was 392 lines of SAL code. Its corresponding formal, erroneous representation was 570

lines of SAL code.
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6.3.4 Specification and Verification

We specify that, when treatment is administering, this should always mean that the entered

prescription should match that specified by the mission.

G


(InterfaceMessage = TreatmentAdministering)

⇒

 PCADose = PrescribedPCADose

∧ Delay = PrescribedDelay


 (6.1)

When checked against the formal system model with the translated normative task

behavior model, it verified to true in 9 minutes having visited 4,897,845 states.

The formal system model containing the erroneous human behavior model (which had

a total statespace of 27,637,526) produced a counterexample after 86 seconds illustrating

the following failure sequence:

1. The pump starts in the off state and the practitioner has to program in a prescription

specifying a PCA dose of 10 ml with a 20 minute delay.

2. The practitioner turns the pump on by pressing the on/off button, putting the pump’s

interface in the state for programming PCA dosage with a displayed value of 0 (00)

with the cursor under the tens digit.

3. The practitioner press the up button to set the displayed PCA dosage value to 10.

4. The practitioner accepts the PCA dosage by pressing the enter button, causing the

pump’s interface to transition to the state for programming the delay, with a displayed

value of 0 (00) with the cursor under the tens digit.

5. The practitioner changes the displayed value to 10 minutes by pressing the up button.
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6. The practitioner erroneously completed the activity for changing the displayed value

(the erroneous Executing to Done transition) and presses enter to accept a delay

value of 10 minutes. The pump transitions to the interface state for starting or review

treatment.

7. The practitioner starts treatment by pressing the start button, causing treatment to

administer with the pump interface in the TreatmentAdministering state. Thus, the

specification has been violated with the pump administering treatment with an un-

prescribed delay value.

6.3.5 Redesign

We can use our method to investigate potential design changes that correct the discovered

problem. One possible way of preventing this problem from occurring is to force the prac-

titioner to review the entered prescription every time it changes. This can be accomplished

by having the pump keep track of whether or not the practitioner has reviewed the entered

prescription or not, and only letting him start the administration of treatment after an en-

tered or changed prescription has been reviewed. This change was made to the PCA pump

model, and the resulting model was verified against 6.1 with the erroneous human behavior

model from above. This time, the specification verified to true in 51 minutes having visited

210,249,809 states.

6.4 Discussion

The erroneous behavior generation process presented here provides an additional means of

allowing practitioners to automatically determine when potentially unexpected erroneous

behavior can result in a violation of a systems safety properties. Further, the generation
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process meets all of its requirements, allowing it to be integrated into our method for the

formal verification of human-automation interaction:

1. By adding erroneous transitions to the formal semantics of an EOFM’s activity exe-

cution state representing erroneous applications of strategic knowledge (pre, repeat,

and completion conditions), we are capable of replicating the observable manifesta-

tion of attentional failures associated with Reason’s [159] slips: omission, repetition,

or commission (due to capture).

2. The number of possible erroneous transitions is constrained by a maximum and a

counter preventing generated erroneous behaviors from making the task behavior

model unbounded.

3. The erroneous behavior generation does not alter the structure of the EOFM and is

thus compatible with the EOFM to SAL translator and counterexample visualizer.

6.4.1 Tradeoff Between Erroneous Behavior Generation Techniques

In terms of complexity, the error generation process presented here represents an alterna-

tive to the method presented in Chapter 5, where model complexity increases linearly with

the number of allowable erroneous behaviors rather than exponentially. This is further

reinforced by the fact that, for the presented application, the system model with an erro-

neous human behavior model with a maximum of one erroneous transition had a smaller

statespace than a system model with an unconstrained human operator (27,637,526 vs

126,617,856 states), a condition not achieved using the techniques from Chapter 5.

The two generation techniques produce different erroneous behaviors. The techniques

discussed here can generate higher level erroneous behaviors based on the incorrect execu-

tion of activities where as the method discussed in Chapter 5 can be used to generate lower
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level erroneous acts, and can allow for the modeling of many more extraneous behaviors

as it is capable of generating erroneous actions that are not associated with the currently

executing activity. Because of this, analysts may wish to evaluate a system using both

techniques either in separation or together in order to obtain the most complete system

evaluation.

6.4.2 Excluding Specific Erroneous Behaviors

As with the other erroneous human behavior generation method, it is conceivable that an

analyst using this method will receive a counterexample illustrating a system problem in-

volving an erroneous human behavior that he is not interested in or that cannot be corrected

through a cost effective design intervention. In this situation, the analyst may wish to rerun

the analysis without considering a specific erroneous behavior.

The analyst can accomplish this by manually editing the erroneous human behavior

model to remove the undesired erroneous transition. Given the way EOFM formal seman-

tics are implemented in SAL, each erroneous transition is represented by a single guard

(the condition on the transition) and a set of assignments under the guard. Thus, to remove

any given erroneous transition, an analyst need only delete or comment out the associated

guard and assignments. This procedure is used as part of an evaluation documented in

Chapter 8.

Future work should investigate other means of allowing analysts to exclude specific or

groups of erroneous transitions from formal verifications without the need to modify the

formal model’s code.
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6.4.3 Error Generation

The erroneous behavior generation process discussed here is only capable of replicating

capture slips for activities in a particular peer group: either within a given decomposition,

or all parent level activities. However, capture slips can also manifest as a human operator

perform all or part of a completely unrelated activity, especially if the activities occur under

similar circumstances or are are composed of similar sequences of behavior [159]. Future

work should investigate how such slips could be incorporated into our erroneous behavior

generation process.

Reason’s GEMS [159] classifies erroneous behaviors beyond the slip designations that

have been discussed here. Specifically, slips only relate to erroneous behaviors that occur

as a result of attentional failures which result in operators incorrectly performing tasks that

they know how to perform correctly. A different class of erroneous behaviors, mistakes,

occur when the human operator intentionally performs an erroneous behavior because he

does not know how to perform a task correctly. This can occur either because of rule-

based or knowledge-based failures. Rule based mistakes occur when the human performs

a valid rule or schema for achieving a goal in an incorrect place or performs an invalid rule.

Failures at the knowledge level occur when the operator has incorrect knowledge about the

domain or environment. Future work should investigate how cognitive modeling could be

paired with our method in order to generate mistakes.

The work of Blandford, Curzon, and Rukšė et al. [61, 62, 160, 161] have used cogni-

tive modeling to produce erroneous human behaviors in verifications of models containing

human-automation interaction. Doing this, they can generate erroneous behaviors related

to the repetition of actions, the omission of actions, the commission of correct actions in

the wrong context, the replacement of one action with another, the performance one or

more actions out of order, and the performance of unrelated actions; all of which can oc-



Chapter 6. Strategic Knowledge-based Erroneous Behavior Generation 129

cur for a variety cognitive reasons. Even though we only model human task behavior, our

two error generation techniques are capable of generating all of these erroneous behaviors

without the need for detailed cognitive modeling. Thus, the use of human task behavior

modeling with formal verification is similarly powerful to the cognitive modeling work in

in terms of its ability to evaluate the impact of erroneous human behavior on system safety

properties.



Chapter 7

Counterexample Visualization∗

Using our method, instantiated EOFM task models are translated into the language of the

Symbolic Analysis Laboratory (SAL) [65] using the language’s formal semantics [33].

Formal verifications are performed on the complete system model. Each step in a SAL

produced counterexample is presented as a list of variable values sorted by variable name,

with no indication of the relationships between variables. Further, the translation process

divorces the formal representation of the human task behavior from its original EOFM

instantiation. This chapter reviews the literature on counterexample visualization and syn-

thesizes concepts from existing techniques to show how the human-automation interaction

architectural framework and the visual notation supported by the EOFM can be used to cre-

ate a counterexample visualization to help analysts evaluate the role of human-automation

interaction in specification violations.

7.1 Counterexample Visualization Techniques

A variety of tools and techniques have attempted to display counterexamples in ways that

are more useful than the standard output. These include variable tables; state diagrams;

∗This chapter is derived from [30]
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process and sequence diagrams; and domain or application dependent representations.

7.1.1 Variable Tables

Tables are typically used to depict variable values in each step in the counterexample,

allowing variable values to be easily compared between steps. Table representations are

supported by some model checkers such as the Cadence SMV [137]. These tables can also

be enhanced to make it easier to compare variable values between steps by highlighting

changes [49, 133]. They can also allow analysts to hide variables and steps from the display

[120].

7.1.2 State Diagrams

A number of counterexample visualization concepts have focused on displaying the ex-

ecution path through a state diagram of the model. Tools such as UPPAAL2k [8] and

STATEMATE [92] represent models using the statecharts visual formalism [91] and allow

counterexamples to be visually inspected by highlighting states and/or transitions active at

each step.

Some tools [6, 52, 75] allow representations of a model’s state space to be interac-

tively explored to find witnesses or counterexamples. In these representations, a subset of

the systems states are depicted as nodes in a directed graph with model specified transi-

tions between them. The presented state space subset is calculated from user specifiable

proof strategies [52, 75] or statistical measures [6]. Nodes can be interactively examined

in order to get a complete view of their variable values, and the tools provide feedback

about whether temporal logic properties evaluate to true. Human analysts can expand their

search of the state space by interactively selecting paths or applying new proof strategies.

The tools facilitate this task by highlighting paths statistically likely to produce a coun-
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terexample [6] or label each graph edge with the proof steps used to reach the target states

[52].

7.1.3 Process and Sequence Diagrams

Process and sequence diagrams have also been used to visualize counterexamples, where

variables are either grouped together in domain relevant designations (such as processes or

threads for software) or represented by themselves [7, 8, 10, 49, 75, 104, 119, 175]. These

designations are listed along an axis with a line extending out below them along a time or

counterexample step axis. A mark (such as a dot or box) on one of these lines indicates a

change in the state of the designation’s variables at the given time or step, and can usually

be interactively inspected to access full state variable value listings. Marks connected at

a given step or time by a line or arrow can either show synchronized changes between

the designations [119] or that one designation is passing information to another [10]. The

lines extending from designations can be highlighted with different colors to convey the

truth value of temporal logic properties [119, 175].

7.1.4 Domain and Application Dependent Representations

Several visualization techniques translate counterexample data into representations specific

to a particular domain or application such as timing plots for models of computer hardware

[109, 177]. Models animating human interaction with visual prototypes of human-device

interfaces for counterexamples and formal model simulation traces have also been explored

[3, 49].

7.1.5 Common Features

These visualization share common features that support evaluation including:
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1. Encapsulation of variables or states: The sequence diagrams and application de-

pendent representations allow model state variables to be encapsulated in higher level

designations that are familiar to the analyst. These also sort model variables and re-

move visual clutter.

2. Interactive detail refinement: By allowing analysts to interactively query for infor-

mation not currently displayed, visualizations support encapsulation without remov-

ing access to detailed information.

3. Highlighting analysis relevant changes: The discussed representations visually

emphasize changes in model variables at several levels: individual variables; des-

ignations; and system properties specified in temporal logic. Tables, sequence dia-

grams, and state diagram animations highlight changes in individual variables. Se-

quence diagrams and tables show coordination between changes in state between

different variables or designations. Some sequence diagram and state diagrams pro-

vide visual feedback about the value of analysis-relevant temporal logic properties.

7.2 Operational Concept and Design

An analyst performing formal verifications of human-automation interaction is interested

in determining how human behavior contributes to a violation of a system specification.

The analyst wants to examine the conditions under which the human operator performs

actions and what the impact of those actions are on the other elements of the system. To

support analysts perform such a verification using SAL, our architectural framework, and

our EOFM task modeling language; we have developed a counterexample visualization

that draws from the common features of other visualization techniques and EOFM’s visual

notation. This allows an analyst to visualize the execution state of the human task behavior
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at each counterexample step and compare it to information from other architectural compo-

nents while highlighting changes in model state at the individual variable and architectural

levels.

7.2.1 Encapsulation of Variables or States

The visualization encapsulates variable states based on the elements of the architectural

framework (mission, task behavior, human-device interface, device automation, environ-

ment, and other1) and EOFM’s visual notation. High level designations of these are orga-

nized in a table with designations as the rows and counterexample steps as the columns.

7.2.2 Interactive Detail Refinement

The visualization allows an analyst to interactively inspect the values of encapsulated vari-

ables. An analyst can traverse the table by either using navigation buttons (previous: J

and next: I) or by scrolling through the table cells and selecting a specific step. Selecting

a cell moves a cursor (↓) that points to the associated step’s column and presents a detailed

view of the model variable’s values in a separate, detailed view. This view presents the

individual variable values from the system model elements for the given step in separate

labeled columns. It also displays the execution state of the human task task behavior model

using EOFM’s visual notation.

The formal semantics of the EOFM language [33] specify that each activity and action

in an instantiated EOFM has three possible execution states: Ready (waiting to execute),

Executing, and Done (finished executing). When the visualizer presents the execution state

of the human operator’s task behavior model, it renders the entire graph for the goal level

(root) activity that is executing. It color codes each of the activities and actions in this

1A designation used for any variables that do not fit in the architectural designations, such as erroneous
behavior counters or handshake protocol variables.
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structure to indicate its execution state: white for Ready, green for Executing, and grey for

Done.

7.2.3 Highlighting Analysis Relevant Changes

The visualization highlights changes in variable values in both the high level encapsulated

designations and the individual variables. At the high level, each table cell’s color indicates

whether or not there has been a change in one of the associated designation’s variables since

the previous step: white for no change, and yellow for a change. In our architecture, human

task behavior can only produce a change in the other elements of the system architecture if a

human action is performed. Thus, a counterexample step with a human action is indicated

with an ‘X’ in its corresponding table cell. In the detailed view, variables whose values

changed from the previous step are highlighted in yellow. An activity or action whose

execution state has changed since the previous step is presented with a yellow highlight

around its border.

7.2.4 Implementation

A counterexample visualization prototype is currently implemented in Microsoft Visio and

Visual Basic for Applications. It takes an instantiated EOFM and a text file containing a

SAL produced counterexample as input. The software identifies variables within the coun-

terexample that represent the human task behavior model. It then presents the remaining

variables to the analyst who indicates under which architectural designation the remaining

variables belong: the human operator’s mission, the human-device interface, the device au-

tomation, or the operational environment. The software then renders each detailed view of

the counterexample as a separate page in a Visio document. The high-level encapsulation
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table (labeled “Navigation Form”) is presented as a dialog box that is presented over each

page.

7.3 Example 1: Evaluating a System with a Normative

Task Model

The following simple example illustrate the capabilities of this visualization using the

formal model of a human operator driving down a street towards a traffic light in a car

equipped with a simple cruise control ([33] and Chapter 4). The driver of the car wants to

drive safely down the road. His goal is to drive at his desired (mission) speed while safely

responding to traffic lights and avoiding merging traffic. This traffic is merging from a

ramp intersecting the road before the traffic light. The relative distance between the car

and the light is represented in intervals: Very Very Far, Very Far, Far, Merging, Close, Very

Close, and At Intersection.

The driver can drive at one of 3 speeds (Slow, Moderate, or Fast) using a gas pedal to

increase and decrease the gas. Increasing the gas (pressing the gas pedal) causes the car

to accelerate to the next faster speed. Decreasing the gas decelerates the car to the next

slower speed. The driver can release the gas pedal (which causes the car to decelerate

until it stops) and can press the break. The driver can enable or disable the cruise control

using available buttons although there is no visual indication of when the cruise is enabled.

Cruise can also be disabled by pressing the break. When enabled, the cruise control will

keep the car moving forward at its current constant speed unless the driver increases the

gas. In this situation, the driver controls the car’s speed above the cruise speed.

The formal system model architecture [27, 31] includes the human-device interface (the

pedal and the indicated car’s speed), device automation (the car’s speed and acceleration),
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operational environment (the color of the light, its relative position to the car, and whether

or not there is merging traffic), and human mission (the driver’s desired speed). It also

contains the human task behavior which is translated from an instantiated EOFM for the

driving tasks: driving at the desired speed (adjusting the car’s speed cruise control), avoid-

ing merging traffic (by accelerating or slowing down to avoid the traffic), and responding

to the light (waiting until very close to the light and breaking, or rolling to a stop from

further away). A full specification of this model can be be found in [33].

Formal verification was performed on this system model using SAL’s symbolic model

checker (SAL-SMC) to ensure that the driver will never run a red light (reach the inter-

section when the light is red with the car not being stopped). This is specified in LTL

as:

G¬


TrafficLightDistance = AtIntersection

∧ TrafficLight = Red

∧ Car 6= Stopped

 (7.1)

When checked against the formal system model, this specification produced a coun-

terexample. The violation occurs in the last step of the counterexample (step 44; Figure

7.1): where the driver is attempting to roll to a stop at the traffic light. The driver is not

pressing the gas pedal, but the car is moving at a moderate, constant speed (not decelerat-

ing) with the cruise control enabled. Here the driver has attempted to roll to a stop without

disabling the cruise control.

Examining this step (Figure 7.1) reveals that the operator had previously attempted

to remove gas to the car by releasing the gas pedal (ReleaseGas via aReleaseGas and

aRemoveGas) rather than disabling the cruise control. The analyst can use the navigation

form to see why this occurred by stepping back through the counterexample. At step 33

(Figure 7.2) the driver should disable the cruise control in order to successfully cut the
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aWaitTill
Closer

TrafficLightDistance = Close

ord

HoldGas

aBreakStop
TrafficLight /= Green AND 

TrafficLightDistance = VeryClose AND 
CarAcceleration /= Decelerated

aRollStopTrafficLightDistance = Close AND 
CarSpeed = Fast

ord

aRemove
Gas

xor

aRelease
Gas

Pedal /= Unpressed

ord

ReleaseGas

aDisable
Cruise

Pedal = Unpressed AND 
CarAcceleration /= Decelerated

ord

Disable
Cruise

aStopAt
Intersection

TrafficLight = Green

xor

aBreakStop

TrafficLight /= Green AND 
TrafficLightDistance = VeryClose AND 

CarAcceleration /= Decelerated

ord

Break

aRollTo
AStop

Pedal = Unpressed AND 
CarAcceleration = Decelerated

ord

NoChange

ord

HoldGas

Environment Variables

Traffic = NotMerging

TrafficLight = Red

TrafficLightDistance = AtIntersection

Mission Variables

MissionSpeed = Moderate

Human-device Interface Variables

Pedal = Unpressed

Device Automation Variables

CarAcceleration = ConstantSpeed

CarSpeed = Moderate

Cruising = Cruising

CruisingSpeed = Moderate

aRespond
ToLight

TrafficLight /= Green AND 
(TrafficLightDistance <= Close)

TrafficLight = Green OR 
CarSpeed = Stopped

or_seq

Step 44 of 44

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X XX XX

►◄

Other

Figure 7.1: Step 44 from the visualization of the counterexample. The car has reached
the intersection while moving at a constant, moderate speed while the traffic light is red, a
violation of (7.1). The operator has attempted to perform a roll stop by keeping his foot off
of the gas pedal. However, this has not impacted the car’s speed because the cruise control
is enabled and the car is at its cruise speed.

car’s gas supply as part of performing a roll stop (aDisableCruise via aRemoveGas and

aRollStop). However, even though cruise is enabled (as indicated by Cruising = true under

’Device Automation Variables’), the driver is pressing the gas pedal. Thus he performs the

activity for releasing the gas pedal (aReleaseGas) instead.

To determine why the human operator is pressing the gas pedal, the analyst can look
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aRespond
ToLight

TrafficLight /= Green AND 
(TrafficLightDistance <= Close)

TrafficLight = Green OR 
CarSpeed = Stopped

or_seq

aWaitTill
Closer

TrafficLightDistance = Close

ord

HoldGas

aBreakStop
TrafficLight /= Green AND 

TrafficLightDistance = VeryClose AND 
CarAcceleration /= Decelerated

aRollStop
TrafficLightDistance = Close AND 

CarSpeed = Fast

ord

aRemove
Gas

xor

Pedal /= Unpressed

ord

ReleaseGas

aDisable
Cruise

Pedal = Unpressed AND 
CarAcceleration /= Decelerated

ord

Disable
Cruise

aStopAt
Intersection

TrafficLight = Green

xor

aBreakStop

TrafficLight /= Green AND 
TrafficLightDistance = VeryClose AND 

CarAcceleration /= Decelerated

ord

Break

aRollTo
AStop

Pedal = Unpressed AND 
CarAcceleration = Decelerated

ord

NoChange

ord

HoldGas

Environment Variables

Traffic = NotMerging

TrafficLight = Yellow

TrafficLightDistance = Close

Mission Variables

MissionSpeed = Moderate

Human-device Interface Variables

Pedal = PressedToFast

Device Automation Variables

CarAcceleration = Accelerated

CarSpeed = Fast

Cruising = true

CruisingSpeed = Moderate

aRelease
Gas

Step 33 of 44

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X XX XX

►◄

Other

Figure 7.2: Step 33 from the visualization of the counterexample. The car is close to
the light and the light is yellow. Thus the driver is attempting to respond to the light
by performing a roll stop. To accomplish this task, he “removes” gas from the car by
performing the activity for releasing the gas pedal.

at the navigation form to see when the last human action was performed. This occurs in

step 26, where the ‘X’ appears in the navigation form table. When inspected, its associated

detailed view reveals that while cruise was enabled, the driver has pressed the gas pedal

(IncreaseGas) to accelerate the car to let merging traffic in behind him (Figure 7.3).

Thus, the visualization helps to determine that this violation occurs when the human

operator accelerates his car after enabling the cruise control in order to let in merging traffic
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aAvoid
Merging
Traffic

Traffic = Merging

xor

aLetCarGo
InFront

CarSpeed > Slow

xor

aDecrease
Gas2

Pedal /= Unpressed

ord

Decrease
Gas

aDisable
Cruise

Pedal = Unpressed AND
CarAcceleration /= Decelerated

ord

Disable
Cruise

aLetCarGo
Behind

CarSpeed < Fast

ord

Increase
Gas

Environment Variables

Traffic = NotMerging

TrafficLight = Yellow

TrafficLightDistance = Close

Mission Variables

MissionSpeed = Moderate

Human-device Interface Variables

Pedal = PressedToFast

Device Automation Variables

CarAcceleration = Accelerated

CarSpeed = Fast

Cruising = true

CruisingSpeed = Moderate

Step 26 of 44

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X XX XX

►◄

Other

Figure 7.3: Step 26 from the visualization of the counterexample. The driver has just
performed the action for increasing the gas to avoid merging traffic by letting the merging
traffic pass behind. This has caused the gas pedal to be pressed to the “fast” position, with
the car accelerating to the fast speed, allowing the traffic to merge, and the car to go to the
“Close” interval. The traffic light has also turned yellow.

and then attempts to roll to a stop at a traffic light.

7.4 Example 2: Evaluating a System with a Phenotypical

Erroneous Task Model

The visualization can also be used to identify what erroneous behaviors contribute to a

discovered system violation. Consider the failure discovered for the radiation therapy ma-

chine from Chapter 5, where a failure was discovered in which a single erroneous human

act contributed to a situation where the machine administered an unshielded xray treat-
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ment, a dangerous operating condition. We can use the visualization of a counterexample

illustrating this this failure sequence and use it to identify the erroneous behavior that con-

tributed to this problem.

The navigation form for the visualization of this counterexample shows us that a change

has occurred in the “Other” designation of variables at Step 5. Since the only variable in

the other designation is the erroneous behavior counter (ECount) we know that an erro-

neous behavior occurs beginning at this step. Examining this step (Figure 7.4) reveals that

the practitioner has just started performing the activity for performing an erroneous com-

mission (aPressECommission). We can then examine the two following steps (Step 7 is

shown in Figure 7.5) to see that the practitioner completes this activity by pressing the ‘X’

button which puts the interface into the state for displaying xray data, sets the beam to the

xray power level, and moves the spreader in place.

7.5 Example 3: Evaluating a System with a Knowledge-

based Erroneous Task Model

We can also use the counterexample visualizer to identify strategic knowledge-based erro-

neous behaviors that contribute a discovered system problems. For example, in the PCA

pump application (Chapter 6) a situation was discovered where a misapplication of strate-

gic knowledge resulted in a practitioner incorrectly programming the pump. The examina-

tion of the visualization of the counterexample illustrating this shows that a change in the

“Other” designation (the erroneous behavior counter KCount) occurs at step 32. An exam-

ination of this step (Figure 7.6) shows that the activity for changing the displayed value of

the delay between dosages (aChangeDelayValue) has erroneously transitioned from Exe-

cuting to Done without current displayed value (CurrentValue) matching the prescription
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aSelectXorE

InterfaceState = Edit InterfaceState /= Edit

xor

aSelect
XRay

TreatmentType = XRay

ord

aPressX

or_seq

aPressX
Correct

ord

PressX

aPressX
Omission

ECount < 1

ord

DoNothing

aPressX
Commission 

ECount < 1

xor

PressX PressE PressEnter PressB PressUp

aSelect
EBeam

TreatmentType = EBeam

ord

aPressE

or_seq

aPressE
Correct

ord

PressE

aPressE
Omission

Ecount < 1

ord

DoNothing

aPressE
Commission

Ecount < 1

xor

PressX PressE PressEnter PressB PressUp

Environment Variables Mission Variables

TreatmentType = EBeam

Human-device Interface Variables

BeamState = NotReady

DisplayedData = NoData

InterfaceState = Edit

Device Automation Variables

Beam = Waiting

BeamLevel = Neither

Spreader = OutOfPlace

Other Variables

ECount = 1

Step 5 of 58

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X X

►◄

Other

Figure 7.4: Step 5 from the visualization of the radiation therapy counterexample. The
practitioner has just started performing an erroneous commission activity which has incre-
mented the erroneous behavior count (ECount).

value (PrescribedDelay).

At step 35 (Figure 7.7), we can see that as a result of this erroneous behavior, the human

operator has confirmed the value: setting the delay to the incorrect value.
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aSelectXorE

InterfaceState = Edit InterfaceState /= Edit

xor

aSelect
XRay

TreatmentType = XRay

ord

aPressX

or_seq

aPressX
Correct

ord

PressX

aPressX
Omission

ECount < 1

ord

DoNothing

aPressX
Commission 

ECount < 1

xor

PressX PressE PressEnter PressB PressUp

aSelect
EBeam

TreatmentType = EBeam

ord

aPressE

or_seq

aPressE
Correct

ord

PressE

aPressE
Omission

Ecount < 1

ord

DoNothing

aPressE
Commission

Ecount < 1

xor

PressX PressE PressEnter PressB PressUp

Environment Variables Mission Variables

TreatmentType = EBeam

Human-device Interface Variables

BeamState = NotReady

DisplayedData = XRayData

InterfaceState = ConfirmXRayData

Device Automation Variables

Beam = Waiting

BeamLevel = XRayLevel

Spreader = InPlace

Other Variables

ECount = 1

Step 7 of 58

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X X

►◄

Other

Figure 7.5: Step 7 from the visualization of the radiation therapy counterexample. The
practitioner has erroneously pressed the ‘X’ key which has put the interface into the state
for displaying xray data, set the beam to the xray power level, and moved the spreader in
place.



Chapter 7. Counterexample Visualization 144

CurrentValue /= PrescribedDelay

aSetDelay

InterfaceMessage = SetDelay InterfaceMessage /= SetDelay

ord

CurrentValue = PrescribedDelay

or_seq

aChange
Digit

ord

PressUp

aSelect
NextDigit

xor

PressLeft PressRight

aClearValue

ord

PressClear

aAccept

ord

PressEnter

Environment Variables Mission Variables

PrescribedDelay = 20

PrescribedPCADose = 10

Human-device Interface Variables

CurrentValue = 10

CursorPosition = 1

InterfaceMessage = SetDelay

NumInputSlots = 0

Device Automation Variables

Delay = 0

OnOffPressedOnce = false

PCADose = 10

StopPressedOnce = false

Other Variables

KCount = 1

Step 32 of 43

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X XX XX

►◄

Other
aChange

DelayValue

CurrentValue /= PrescribedDelay

Figure 7.6: Step 32 from the visualization of the PCA pump counterexample. The pump
programmer has just erroneously finished changing the displayed value of the delay be-
tween dosages: aChangeDelayValue has transitioned from Executing to Done and the er-
roneous behavior counter (KCount) has incremented.

7.6 Discussion

The counterexample visualization presented here supports an analyst attempting to inter-

pret a SAL produced counterexample when using our human-automation interaction ar-

chitectural framework and our EOFM task modeling language by providing a means to

determine how human task behavior impacts other elements of the system architecture,

and thus ultimately contribute to a specification violation. It accomplishes this by exploit-

ing the visual notation of the EOFM and useful features of other visualization techniques:

• It encapsulates variables into designations from the architectural framework and

presents task model data using the EOFM visual notation;

• It allows the analyst to interactively inspect counterexample steps to get detailed
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CurrentValue /= PrescribedDelay

aSetDelay

InterfaceMessage = SetDelay InterfaceMessage /= SetDelay

ord

aChange
DelayValue

CurrentValue = PrescribedDelay

or_seq

aChange
Digit

ord

PressUp

aSelect
NextDigit

xor

PressLeft PressRight

aClearValue

ord

PressClear

aAccept

ord

PressEnter

Environment Variables Mission Variables

PrescribedDelay = 20

PrescribedPCADose = 10

Human-device Interface Variables

CurrentValue = 0

CursorPosition = 1

InterfaceMessage = StartBeginsRx

NumInputSlots = 0

Device Automation Variables

Delay = 10

OnOffPressedOnce = false

PCADose = 10

StopPressedOnce = false

Other Variables

KCount = 1

Step 35 of 43

↓

◄

Navigation Form

►

×

Human Task
Environment

Mission
Human-device Interface

Automation

X X X X XX XX

►◄

Other

CurrentValue /= PrescribedDelay

Figure 7.7: Step 35 from the visualization of the PCA pump counterexample. The pump
programmer has confirmed the incorrect delay (Delay 6= PrescribedDelay) by pressing
enter.

information for the execution state of the human task behavior and all other model

variables; and

• It highlights changes in the high level encapsulation view, the detailed view of the

variables, and the human task behavior execution state.

This visualization has been used successfully to support all of application analyses

presented in this document. However, there are additional ways it could be improved and

evaluated.

Based on the literature, there are other visualization features that could be incorporated.

Several existing visualizations [6, 52, 75, 119, 175] provide feedback about how logically

expressed properties evaluate at each step, often with color coding. While our counterex-

ample visualization displays the conditions associated with task behavior activities, it does
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not provide any visual indication of how they evaluate (true or false). Additionally, our

visualization provides no feedback about the evaluation of temporal logic properties (like

that used to produce the counterexample). Future work should investigate how to incorpo-

rate visual feedback about property evaluations into our visualization.

Several of the tools we discussed [6, 52, 75] allow analysts to interactively explore the

state space of a model. The counterexamples produced by SAL-SMC represent a single

execution path through the model, and thus do not support additional model exploration.

However, SAL does have a simulator that supports exploration. Future work should inves-

tigate how our visualization could be made to work with SAL’s simulator.

Our visualization was explicitly designed to help analysts interpret counterexamples.

However, such a visualization may be useful for debugging models during development.

Future work should determine what the requirements are for debugging and related visual-

ization tools.

Our visualization has only been used to examine single counterexamples in isolation.

However, it is conceivable that analysts may wish to compare different counterexamples

in order to diagnose potentially related specification violations. Future work should inves-

tigate what the requirements are for such a feature and possibly adapt the visualization to

support it.

Finally, future work should evaluate our visualization with a human subject experiment;

where we would evaluate whether analysts could identify executing human task behavior

and its impact on other system variables more efficiently with our visualization than with

a typical SAL counterexample. Future work should also investigate how our visualization

compares to other visualization techniques such as variable tables and sequence diagrams.

This is discussed in greater depth in Chapter 9.



Chapter 8

Design Exploration

All of the examples up to this point have illustrated a particular feature of our method. In

this chapter, we show how our method can be used to evaluate the design of a human-

automation interactive system in a number of different ways. We describe a human-

automation interaction issue associated the deployment of spoilers with an aircraft on

approach in which the pilot is performing the before landing checklist (a Douglas DC-8

application inspired by [67]). In these analyses we use a formal system model contain-

ing all elements of the human-automation interaction architectural framework. Across the

analyses we show how our method can be used to explore the impact of different norma-

tive task behaviors, erroneous human behavior generated using the methods discussed in

Chapter 5 and Chapter 6, and degraded performance of the device automation. Potential

interventions to discovered problems are explored.

8.1 Application: Aircraft on Approach

In most instrument landing systems, an aircraft pilot must position the aircraft so that it

will align with the runways glideslope: a diagonal path (3◦ from horizontal) to help pilots

147
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descend onto the runway.

The “before landing” checklist indicates what must be true in order for the aircraft to

land:

• The ignition must be set to override;

• The landing gear must be down;

• The spoilers should be armed; and

• The flaps should be extended to 40◦.

The vertical position of the aircraft relative to the glideslope is displayed with a mov-

ing diamond on the glideslope indicator (right side of Figure 8.1). When the aircraft is

within range of the instrument landing system and nearing the glideslope, the diamond

will become “alive”, moving towards the center of the display. As it moves, it will first

pass through the “two dot” and then the “one dot” positions. When the aircraft is on the

glideslope, the diamond is at the capture position.

Glideslope 
Indicator

One Dot Position

Two Dot Position

Diamond

Capture

One Dot Position

Two Dot Position

Figure 8.1: A simplified representation of an aircraft artificial horizon display with a glides-
lope indicator on the right. The diamond is not yet alive.

The pilot usually performs the items on the “before landing” checklist in order to ensure

that the aircraft will land safely.
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The ignition should be set to override in order to ensure that, should the engine quite,

there will be enough ignition power to restart it. The ignition is controlled by a switch, and

a light illuminates when the switch is set to override.

Once the glideslope indicator diamond is alive, the pilot can deploy the landing gear.

Pulling the landing gear lever opens the landing gear doors and deploys the gear. In a well

functioning aircraft the doors can take approximately 10 seconds to completely open. As

such, the landing gear will fully deploy before the landing gear doors are completely open.

Three lights in the cockpit (one for each of the landing gear) illuminate when the landing

gear is fully deployed. Another light illuminates when the landing gear doors begin to

open, and remains on until they are completely open.

The pilot progressively extends the flaps in order to reduce the aircraft’s stalling speed,

thereby allowing the aircraft to fly safely at slower speeds. Extending flaps also increases

drag which helps to slow the aircraft. In general, when the aircraft is between the one dot

and capture positions, the pilot has slowed to a speed where the flaps should be set to 25◦.

When the aircraft has reached the capture position he should set the flaps to 40◦. Pilots

may also set the flaps to progressive intermediate degrees before and/or in between these

two settings. The position of the flaps is indicated by a gauge in the cockpit.

Spoilers are retractable plates on the wings of the aircraft which, when deployed, de-

crease the lift of the aircraft. They are deployed during landing to prevent the aircraft from

lifting off of the runway. Spoilers can be deployed manually or automatically. The pilot

can arm the spoilers for automatic deployment by pulling a lever. A light in the cockpit in-

dicates when the spoiler are armed. Alternatively, a pilot can manually deploy the spoilers

when the aircraft touches the runway.
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8.1.1 Problems with Spoilers

Two potential problems have been identified relating to the deployment of spoilers. Firstly,

if the spoilers are never deployed (either via automatic or manual deployment) this can

result in the aircraft overrunning the runway as occurred with American Airlines Flight

1420 [145]. Secondly, having the spoilers deploy in flight will result in the aircraft losing

lift possibly resulting in a hard landing or a crash. This was the case with Air Canada flight

621 [83] and Loftleidir Flight 509 [84], both Douglas DC-8s.

The first condition can occur if the pilot forgets to arm the spoilers (as happened with

American Airlines Flight 1420 [145]). The second problem can also result from this,

where the pilot attempts to correct the problem but, because he is unfamiliar with man-

ual spoiler deployment, he prematurely deploys the spoilers manually (this was the case

for Air Canada flight 621 [83]). However, the second problem can also occur due to the

mechanism that automatically deploys the spoilers. If spoilers are armed before the land-

ing gear has deployed or the landing gear doors have fully opened, the armed spoilers may

automatically deploy [67].

8.1.2 Objectives

We evaluate issues related to spoiler arming for this application using our method. We

exploit the modular nature of our architecture to run a series of verifications to explore

the behavior of the system and potential solutions to discovered problems. This analysis

occurs across the following phases:

1. We explore different representations of normative human behavior;

2. We explore different representations of erroneous human behavior; and

3. We explore variations in the behavior of the automation.
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However, first we discuss the EOFM and formal system models on which these analy-

ses were performed.

8.2 Formal System Model

The formal system model was constructed around our architecture [27, 31] with models

of the operational environment, device automation, human-device interface, human (pilot)

mission, and human task behavior.

8.2.1 Operational Environment

The operational environment of an actual aircraft includes the weather, air traffic, air traffic

control, and the state of the runways (among other things). For our purposes, the environ-

ment is modeled as the relative distance of the aircraft from the capture position on the

glideslope. It is assumed that the aircraft starts at a position in which the glideslope dia-

mond is not alive, and that the aircraft proceeds up to the capture positions and begins to

descend on the glideslope, a process that will take 18 seconds. Thus, the relative position

of the aircraft from its modeled initial position is discretized into intervals from 0 to 18

such that the aircraft passes from one interval to the next in one second (Figure 8.2). This

means the aircraft speed and altitude are abstracted into the position.

In our model, the glideslope indicator diamond’s behavior is directly associated with

the aircraft’s position. The aircraft starts at position 0 where the glideslope diamond is not

alive. At position 1, the glideslope diamond becomes alive. At position 6 the aircraft is

“two dots” below the glideslope. It is “one dot” below at position 11. Capture occurs at

position 17. At position 18, the aircraft is in the process of landing.
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0 5 10 15 18

Glide Slope

Alive Two Dots One Dot Capture

Aircraft Position

Figure 8.2: The position (Position) of the aircraft as it approaches its intersection with the
glideslope.

8.2.2 Device Automation

The formal model of the device automation represented the functionality of the aircraft’s

landing gear, spoilers, and landing gear doors. The ignition was not explicitly modeled in

the device automation, though it was modeled as part of the human-device interface (see

Section 8.2.3).

The landing gear (Figure 8.3) starts in the up position as it would before the pilot

performs the “before landing” checklist. When the pilot pulls the landing gear lever (Pull-

GearLever) the landing gear transitions to the down position.

Figure 8.3: State transition representation of the formal model of the landing gear (Land-
ingGear).

As would happen in an actual approach, the landing gear doors (Figure 8.4) start in the

closed position. When the pilot pulls the landing gear lever, the doors begin to open. In the
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model it takes a constant amount of time (10 seconds) for the doors to completely open,

where the amount of time corresponds to the number of distance positions (Figure 8.2) the

aircraft has passed through (one second per interval).

Opening

Closed

Open

Opening1 Opening9Opening2 ...

Figure 8.4: State transition representation of the formal model of the landing gear doors
(GearDoors), where the number of state transition in the Opening designation are set to a
constant to model the amount of time it takes for the doors to open. Here, there are nine
Opening states. Thus there are ten transitions required for the doors to completely open,
corresponding to a door opening time of 10 seconds.

The flaps (Figure 8.5) start in the clean configuration (0◦), as it actually would be before

the pilot performs the “before landing” checklist. The flaps can be set to 25◦ and 40◦ when

the pilot performs the action for setting either.

Flaps0

Flaps25

SetFlaps25

Flaps40

SetFlaps25 SetFlaps40

SetFlaps40

Figure 8.5: State transition representation of the formal model of the flaps (GearDoors).

The spoilers (Figure 8.6) are unarmed, as they would be at the beginning of an ap-

proach. They are armed when the pilot pulls the lever to arm the spoilers (ArmSpoilers).
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Figure 8.6: State transition representation of the formal model of the spoilers (Spoilers).

8.2.3 Human-device Interface

The formal model of the human-device interface represents the state of the cockpit con-

trols and indicator lights associated with arming the spoilers, the landing gear doors, the

landing gear, the flaps, the glideslope indicator, and the ignition; all of which change state

in response to changes in the automation or environment as well as human actions.

The state of the glideslope indicator (Figure 8.7) is dependent on the position of the

aircraft (Figure 8.2). At position 0 the glideslope indicator’s diamond is inactive. At posi-

tion 1 it becomes alive. It indicates “two dots” at position 6 and “one dot” at position 11.

At position 17, it indicates capture.

The state of the ignition is indicated by the ignition switch and an indicator light. The

ignition switch (Figure 8.8(a)) starts in the un-flipped state. It transitions between the

flipped and un-flipped states when the pilot flips the switch. The ignition light (Figure

8.8(b)) is on when the switch is flipped and off when it is un-flipped.

The state of the landing gear and landing gear doors are indicated by the human-device

interface’s gear lever (Figure 8.9(a)), three landing gear lights (Figure 8.9(b)), and the gear

doors light (8.9(c)). The gear lever starts in the un-pulled position. It becomes pulled when

the pilot pulls the gear lever. The three landing gear lights are off whenever the landing

gear is up and on when it is down. The gear doors light is dependent on the state of the
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Inactive

Active

TwoDots

OneDots

Capture

Position = 1

Position = 0

Position = 6

Position = 11

Position = 17

Figure 8.7: State transition representation of the formal model of the glideslope indicator
(GSIndicator).

Unflipped

Flipped

FlipIgnitionSwitch FlipIgnitionSwitch

(a)

Off

On

IgnitionSwitch = Switched IgnitionSwitch = Unswitched

(b)

Figure 8.8: State transition representation of the formal model of the (a) ignition switch
(IgnitionSwitch) and the (b) ignition light (IgnitionLight).

landing gear doors. When the doors are either open or closed, the light is off. Otherwise

the light is on.

The state of the flaps is indicated by the gauge the pilot uses to set the angle of the flaps
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Unpulled

Pulled

PullGearLever

(a)

Off

On

LandingGear = Down LandingGear = Up

(b)

Off

On

GearDoors ≠ GearDoorsClosed 
˄ GearDoors ≠ GearDoorsOpen

¬(GearDoors ≠ GearDoorsClosed 
˄ GearDoors ≠ GearDoorsOpen)

(c)

Figure 8.9: State transition representation of the formal model of (a) the landing gear lever
(GearLever), (b) the three landing gear lights (ThreeGearLights), and (c) the gear doors
light (GearDoorsLight).

(Figure 8.10). It reflects the state of the flaps as determined by the automation.

The state of the spoilers (armed or unarmed) is indicated by the lever used to arm the

spoilers (8.11(a)) and the spoiler indicator light (8.11(b)). The lever starts out in the un-

Flaps0

Flaps25

Flaps = Flaps25

Flaps = Flaps0

Flaps40

Flaps = Flaps0

Flaps = Flaps25 Flaps = Flaps40

Flaps = Flaps40

Figure 8.10: State transition representation of the formal model of the flaps gauge (Flaps-
Gauge).
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pulled position and transitions to pulled when the pilot performs the action for arming the

spoilers. The indicator light is dependent on the state of the spoilers from the automation.

If the spoilers are armed then the light is on. Otherwise the light is off.

(a)

Off

On

Spoilers = UnarmedSpoilers = Armed

(b)

Figure 8.11: State transition representation of the formal model of the (a) lever used to arm
the spoilers (SpoilerLever) and the (b) spoiler indicator light (SpoilerIndicator).

8.2.4 Human Mission

Airline policy will typically dictate whether or not pilots should arm the spoilers or man-

ually deploy them during landing. Further, pilots have been known to hold preferences

related to which spoiler option they use (see [84]). Thus, the pilot may or may not wish

to arm the spoilers, where it is presumed that a pilot who prefers to manually deploy the

spoilers will do so once the aircraft touches down. This preference constitutes the mis-

sion model as a Boolean variable PreferToArmSpoilers which can be either true or false

respectively.

8.3 Human Task Behavior Modeling

An instantiated EOFM describes the human pilot task behavior for performing the “before

landing” checklist using a single humanoperator. This human operator pilot has access
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to input variables from the human-device interface (the glideslope indicator, the ignition

light, the ignition switch, the gear level, the gear doors light, the three landing gear lights,

the flaps gauge, the spoiler lever, and the spoiler indicator) and the human mission (the

preferences for arming or not arming spoilers).

The pilot model generates humanaction outputs representing actions performed

through the human-device interface: flipping the ignition switch (FlipIgnitionSwitch),

pulling the landing gear lever (PullGearLever), setting the flaps to either 25◦ or 40◦ (Set-

Flaps25 and SetFlap40 respectively), and pulling the lever to arm the spoilers (ArmSpoil-

ers).

A goal directed task model was constructed representing the procedure the pilot follows

when preparing to land the aircraft using the “before landing” checklist (Figure 8.12). The

pilot can override the ignition (aOverrideIgnition) before the glideslope indicator diamond

is alive if the ignition light is off, thus fulfilling the first item on the “before landing”

checklist. For the second item on the “before landing” checklist, the pilot can deploy

the landing gear (aDeployLandingGear) if the glideslope indicator is alive and the three

landing gear lights are off. When the glideslope indicator reads one dot, the pilot can set the

flaps to the intermediate 25◦. The pilot can arm the spoilers, the third item on the “before

landing” checklist, through the aSetSpoilers activity if he prefers to arm the spoilers, and

both the spoiler indicator and landing gear doors lights are off. If he does not prefer to

arm the spoilers or the spoiler indicator is on, the activity will complete without the pilot

pulling the lever to arm the spoilers (ArmSpoiler). Once the glideslope indicator reaches

the capture position, the pilot can set the flaps to 40◦ (sSetFlaps40), the fourth item on the

“before landing” checklist.

Pilots use the “before landing” checklist to guide them through the procedure [67].

While pilots generally follow checklist items in order, they may complete them out of

sequence. In order to model both of these conditions, two version of this task model were
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created: one where the pilot will always perform the task in order (enforced by an ord

decomposition for aPrepareForLanding) and one where he can perform them in any order

(an and_par decomposition for aPrepareForLanding).

8.4 EOFM to SAL Translation

The EOFM task model instances were translated into SAL code and incorporated into the

larger formal system model. In its original XML form, the human task behavior models

were represented in 86 lines of code. The translated SAL versions were represented in 155

lines of code.

8.5 Specification

To ensure safety, we wanted to check two conditions related to the spoilers. In the first

we wanted to ensure that if the aircraft was landing (at position 18), the spoilers would be

armed if that was the pilot’s preference. This was represented in LTL as follows:

G


(Position = 18)

⇒

 (PreferToArmSpoilers ∧ Spoilers = Armed)

∨(¬PreferToArmSpoilers ∧ Spoilers = ¬Armed)


 (8.1)

In the second specification we wanted to ensure that the system would never reach the

condition where the spoilers could prematurely deploy: a condition which occurs when the

spoilers are armed and the landing gear doors are opening. This was represented in LTL as
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follows:

G¬


Spoilers = Armed

∧GearDoors 6= Closed

∧GearDoors 6= Open

 (8.2)

8.6 Apparatus

All verifications were completed using SAL-SMC 3.0, the SAL symbolic model checker.

Verifications were conducted on a 3.0 gigahertz dual-core Intel Xeon processor with 16

gigabytes of RAM running the Ubuntu 9.04 desktop.

8.7 Phase 1 Analyses: Exploring Different Representa-

tions of Normative Human Behavior

8.7.1 Modeling

In the first set of analyses, formal verifications were run for (8.1) and (8.2) on two versions

of the formal system model: one in which the human task behavior model used the ord

decomposition operator to ensure all activities are performed in order and one in which the

and_par decomposition operator is used to allow activities to be performed in any order.

8.7.2 Verification Results

For the model employing the human task behavior with the ord decomposition operator,

both (8.1) and (8.2) verified to true (239 visited states in 1.14 seconds and 239 visited states

in 1.12 seconds respectively).
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For the system model using the human task behavior with the and_par decomposition

operator, (8.1) verified to true (725 visited states in 1.18 seconds). However, the verification

of (8.2) returned a counterexample after 0.58 seconds.

When this counterexample was examined using the visualizer, it revealed that the pilot’s

first action was to arm the spoilers (Figure 8.13). He followed this by deploying the aircraft

landing gear, an action that resulted in the landing gear doors opening (Figure 8.14). Thus

a violation of (8.2) occurred with the landing gear doors opening while the spoilers were

armed.

8.7.3 Discussion

There are a number of different ways in which this problem could be addressed. Resolution

could come through changes to the automation. For example, the spoiler system could be

redesigned so that the spoilers could be armed while the landing gear doors are opening

without risk of premature deployment. In such a situation it would be unnecessary to even

check (8.2). However, such a solution may require an expensive retrofit if the aircraft is

already in operation. Another possible solution would be to implement a forcing function

[142] to prevent the pilot from being able to arm the spoilers before the landing gear doors

are open. However, this solution would also have associated expense and could artificially

limit the procedures pilots could use to mitigate emergencies.

Another solution could change the pilot’s mission: where pilots are not allowed to have

a preference about arming spoilers and would only be allowed to deploy them manually.

This modification eliminates the violation without introducing a new one: (8.1) and (8.2)

verified to true in just over a second having visited 118 states for the ord model and in 204

states for the and_par model. However, this may also not be a desirable solution as it could

lead to an increase in pilots manually deploying spoilers prematurely, a problem that has
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been known to occur [67, 83, 84].

Another option is to alter the pilot’s task through additional policy and/or training [15].

In this situation, the and_par task model could be made irrelevant if pilots always per-

formed the “before landing” checklist activities in order. Training could also address the

criteria pilots use for arming the spoilers. For example, if the precondition has the ad-

ditional constraint that the three landing gear lights must be on before a pilot arms the

spoilers, the discovered violation is eliminated without adding any additional violations:

(8.1) and (8.2) both verified to true in just over one second having visited 239 states for the

ord model and 431 states for the and_par model.

8.8 Phase 2 Analyses: Exploring Different Representa-

tions of Erroneous Human Behavior

8.8.1 Modeling

In the second phase of analyses we explore how our two different erroneous behavior gen-

eration methods might provide insights into potential human-automation interaction issues

related to the spoilers. To accomplish this we use the two task behavior models from above

(one with ord decomposition and one with the and_par decomposition) with the precon-

dition modified to include the condition that the three gear lights be on. Each task model

was used in the creation of two separate formal system models: one with a phenotypical

erroneous human behavior model (with a maximum of one erroneous act), and one with

a strategic knowledge-based erroneous human behavior model (with a maximum of one

erroneous transition).
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8.8.2 The Phenotypical Erroneous Human Behavior Model

Chapter 5 introduced the phenotypical erroneous human behavior generation method in

which instantiated EOFMs could have each of their actions replaced with additional EOFM

structure designed to allow them to perform the correct action or erroneously perform an

omission (no action) or a commission (which could replace the correct action with another

one or intrude an additional action). The number of generated erroneous human behaviors

was limited by a maximum. Here, we use this methodology to explore the impact of at

most one phenotypical erroneous act on the aircraft approach system.

8.8.2.1 Verification Results

Verifications of (8.1) and (8.2) were run against all four models.

When (8.1) was checked against the model with the and_par decomposition (where

tasks could be performed in any order) it returned the following counterexample after 30.85

seconds:

1. While the aircraft was at position 0, the pilot (who preferred to arm the spoilers)

correctly flipped the ignition switch to override the ignition.

2. At position 1, the pilot erroneously set the flaps to 25◦ instead of pulling the landing

gear lever to deploy the landing gear (Figure 8.15).

3. Because the completion condition for deploying the landing gear (the three gear

lights being on) was not satisfied while the completion condition for setting the flaps

to 25◦ was (flaps set to 25◦), aDeployLandingGear remained executing while aSet-

Flaps25 transitioned from ready to done.

4. With nothing to do, the pilot let the aircraft proceed incrementally to position 17.

5. Having reached the capture position, the pilot correctly set the flaps to 40◦.
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6. Thus the aircraft then reached position 18 without arming the spoilers because the

precondition for arming the spoilers never became true due to the erroneously per-

formed attempt to deploy the landing gear.

When (8.2) was checked against the model with the and_par decomposition the fol-

lowing counterexample was returned after 11.95 seconds:

1. While the aircraft was at position 0, the pilot attempted to override the ignition but

erroneously performed the action for arming the spoilers (Figure 8.16).

2. At position 1, the pilot then correctly pulled the gear lever to deploy the landing gear.

This resulted in the spoilers being armed while the landing gear doors were opening.

When (8.1) was checked against the model with the ord decomposition (where the task

were performed in order) the following counterexample was returned after 23.25 seconds:

1. While the aircraft was at position 0, the pilot (who preferred to arm the spoilers)

attempted to override the ignition but erroneously did nothing.

2. This resulted in the completion condition (the ignition light being on) failing to be

satisfied. As such, this task never completed which prevented the remaining activities

(like deploying the landing gear, arming the spoilers, and setting the flaps) from

being performed (Figure 8.17).

3. Thus the aircraft progressed to position 18 without the spoilers being armed.

When (8.2) was checked against the model with the ord decomposition, the following

counterexample was returned in 12.46 seconds:

1. While the aircraft was at position 0, the pilot correctly flipped the ignition switch to

override the ignition.
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2. At position 1, the pilot correctly pulled the gear lever to deploy the landing gear.

3. At position 2, before completing the activity for deploying the landing gear (aDe-

ployLandingGear), the pilot erroneously intruded the action for arming the spoilers

while the landing gear doors were opening. Thus the spoilers armed while the land-

ing gear doors were opening.

8.8.2.2 Discussion

These results are somewhat problematic in that they do not reflect realistic pilot behavior.

For example, while it is possible for a pilot to replace pulling the landing gear lever with

setting the flaps, it represents an unlikely action and is thus not particularly useful for

analysis.

Another problem is seen in the way that the error generation can break the execution

of the task model. For example, the counterexample for (8.1) observed for the model em-

ploying the ord decomposition occurred because an erroneous behavior was performed in

the activity for overriding the ignition (aOverrideIgnition) which prevented its completion

condition from being satisfied and thus preventing the execution of any additional activities

(see Figure 8.17).

The fact that the phenotypical erroneous behavior generation was compatible with the

Therac-25 application (Chapter 5) suggests that there are some applications in which phe-

notypical erroneous human behavior is more suited than others. This is likely because the

task models used in the Therac-25 did not employ completion conditions which were de-

pendent on the correct execution of a single action. Future work should attempt to identify

when an application is suited for analysis with phenotypical erroneous behavior generation

and how task models can be structured to accommodate such analyses.
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8.8.3 The Strategic Knowledge-based Erroneous Behavior Model

Chapter 6 introduced an erroneous behavior generation method in which activities could er-

roneously transition between execution states due to the misapplication of strategic knowl-

edge contained in pre, repeat, and completion conditions. This could allow activities to

be erroneously omitted, repeated, or committed. The number of erroneous transitions was

limited by a maximum. Here, we use this methodology to explore the impact of at most

one erroneous transition on the aircraft approach system.

8.8.3.1 Verification Results

When (8.1) was checked against the model with the and_par decomposition, the following

counterexample was returned after 2.01 seconds:

1. While the aircraft was at position 0, the pilot (who preferred to arm the spoilers)

correctly flipped the ignition switch to override the ignition.

2. At position 1, the pilot erroneously omitted the activity for deploying the landing

gear (aDeployLandingGear) due to an erroneous executing to done transition (Figure

8.19), thus preventing the landing gear from being deployed.

3. The pilot then let the aircraft fly to position 11 where, because the glideslope indica-

tor was at the one dot position, he correctly performed the action for setting the flaps

to 25◦.

4. Because the landing gear was never deployed, the precondition for arming the spoil-

ers never became true, thus the pilot let the aircraft proceed to position 17 without

performing any additional actions.

5. At position 17, the aircraft reached capture, thus the pilot correctly set the flaps to

40◦. The aircraft then proceeded to position 18.
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6. Thus the aircraft reached position 18 without the spoilers being armed.

When (8.2) was checked against the model with the and_par decomposition, the fol-

lowing counterexample was returned after 0.86 seconds:

1. While the aircraft was at position 0, the pilot erroneously performed the activity for

arming the spoilers (Figure 8.20): an erroneous ready to executing transition.

2. At position 1, he pulled the landing gear lever to correctly deploy the landing gear.

This resulted in the spoilers being armed while the landing gear doors were opening.

When (8.1) was checked against the model with the ord decomposition, a counterex-

ample was returned in 1.79 seconds:

1. While the aircraft was at position 0, the pilot (who preferred to arm the spoilers)

correctly flipped the ignition switch to override the ignition.

2. At position 1, the pilot omitted the activity for deploying the landing gear (the re-

sult of aDeployLandingGear erroneously transitioning from executing to done), thus

preventing the landing gear from deploying (the same erroneous behavior shown in

Figure 8.19).

3. The pilot then lets the aircraft fly to position 11 where, because the glideslope indi-

cator was at the one dot position, he correctly performed the action for setting the

flaps to 25◦.

4. Because the landing gear was never deployed, the precondition for arming the spoil-

ers never became true, thus the pilot let the aircraft proceed to position 18 without

performing any additional actions.

5. Thus the aircraft reached position 18 without the spoilers being armed.
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When (8.2) was checked against the model with the ord decomposition, it verified to

true in 1.51 seconds having visited 926 states.

8.8.3.2 Additional Verification Results

It is unlikely that pilots will not deploy the landing gear, the source of the problems found

when the models were checked against (8.1). As such, the counterexamples associated with

these verifications could be considered artifacts of our formal system models. To allow for

the possibility of discovering more realistic system failures, these artifacts were eliminated

by removing the erroneous executing to done transition of aDeployLandingGear (the tran-

sition associated with the failure to deploy the landing gear) from the models using the

method discussed in Chapter 6. The following are the results of (8.1) being checked against

these modified models.

When (8.1) was checked against the modified model with the and_par decomposition,

the following counterexample was returned after 2.01 seconds:

1. While the aircraft was at position 0, the pilot (who prefers to arm the spoilers) cor-

rectly flipped the ignition switch to override the ignition.

2. At position 1, the pilot correctly performed the action for deploying the landing gear,

deploying the landing gear and initiating the opening of the landing gear doors.

3. The aircraft proceeded along its path until position 11 where the landing gear doors

become completely open.

4. At position 11, because the glideslope indicator was at the one dot position, the pilot

correctly performed the action for setting the flaps to 25◦.

5. At position 12, the activity for setting the spoilers was omitted (aSetSpoilers erro-

neously transitioned from ready to done).
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6. At position 17, the aircraft reached the capture position and thus the pilot set the

flaps to 40◦.

7. The aircraft then proceeded to position 18 without the spoilers being armed.

When (8.1) was checked against the model with the ord decomposition it verified to

true in 1.49 seconds having visited 752 states.

8.8.4 Discussion

The analyses show that the task model with the ord decomposition is more resistant to

failures than the model with the and_par decomposition. These results suggest that, if

airlines can enforce a strict adherence to the behavior represented by the model with the

ord decomposition, they may be less likely to experience problems related to premature

spoiler deployment and failure to arm spoilers. This work could be followed up with

additional studies, possibly with real pilots in actual operating conditions, to determine if

this is true.

Should analysts or designers wish to address the problems discovered with the and_par

task behavior model, they could pursue some of the options addressed in the discussion of

Phase 1: eliminating spoiler arming as an option (in the mission) and preventing spoiler

arming before the landing gear doors are completely open. Future work should explore

these potential solutions.

While the phenotypical erroneous human behavior generation method did not facilitate

many insights into human-automation interaction for this application, strategic knowledge-

based erroneous human behavior generation has. This suggests that there may be some

applications better suited to each erroneous behavior generation method. Future work

should attempt to identify properties of applications that suggest analysis with the different

erroneous behavior generation methods.
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8.9 Phase 3 Analyses: Exploring Variations in the Behav-

ior of the Automation

8.9.1 Modeling

In the third phase of modeling we show how our architecture can be used to explore how

variations in the behavior of automated systems can impact system safety properties.

Aside from the human operator, there can be anomalous conditions in device automa-

tion and/or the environment that can impact system performance. For example, aging me-

chanics in aircraft automation can impact overall system performance. For our purposes,

we are concerned with how the time delays associated with aging hydraulic systems may

influence human-automation interaction issues related to the deployment of spoilers.

For this phase of analysis, we assume that the aging hydraulic systems in the landing

gear doors openers can delay the door opening process by up to 7 seconds beyond the 10

seconds the doors took to open normatively (Figure 8.4). We can exploit the modularization

of our architecture to replace the previous device automation model with one in which the

landing gear opening can take between 0 and 7 additional seconds (in 1 second increments)

to open making the range of potential landing gear opening time between 10 and 17. All

other device automation models were kept the same, as were the mission and environment

model. These were used to create formal system models using the normative task behavior

model with the ord decomposition and one with the normative task behavior model with

the and_par decomposition (both using the corrected precondition discussed at the end of

Phase 1).
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8.9.2 Verification Results

When (8.1) was checked against the model using the and_par decomposition operator, the

following counterexample was returned after 1.43 seconds:

1. While the aircraft was at position 0, the pilot (who preferred to arm the spoilers)

correctly flipped the ignition switch to override the ignition.

2. At position 1, the pilot correctly performed the action for deploying the landing gear,

deploying the landing gear and initiating the opening of the gear doors. Due to the

aging nature of the gear door hydraulics, the gear doors would take 16 seconds to

open rather than the normative 10.

3. At position 11, because the glideslope indicator was at the one dot position, the pilot

correctly performed the action for setting the flaps to 25◦.

4. At position 17, the landing gear doors light turned off because the doors finished

opening and, because the glideslope indicator was at the one dot position, the pilot

correctly performed the action for setting the flaps to 40◦.

5. The aircraft then proceeded to position 18 where the landing gear doors light turned

off, thus the aircraft had reached position 18 without the spoilers being armed (Figure

8.22).

When (8.2) was checked against the model using the and_par decomposition it verified

to true in 1.23 seconds having visited 1931 states.

When (8.1) was checked against the model using the ord decomposition operator, the

following counterexample was returned after 1.45 seconds:

1. While the aircraft was at position 0, the pilot (who preferred to arm the spoilers)

correctly flipped the ignition switch to override the ignition.
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2. At position 1, the pilot correctly performed the action for deploying the landing gear,

deploying the landing gear and setting the landing gear doors begin opening. Due to

the aging nature of the gear door hydraulics, the gear doors would take 17 seconds

to open rather than the normative 10.

3. At position 11, because the glideslope indicator was at the one dot position, the pilot

correctly performed the action for setting the flaps to 25◦.

4. The pilot then waited to arm the spoilers because the landing gear doors were still

opening and thus the landing gear doors light was on.

5. The aircraft proceeded to position 18 when the landing gear doors light finally turned

off. However, the aircraft had reached position 18 without the spoilers being armed

(Figure 8.23).

When (8.2) was checked against the model using the ord decomposition, it verified to

true in 1.18 seconds having visited 1403 states.

8.9.3 Discussion

This example illustrates how anomalous or degraded behavior in device automation can

impact human-automation interaction: as delays in the hydraulic systems prevented the

pilot from performing the tasks necessary for preparing the aircraft for landing.

There are a number of ways engineers could address this. As has been previously

discussed, the aircraft could be modified to allow spoilers to be armed while the aircraft

landing gear doors were opening without the risk of premature deployment. This would

allow spoilers to be armed much earlier in the process, and thus there would be less risk of

this process being usurped by time delays.
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Alternatively, airlines could simply require that pilots manually deploy the spoilers.

When the mission model was updated to reflect this change, 8.1) verified to true for both the

and_par (1002 visited states in 0.82 seconds) and ord (676 visited states in 0.81 seconds)

formal system models. However, as was previously noted, this may increase the risk of

premature manual spoiler deployment during actual landing.

Another solution could be to establish a maintenance policy on the aircraft to ensure

that the landing gear door hydraulics open within a given time. For example, if mainte-

nance can ensure that landing gear doors can open in under 15 seconds, (8.1) verifies to

true for both the and_par (1439 visited states in 1.39 seconds) and ord (1021 visited states

in 1.35 seconds) formal system models.

In general, the analyses from this phase demonstrate how our method can be used to

find human-automation interaction related system problems that arise due to failures or

degraded performance in system components. Further, the ability to replace the previous

device automation model with one exhibiting variable degraded performance, and the abil-

ity to explore potential interventions that address the discovered problems, illustrate the

flexibility of our formal system modeling architectural framework.

Disciplines such as error injection [180], reliability engineering [72], and resilience

engineering [102] offer theories about how errors, degraded performance, and uncertainty

can be modeled as part of automation and environment behavior in complex systems. Fu-

ture work should investigate how theories and practices from these fields could potentially

be used to extend our method so that it could systematically incorporate degraded or erro-

neous automation and environmental behavior.
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8.10 General Discussion

Although the example presented here is simplistic, our method was able to facilitate a

number of analyses which allowed the design of the aircraft approach system to be explored

in a variety of different capacities. The phase 1 analyses showed how different human task

behaviors could be used to explore a system design. The phase 2 analyses showed how the

different erroneous behavior generation processes could be used to find potential failures

associated with erroneous human behavior and how erroneous behaviors not pertinent to

the analyses could be removed. Phase 3 analyses showed how alternative models of the

device automation could be employed in analyses. Further, in all phases, the flexibility of

our formal modeling architecture was demonstrated in the way different normative human

task behaviors, erroneous human task behaviors, device automations, and human missions

were modified and incorporated into the formal system model in order to explore different

designs and interventions that addressed some of the discovered problems.

In a more realistic example, the application would likely be more complicated, and the

analyst may have many more specifications he would want to check against each design

variation. In such a circumstance, it is likely that the analyst may want to compare the re-

sults of different analyses in order to diagnose similar problems that exist between designs,

and to compare and contrast the performance of the designs. Future work should investi-

gate how additional tools and analyses might be incorporated into our method in order to

facilitate these sorts of comparative evaluations.



Chapter 9

Contributions and Future Work

This work has shown that it is possible to automatically incorporate erroneous human be-

havior into task analytic models for the purpose of formally verifying system safety prop-

erties in light of both normative and erroneous human behavior. This was done by using

our novel method to discover and evaluate problems with human-automation interactive

systems. Each of the different applications that were employed in the verification illus-

trated the different ways the method could be used, and the insights it could provide (Table

9.1).

Firstly, the applications demonstrate the flexibility of the formal modeling architecture

in that not all formal system models need to have every element of the architecture. While

the aircraft and and cruise control examples have models of every element of the architec-

ture, the PCA pump and radiation therapy machine applications did not have environment

models.

Alternatively, the nature of the human task is different between the modeled applica-

tions. For the PCA pump, the primary task was data driven in that it was primarily fulfilling

mission goals related to entering data into the automated system. In the other models, the

human tasks were procedural.

187
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Thirdly, the erroneous human behavior prediction was exploited differently in order

to show how problems with human-automation interaction could be discovered with our

method. In all of our applications, normative task models were used in formal verifica-

tions. For the aircraft and cruise control examples these verifications initially produced

counterexamples. However, changes to the formal system model resulted in models that

verified to true. The other application models verified to true with normative task behavior

models without modification.

Erroneous human behavior models were tested with all but the cruise control appli-

cation. Phenotypical erroneous behavior models were generated for the radiation therapy

machine and aircraft applications and used in formal verifications which found specifica-

tion violations. Knowledge-based erroneous behavior models were generated for the PCA

pump and aircraft applications and also produced specification violations when evaluated

as part of a formal system model. In all applications employing erroneous task behavior

models, changes were made to the formal system model and formal verification was per-

formed to ensure that the erroneous behavior would no longer contribute to specification

violations.

All of the counterexamples produced in the verifications of the different application’s

models were evaluated with the counterexample visualizer.

9.0.1 Specific Contributions

9.0.1.1 The EOFM Language

The EOFM language developed as part of this work is itself a contribution as it provides

a generic, platform independent means of modeling human task behavior. This language

supports a superset of the features supported by similar modeling paradigms such as OFM

[139], CTT [156], GOMS [110], and UAN [94] (see [28, 33] for a complete discussion of
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Table 9.1: Different applications have exhibited different capabilities of our method. These
relate to the elements of the architectural framework utilized, whether or not normative or
erroneous human task behavior was modeled, verification outcomes with normative and/or
erroneous human behavior and/or degraded automation performance, what elements of
the architectural framework were changed and verified to fix discovered violations, and
whether or not the visualizer was used to evaluate counterexamples.

Application

PCA Cruise Radiation Aircraft
Capability Pump Control Therapy Machine On Approach

Framework Mission • • • •
Human task • • • •
Human-device interface • • • •
Device automation • • • •
Environment – • – •

Human task Normative • • • •
Erroneous • – • •

Verification
outcome

Violation with normative behav-
ior

– • – •

Valid with normative behavior • • • •
Violation with phenotypical er-
roneous behavior

– – • •

Violation with knowledge-
based erroneous behavior

• – – •

Valid with erroneous behavior • – • •
Violation with degraded au-
tomation

– – – •

Valid with degraded automation – – – •

Redesign Mission – – – •
change Human task – • – •

Human-device interface • • – –
Device automation – – • •

Illustrate counterexample visualization • • • •

Note. A • indicates that the associated application supported the associated capability. A – indicates that the
associated application implementation did not.

this subject):

• The language allows for the direct modeling of observable, atomic human actions.

• The language allows models to be constructed as a hierarchy of activities and actions.
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• The language supports a superset of the cardinalities and temporal orderings sup-

ported by OFM, CTT , GOMS, and UAN.

• The language allows for the conditional executions of activities for specifying when

they can start, repeat, and complete execution.

• The language is capable of allowing models to receive information from external

sources through the use of custom types, constants, and input variables.

• The language allows activities to be reused between and within task models.

• The language supports an extended OFM graphical notation for visually describing

model activity and action hierarchies as well as the cardinal, temporal, and condi-

tional execution restrictions on their execution.

The language is specified in RELAX NG and implemented in XML making the lan-

guage platform independent and easy to parse with existing code libraries. It is this tech-

nology that has been used in both the EOFM to SAL translation (see [33] and Chapter 4)

and the counterexample visualizer (see [30] and Chapter 7).

9.0.1.2 Erroneous Behavior Prediction

The ability to automatically predict and incorporate erroneous human behavior into task

analytic models is a significant contribution. In all previous work in which task analytic

models were used in formal verification, erroneous behavior was either not included in the

analyses [3, 4, 14, 15, 70, 150, 155, 157] or had to be manually incorporated [82]. Thus,

the capacity to automatically predict erroneous behaviors marks a significant step forward,

allowing analysts to determine how erroneous behavior might contribute to unsafe system

conditions in unexpected ways.
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9.0.1.3 Enhanced Operator Function Model Semantics and Translation

The EOFM to SAL translation process is a contribution for two reasons. Firstly, the doc-

umentation for many of the task analytic modeling paradigms such as OFM and CTT is

scant, making the formal interpretation of their semantics ambiguous. The documenta-

tion of the EOFM’s formal semantics are explicitly defined [28], avoiding such ambiguity.

Secondly, it allows human factors and systems engineers to code task analytic models in

notation that mimics the structure of task models and represents models more compactly

than its equivalent formal representation. This is seen in the applications, where the SAL

representation of the task model was always between 80% and 161% bigger than its EOFM

counterpart (Figure 9.1).
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Figure 9.1: Comparison of code sizes between EOFM and SAL representations of the
human task behavior models for different applications. The label above each pair of bars
indicates the percent increase in code size from the EOFM to SAL representation.

9.0.1.4 Formal System Model Architectural Framework

The formal system model architectural framework (Figure 3.1) is a contribution in that

its use demonstrates that it is possible to verify human-automation interaction as part of a
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system model based around concepts important to human-automation interaction: human

mission, human task behavior, human-device interface, automated device, and operation

environment. A secondary contribution of this framework was illustrated with the Baxter

Ipump model ([31] and Chapter 1) where it was shown that the inclusion of a realistic

human task behavior model resulted in a state space reduction of 98% from a model that

had previously utilized a completely unconstrained human operator (one that could perform

any action at any given time). Thus, the use of this framework, when appropriate, could

help combat issues associated with model space complexity: where the model is too big to

fit in the memory of the machine, making it incapable of being formally verified. Finally,

the ability of different human mission, human task behavior, and device automation models

to be swapped in and out has been demonstrated in several examples, but most prominently

in the aircraft on approach application.

9.0.1.5 Counterexample Visualization

The use of the EOFM’s visual notation to illustrate how human behavior contributes

to problems reported in counterexamples was useful for allowing us to interpret model

checking results. Further, the feature of grouping model variables based on their loca-

tion in a model architecture, and highlighting when these variables change was also very

useful in addition to being well supported in the counterexample visualization literature

[7, 8, 10, 49, 49, 75, 104, 119, 133, 175].

9.1 Future Development of the Method

While each chapter has focussed on how different individual pieces of the method could

be improved, there are several ways in which the method in general could be enhanced.
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9.1.1 Scalability and Complexity Optimization

The scalability of our method is illustrated through our testing and benchmark results as

well as the applications themselves. The benchmarks give analysts an estimate of how

complexity increases with the number of actions and decomposition operators (Chapter

4) as well as how it increases for the number of generated erroneous behaviors. For the

applications, the PCA pump provided an upper bound on the complexity a model can have

when being used with our method using the computational resources we have available.

Given these results there are significant limits to what analyses can be evaluated using

our method. Thus future work should investigate how complexity improvements could be

made to the formal representation of the task models and how system features relevant to

human-automation interaction can be abstracted or simplified in the formal system model

representation.

9.1.2 Extension to Multi-operator Systems

All of the applications discussed have been single operator systems. However, it is likely

that this method could be easily adapted to accommodate systems with multiple operators.

Aside from the extensions to the EOFM language that may help facilitate this (see Chapter

4), this may also require extensions to the modeling architecture. Multi-operator systems

can be configured in a number of different ways. Operators can be closely or disparately

located both spatially or temporally; they may be interacting with centralized or distributed

automation; they may share or have disparate human-device interfaces; they may or may

not have access to means of inter-human communication with or without latency; they may

have compatible or conflicting goals; and there may different or disparate environmental

conditions that may influence any element of the system. Future work should investigate

how our architecture could be adapted or redesigned to accommodate these variable fea-



Chapter 9. Contributions and Future Work 194

tures of multi-operator systems.

Additionally, multiple operator systems will inevitably result in additional scalability

concerns as the modeling of multiple operators and interfaces will certainly add complex-

ity, especially if human erroneous behavior prediction is utilized.

Multiple operators also open the opportunity for generating erroneous human behavior

related the multi-operator systems, such coordination or communication problems. Future

work should investigate this as well.

9.1.3 Human Subject Testing

The discussion of the EOFM language (Chapter 4) and the counterexample visualizer

(Chapter 7) both addressed how each could be evaluated in a human subject test in or-

der to assess their usability compared to the options currently offered by SAL. Such tests

could provide experimental validity to the hypothesis that these tools are more usable to

human factors engineers than those currently offered by SAL. Human subject tests could

also be used to improve the method as a whole. Such experiments could train practitioners

with all elements of the method and have them use the method to perform several analy-

ses so that they could provide feedback on how the tools that support the method may be

changed or enhanced in order to make them easier to use.

9.1.4 Comparison with Other Methods

In the presented work we illustrate how our method can be used to find a number of human-

automation interaction related system failures in realistic applications. However, we do not

compare our method with other methods that may provide similar insights.

Our method supports the generation of erroneous human behavior that is compara-

ble to the behavior generated using cognitive models with formal verification [19, 62, 63,
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160, 161]. Future work could compare these two methods in order to see if there are any

discrepancies between the erroneous behaviors they generate and determine if there are

applications better suited to analyses with either method. Future work could also compare

how the two methods scale with respect to statespace complexity for different applications.

Human Reliability Analysis (HRA) [101] is a completely different type of analysis that

is more commonly used in human-automation interaction. It is concerned with determining

what the probability is that a human operator will normatively perform required activities in

order to allow analysts to assess the probability of failures in safety critical systems. Future

work should determine what the advantages and disadvantage of HRA are compared to our

technique.

9.2 Future Development of Formal Verification of

Human-automation Interaction

The work presented here is an incremental development in the state of knowledge in the

intersection of human-automation interaction and formal methods. As such, this work may

help contribute to or benefit from future developments in these fields.

9.2.1 Advances in Formal Methods

As formal modeling and verification technology improves, the complexity of the systems

they can accommodate will increase. Additionally, future developments in lightweight

formal methods [35, 107] may prove useful as they allow parts or a system to be formally

modeled and verified using compact modeling languages that can be quickly verified. A

formal system architectural frameworks like that used in this work may be useful in such

lightweight analyses as they may allow certain system sub-models to be eliminated for
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certain analyses. Light weight modeling techniques like those offered by ADEPT [81,

172] allow human operators to quickly prototype human-device interface behavior and

immediately check a number of properties which might suggest problems with human-

automation interaction. Work related to formally modeling and reasoning about the role

of human behavior’s contribution to system failures in accident reports [13, 15, 112–114]

may also suggest lightweight analyses that only consider the safety critical elements of

systems.

9.2.2 Model Validity and Design Integration

In order to be useful to provide insights about actual systems, all of the models used in

the formal verification need to be valid. If they are not, the verification process has the

potential to find problems that may not exist in the actual system, or miss problems that

exist in the actual system but not the models. One of the ways of dealing with this is to

incorporate formal model analyses into the design and development process: where formal

modeling and verification techniques are directly associated with design documents and

system specifications.

In the formal methods community, languages like LUSTRE [90] and the associated

Safety Critical Application Development Environment (SCADE) [1] allow designers to

formally specify models of embedded, reactive, synchronous systems; formally verify

them; and generate C and Ada code guaranteed to exhibit the verified properties.

Within the formal human-automation interaction literature, Aït-Ameur and Baron,

Campos and Harrison, Dwyer et al. [3, 49, 77] have adapted their modeling frameworks to

work with human-device interfaces built in Java and Visual Basic, thus allowing the actual

software implementations to be used in the formal analyses. While this is useful if one is

developing systems in these environments, these processes are limited to software systems.
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When working with models of human task behavior and cognition, analysts have the

added task of validating their models against actual human behavior or cognition. Aït-

Ameur and Baron, Bastide et al., Campos and Harrison [3, 18, 49] have shown that it is

possible to execute formal models as if they were computer programs while allowing hu-

man operators to interact with them. They have used this ability to experimentally validate

human task behavior models against actual human behavior. Future developments may

extend such techniques to other human behavior and cognitive models.

9.2.3 Integrated Development Environments

Many of the issues associated with design integration could be addressed through the devel-

opment of a formal human-automation interaction, integrated development environment.

Such an environment could allow a variety of different verifications and validations to be

performed without the analyst having to work directly with the underlying formalisms.

It could allow human factors engineers to perform their modeling in familiar notations.

It could also allow models to be interacted with or visually animated for debugging and

validation purposes.

Environments such as SUIDT [3], Petshop [18], ADEPT [81, 172], IFADIS [133], IVY

[49], and CogTool [111] have made some progress towards such an environment, but are

still in their infancy. Future IDE’s could build on the feature sets encompassed by these

environments. Such an IDE would ideally support all of the features discussed below.

9.2.3.1 System Modeling Architecture

The IDE should support a system modeling architecture that allows system elements rele-

vant to human-automation interaction to be modeled independently of each other, and that

would allow any element irrelevant to a given analysis to be excluded. Our architecture
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could be extended to encompass human cognition and human mental models of automa-

tion.

9.2.3.2 Human Cognitive and Behavioral Modeling Architecture

The IDE should include an integrated framework for allowing different elements of human

cognitive and behavior to be modeled as is appropriate for the desired analysis. Kieras and

Polson [121] discuss how to formally model human operator knowledge about interacting

with an automated device and evaluate its impact on system performance using simulation.

This knowledge was categorized as follows:

1. Task-relevant knowledge describes the human operator goals that the device could

be used to achieve and the procedures or tasks the human operator thinks he can use

to accomplish them;

2. Device layout knowledge encompasses the human operator’s understanding of the

physical layout of the device’s information displays and control widgets;

3. Device behavior knowledge describes how the human operator thinks his actions will

affect the device’s observable behavior; and

4. How-it works knowledge describes how the operator thinks the internals of the de-

vice work.

This architecture could be adapted into an IDE in order to allow analysts to run verification

analyses using different human operator knowledge. For example, device behavior and

how-it works task-relevant knowledge could be used to support mode confusion analyses;

task-relevant knowledge could be used to support formal verifications with task analytic

models; and combinations of the different categories could be used to support different

cognitive modeling analyses.
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9.2.3.3 Verification Environment Independence

To avoid the problems associated with the heterogeneity of formal modeling and verifi-

cation techniques, the IDE should support modeling techniques that are independent of

any given verification environment. This would allow all modeled constructs to be cre-

ated using notations and paradigms familiar to the human factors community. For ex-

ample human-device interfaces and automation behavior could be graphically specified

using techniques like those employed in SUIDT [3], IVY [49], Petshop [18], or ADEPT

[81, 172]. Human task behaviors could be represented in their own notations as they are

in SUIDT [3], and EOFM [26, 28, 31, 33]; or through point-and-click and drag-and-drop

functionality as it is done in CogTool [111]. Other model architectural elements could

be handled similarly. All models could then be translated into a desired verification en-

vironment, where different formalisms and verification tools could be supported through

plug-ins.

9.2.3.4 Assisted Specification Property Creation

In order to help analysts express properties they wish to check against their formal model,

an IDE could provide a number of properties that could be automatically checked (as is

done in ADEPT [81]) as a well as a number of temporal logic patterns they could use to

build custom properties (as is done in IVY and IFADIS [49, 133]).

9.2.3.5 Counterexample Visualization

With the use of abstract representations, it will be necessary to translate counterexamples

into a presentation compatible with those representations so that analysts will be able to

interpret them. Bolton and Bass [26, 30] have shown how visualizations of task analytic

models can be used to illustrate how human behavior contributed to problems found in
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counterexamples. Several researchers have explored the animation of task models [3] and

interface prototypes [49, 133] as part of counterexample visualization. A formal human-

automation interaction IDE should support and extend these features.

9.2.3.6 Interactive Model Execution

SUIDT [3], Petshop [18], CogTool [111] and ADEPT [172] allow models to be executed

as interactive applications. Thus models can be debugged and evaluated experimentally.

Additionally, SUIDT allows task behaviors modeled using CTT to be validated against

behavior of human operators interacting with the model. A formal human-automation

interaction IDE should support these features.

9.3 Conclusion

The work presented here has contributed to the efforts to evaluate human-automation inter-

action analyses with formal verification by showing that it is possible to predict erroneous

human behavior’s contribution to system failure using human task behavior without the

need for detailed cognitive modeling. In doing this we have created a number of tools

to support our effort. Future effort will explore the usefulness of these tools to the hu-

man factors and formal methods communities, and hopefully lead to the development of

environments that facilitate better design integration with formal verification of human-

automation interactive systems.



Appendix A

EOFM Code Listing for the Driver Task

Behavior Model

Below is the EOFM code listing for the task behavior model of the driver discussed in

Chapter 4. Note that prefixes not used in the text are used in the code to identify mod-

eling constructs: constants (c), userdefinedtypes (t), humanoperator (p), inputvariable (i),

humanaction (h), and activity (a).

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="OFMr7.rng" type="xml"?>
<eofms>

<constant name="cStart" basictype="INTEGER">5</constant>
<constant name="cClose" basictype="INTEGER">2</constant>
<constant name="cVeryClose" basictype="INTEGER">1</constant>
<constant name="cAtIntersection" basictype="INTEGER">0</constant>

<userdefinedtype name="tMissionState">{Hurry, NoHurry}</userdefinedtype>
<userdefinedtype name="tPedalState">{Pressed, Unpressed}</userdefinedtype>
<userdefinedtype name="tCarMovementState">{Accelerating, Decelerating, ConstantSpeed,

Stopped}</userdefinedtype>
<userdefinedtype name="tLightDistance">[cAtIntersection..cStart]</userdefinedtype>
<userdefinedtype name="tLightColor">{Red, Yellow, Green}</userdefinedtype>

<humanoperator name="pDriver">

<inputvariable name="iTrafficLight" userdefinedtype="tLightColor"/>
<inputvariable name="iTrafficLightDistance" userdefinedtype="tLightDistance"/>
<inputvariable name="iCar" userdefinedtype="tCarMovementState"/>
<inputvariable name="iPedal" userdefinedtype="tPedalState"/>
<inputvariable name="iMission" userdefinedtype="tMissionState"/>

<humanaction name="hEnableCruiseControl" behavior="autoreset"/>
<humanaction name="hDisableCruiseControl" behavior="autoreset"/>
<humanaction name="hIncreaseGas" behavior="autoreset"/>

201
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<humanaction name="hHoldGas" behavior="autoreset"/>
<humanaction name="hDecreaseGas" behavior="autoreset"/>
<humanaction name="hReleaseGas" behavior="autoreset"/>
<humanaction name="hBreak" behavior="toggle"/>

<eofm>
<activity name="aDriveDownTheStreet">

<precondition>iTrafficLightDistance /= cAtIntersection AND
(iTrafficLight = Green OR iTrafficLightDistance &gt; cClose)</precondition>

<decomposition operator="xor">
<activity name="aGoFaster">
<decomposition operator="ord">
<action humanaction="hIncreaseGas"></action>

</decomposition>
</activity>
<activity name="aSlowDown">
<decomposition operator="ord">
<action humanaction="hDecreaseGas"></action>

</decomposition>
</activity>
<activity name="aMaintainSpeed">
<decomposition operator="xor">
<activity name="aCrews">
<precondition>iPedal = Pressed</precondition>
<decomposition operator="sync">
<action humanaction="hEnableCruiseControl"></action>
<action humanaction="hReleaseGas"></action>

</decomposition>
</activity>
<activity name="aHoldSpeed">
<decomposition operator="ord">
<action humanaction="hHoldGas"></action>

</decomposition>
</activity>

</decomposition>
</activity>
<activity name="aStopCruisingAndMaintainSpeed">
<precondition>iCar = ConstantSpeed AND iPedal = Unpressed</precondition>
<decomposition operator="sync">
<action humanaction="hDisableCruiseControl"></action>
<action humanaction="hIncreaseGas"></action>

</decomposition>
</activity>

</decomposition>
</activity>

</eofm>

<eofm>
<activity name="aRespondToLight">

<precondition>iTrafficLight /= Green AND (iTrafficLightDistance &lt;= cClose)
</precondition>

<decomposition operator="xor">
<activity name="aRollStop">
<precondition>(iTrafficLightDistance = cClose AND iMission = NoHurry)
</precondition>

<decomposition operator="xor">
<activity name="aReleaseGas">
<precondition>iPedal = Pressed</precondition>
<decomposition operator="ord">
<action humanaction="hReleaseGas"></action>

</decomposition>
</activity>
<activity name="aStopCruisingAndReleaseGas">
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<precondition>iPedal /= Pressed</precondition>
<decomposition operator="sync">
<action humanaction="hDisableCruiseControl"></action>
<action humanaction="hReleaseGas"></action>

</decomposition>
</activity>

</decomposition>
</activity>
<activity name="aBreakStop">
<precondition>iTrafficLightDistance = cVeryClose AND iCar /= Decelerating
</precondition>

<decomposition operator="ord">
<action humanaction="hBreak"></action>

</decomposition>
</activity>
<activity name="aContinueWithNoChange">
<precondition>(iTrafficLightDistance = cClose AND iMission = Hurry)
OR (iPedal = Unpressed and iCar = Decelerating)</precondition>

<decomposition operator="ord">
<action humanaction="hHoldGas"></action>

</decomposition>
</activity>

</decomposition>
</activity>

</eofm>

</humanoperator>
</eofms>



Appendix B

EOFM to SAL Translator Validation

SAL was used to validate that translated instantiated EOFMs conformed to the formal

semantics. This was done by developing a number of temporal logic specification patterns

designed to verify that activities or actions within an EOFM instance conformed to the

transitions from Figure 2.3 and that the specified parallelism of activities and actions was

maintained for the different decomposition operators. These patterns were instantiated

for several examples designed to allow for the validation of the different execution state

conditions supported by the EOFM: activities decomposing into actions with the different

decomposition operators; activities decomposing into other activities with the different

decomposition operators; and multiple root activities in the same model. We first discuss

the specification pattern before discussing the applications for which they were applied.

B.1 Activity Execution State Transition Specification

Patterns

LTL specification patterns are described below for each of the of the transitions in Figure

2.3(a). In all, the activity variable represents the execution state variable for the activity

204
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against which the specification will be checked. Based on the formal semantics (Section

2.2.3), this can be either ready, executing, or done. The precondition, repeatcondition, and

completioncondition variables refer to the activity’s pre, repeat, and completion conditions

from its XML markup. The startcondition, endcondition, and reset variables refer to the

activity’s start, end, and reset condition as they are defined in the formal semantics.

The ready to executing transition is validated using an LTL formula which asserts that

whenever the activity transitions from ready to executing, the activity’s startcondition and

precondition will always be true and the completioncondition will always be false:

G

 (activity = ready ∧ X (activity = executing))

⇒ (startcondition ∧ precondition ∧ ¬completioncondition)

 (B.1)

The executing to executing transition is validated using an LTL formula which asserts

that whenever the activity is executing and its endcondition, repeatcondition, and not its

completioncondition are true, the activity will always be exectuing in the next state:

G

 (activity = executing ∧ endcondition ∧ repeatcondition ∧ ¬completioncondition)

⇒ X (activity = executing)

 (B.2)

The executing to done transition is validated using an LTL formula which asserts that

whenever the activity transitions from executing to done, the activity’s endcondition and

completioncondition will always be true:

G

 (activity = executing ∧ X (activity = done))

⇒ (endcondition ∧ completioncondition)

 (B.3)

The ready to done transition is validated using an LTL formula which asserts that when-

ever the activity transitions from ready to done, the activity’s startcondition and comple-

tioncondition will always be true:

G

 (activity = ready ∧ X (activity = done))

⇒ (startcondition ∧ completioncondition)

 (B.4)
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The done to ready transition is validated using an LTL formula which asserts that when-

ever the activity transitions from done to ready, the activity’s reset will always be true:

G ((activity = done ∧ X (activity = ready))⇒ reset) (B.5)

B.2 Action Execution State Transition Specification

Patterns

LTL specification patterns are described below for each of the transitions in Figure 2.3(b).

In all, the action variable represents the execution state variable for the action against

which the specification will be checked. The startcondition and parentreset variables refer

to the action’s start and parent reset conditions as they are defined in the formal semantics.

The endcondition is not explicitly used because, as defined in the formal semantics, it is

assumed to be true.

The ready to executing transition is validated using an LTL formula which asserts that

whenever the action transitions from ready to executing, the activity’s startcondition will

always be true:

G ((action = ready ∧ X (action = executing))⇒ startcondition) (B.6)

The executing to done transition is validated using an LTL formula which asserts that

whenever the action transitions from executing, it will always transition to done:

G ((action = executing ∧ X (action 6= executing))⇒ X(action = done)) (B.7)

The done to ready transition is validated using an LTL formula which asserts that when-

ever the action transitions from done to ready, the activity’s parentreset will always be true:

G ((action = done ∧ X (action = ready))⇒ parentreset) (B.8)
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B.3 Restrictions on Activity and Action Execution

Parallelism

While the specifications above check that the execution orders stipulated by the EOFM’s

formal semantics are adhered to, they do not overtly check the restrictions on execution

parallelism specified by the decomposition operators. However, we can also perform for-

mal verifications to validate that these are adhered to.

Each of the specifications used to check these properties assumes that the decompo-

sition has two sub acts (subact1 or subact2 corresponding to either the execution state of

either actions or activities).

For sequential decomposition operators (ord and those ending in _seq), we can verify

that only one sub act will ever be executing:

G

 (subact1 = executing ⇒ subact2 6= executing)

∧ (subact2 = executing ⇒ subact1 6= executing)

 (B.9)

For parallel decomposition operators (those ending in _par), we want to verify that it is

possible for there to be any combination of one or more sub actsexecuting. This is achieved

by generating witnesses, counterexamples that illustrate the desired property. Thus we can

generate a witness showing that both activities can be executing at the same time:

G¬(subact1 = executing ∧ subact2 = executing) (B.10)

Or we can generate witnesses showing that either activity can be executing while the other

is not:

G¬(subact1 = executing ∧ subact2 6= executing) (B.11)

G¬(subact1 6= executing ∧ subact2 = executing) (B.12)
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For the sync decomposition operator, we can verify that the each sub act is executing if

and only if the other is executing:

G(subact1 = executing ⇔ subact2 = executing) (B.13)

For the xor decomposition operator, we can verify that the each sub act is executing

only if the other is ready:

G

 (subact1 = executing ⇒ subact2 = ready)

∧ (subact2 = executing ⇒ subact1 = ready)

 (B.14)

B.4 Validation Applications

The validation applications were defined to cover a number of the structural conditions that

can arise in EOFM instances: activities decomposing into actions with the different decom-

position operators; activities decomposing into other activities; and multiple root activities

in the same model. In all cases the human task behavior model interacts with a simple

human-device interface model which can receive all human operator actions. The opera-

tor also receives Boolean inputs (precondition, repeatcondition, and completioncondition)

from the human-device interface model which give it access to simulated pre, repeat, and

completion conditions which can change between true and false (or remain unchanged) at

each step in a system model’s execution.

B.4.1 A Single Top Level Activity Decomposing Into Actions

The first set of validated applications used a human task behavior model of the form shown

in Figure D.1. Using this template, nine models were developed, one for each decom-

position operator, where a given decomposition operator would replace decomposition in

Figure D.1.



Appendix B. EOFM to SAL Translator Validation 209

activity

precondition

repeatcondition

completioncondition

decomposition

action1 action2

Figure B.1: A visualization of an EOFM instance with a single top level activity decom-
posing into two actions.

System models using these as their human task behavior models were checked against

specification patterns. (B.1) - (B.5) were applied to activity (from D.1) for each decom-

position operator. (B.6)-(B.8) were applied for both action1 and action2 (each replacing

action in the LTL specifications). (B.9)-(B.14) were applied with action1 and action2 (as

subact1 and subact2 respectively in the LTL specifications) for the appropriate decompo-

sition operator. The following definition of start, end, and reset conditions were utilized

(where appropriate) in these verifications for the given decomposition operator:

and_par

activity

startcondition = (activity = ready)

endcondition = (activity = executing ∧ action1 = done ∧ action2 = done)

reset = (activity = done)

action1

startcondition = (action1 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing)
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parentreset = repeatcondition ∨ (activity = done)

and_seq

activity

startcondition = (activity = ready)

endcondition = (activity = executing ∧ action1 = done ∧ action2 = done)

reset = (activity = done)

action1

startcondition = (action1 = ready ∧ activity = executing ∧ action2 6= executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing ∧ action1 6= executing)

parentreset = repeatcondition ∨ (activity = done)

optor_par

activity

startcondition = (activity = ready)

endcondition = (activity = executing ∧ action1 6= executing ∧ action2 6= executing)

reset = (activity = done)

action1

startcondition = (action1 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

optor_seq – zero or more actions must be performed in any order where actions need not be performed one

at a time
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activity

startcondition = (activity = ready)

endcondition = (activity = executing ∧ action1 6= executing ∧ action2 6= executing)

reset = (activity = done)

action1

startcondition = (action1 = ready ∧ activity = executing ∧ action2 6= executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing ∧ action1 6= executing)

parentreset = repeatcondition ∨ (activity = done)

or_par

activity

startcondition = (activity = ready)

endcondition =

 activity = executing ∧ action1 6= executing ∧ action2 6= executing

∧ (action1 = done ∨ action2 = done)


reset = (activity = done)

action1

startcondition = (action1 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

or_seq

activity

startcondition = (activity = ready)

endcondition =

 activity = executing ∧ action1 6= executing ∧ action2 6= executing

∧ (action1 = done ∨ action2 = done)


reset = (activity = done)
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action1

startcondition = (action1 = ready ∧ activity = executing ∧ action2 6= executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing ∧ action1 6= executing)

parentreset = repeatcondition ∨ (activity = done)

ord

activity

startcondition = (activity = ready)

endcondition = (activity = executing ∧ action2 = done)

reset = (activity = done)

action1

startcondition = (action1 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ activity = executing ∧ action1 = done)

parentreset = repeatcondition ∨ (activity = done)

sync

activity

startcondition = (activity = ready)

endcondition = (activity = executing ∧ action1 = done ∧ action2 = done)

reset = (activity = done)

action1

startcondition = (action1 = ready ∧ action2 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)
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action2

startcondition = (action2 = ready ∧ action1 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

xor

activity

startcondition = (activity = ready)

endcondition =

 activity = executing ∧ action1 6= executing ∧ action2 6= executing

∧ (action1 = done ∨ action2 = done)


reset = (activity = done)

action1

startcondition = (action1 = ready ∧ action2 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

action2

startcondition = (action2 = ready ∧ action1 = ready ∧ activity = executing)

parentreset = repeatcondition ∨ (activity = done)

B.5 A Single Top Level Activity Decomposing Into

Activities

The second set of applications used in the validation test utilized a human task behavior

model of the form shown in Figure B.2. Using this template, eight models were developed,

one for each decomposition operator besides sync, where a given decomposition operator

would replace decomposition in Figure B.2.

System models using these as their human task behavior models were checked against

specification patterns. (B.1) - (B.5) were applied for both activity1 and activity2 (each
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parent

decomposition

activity1

precondition

repeatcondition

completioncondition

ord

action1

activity2

precondition

repeatcondition

completioncondition

ord

action2

Figure B.2: A visualization of an EOFM instance with a single top level activity decom-
posing into two activities.

substituting for activity in the LTL specifications) for each decomposition operator. (B.9)-

(B.14) were applied with activity1 and activity2 (as subact1 and subact2 respectively in the

LTL specification) for the appropriate decomposition operator. The following definition of

start, end, and reset conditions were utilized (where appropriate) in these verifications for

the given decomposition operator:

and_par

activity1

startcondition = (activity1 = ready ∧ parent = executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)

and_seq
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activity1

startcondition = (activity1 = ready ∧ parent = executing ∧ activity2 6= executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing ∧ activity1 6= executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)

optor_par

activity1

startcondition = (activity1 = ready ∧ parent = executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)

optor_seq

activity1

startcondition = (activity1 = ready ∧ parent = executing ∧ activity2 6= executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing ∧ activity1 6= executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)
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or_par

activity1

startcondition = (activity1 = ready ∧ parent = executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)

or_seq

activity1

startcondition = (activity1 = ready ∧ parent = executing ∧ activity2 6= executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing ∧ activity1 6= executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)

ord

activity1

startcondition = (activity1 = ready ∧ parent = executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing ∧ activity1 = done)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)
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xor

activity1

startcondition = (activity1 = ready ∧ parent = executing ∧ activity2 = ready)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (parent = done)

activity2

startcondition = (activity2 = ready ∧ parent = executing ∧ activity1 = ready)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (parent = done)

B.5.1 Two Top Level Activities

The last application used in the validation test utilized a human task behavior model in

Figure B.3.

aActivity1

precondition

repeatcondition

completioncondition

ord

Action1

aActivity2

precondition

repeatcondition

completioncondition

ord

Action2

Figure B.3: A visualization of an EOFM instance with two top level activities.

A system model using this as its human task behavior models were checked against

specification patterns (B.1) - (B.5) for both activity1 and activity2 (each substituting for

activity). The following definition of start, end, and reset conditions were utilized (where

appropriate) in these verifications for the given decomposition operator:
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activity1

startcondition = (activity1 = ready ∧ activity2 6= executing)

endcondition = (activity1 = executing ∧ action1 = done)

reset = (activity1 = done)

activity2

startcondition = (activity2 = ready ∧ activity1 6= executing)

endcondition = (activity2 = executing ∧ action2 = done)

reset = (activity2 = done)

B.6 Results

All specifications verified to true with the exception of those derived from (B.10)-(B.12)

which produced the expected witnesses.

B.7 Conclusions

While these applications do not exhaustively test every possible task behavior, they provide

reasonable confidence that the EOFM to SAL translation process is adhering to the formal

semantics, particularly for two activities and actions. They are correct for: an activity de-

composing into multiple actions with all possible decomposition operators; an activity de-

composing into multiple activities with all possible decomposition operators; and multiple

top level activities. Additionally, all activities utilized in the applications discussed in the

document were visually inspected to ensure that all observed counterexample conformed

to the formal semantics.
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Phenotypical Erroneous Human

Behavior Validation

SAL was used to validate that translated instantiated EOFMs with phenotypical erroneous

behavior generation were exhibiting the expected behavior. This was done by constructing

a simple instantiated EOFM in which a single activity (aParent) with no conditions de-

composes into a single action (a) with an ordered (ord) decomposition operator. A formal

interface model was also created that could receive three different human actions (a, b, and

c all defined as humanaction nodes in the instantiated EOFM’s markup) and was capable

of recording up to four human actions in the sequence that they were submitted (action1,

action2, action3, and action4 which could assume values a, b, c, ε 1 depending on the

action that was performed).

Three formal models were built using these constructs where the interface model was

paired with translated versions of the instantiated EOFM2: one with no generated erroneous

behavior, one with a maximum of one erroneous act, and one with a maximum of two

erroneous acts.
1No Action
2The translated EOFMs were modified so that aParent would not transition from done to ready, allowing

the interface model to record the sequence actions performed for a single execution of aParent.

219
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LTL specification properties were checked against each model to ensure that expected

properties of erroneous behavior generation were maintained. The fist set of such prop-

erties were designed to ensure that all three models could only generate the action execu-

tion sequence expected for the maximum number of erroneous acts. This was done using

specification properties expected to generate witnesses for specific sequences of recorded

actions (counterexamples illustrating that a specific sequence could be achieved) or would

verify to true if the sequence was unachievable. This was done for all of the possible valid

action sequences that could be executed for the given instantiated EOFM with up to two

erroneous acts. The temporal logic pattern for for each of these specifications is shown

in (C.1) where a1, a2, a3, and a4 can be any value the associated action variable could

assume.

G¬



aParent = done

∧action1 = a1

∧action2 = a2

∧action3 = a3

∧action4 = a4


(C.1)

Table C.1 indicates all of the action sequences that were verified using (C.1) along with

the expected result of the verification. When these were checked against the actual model,

all of the expected results were observed.

As a direct extension of these verifications, two additional ones were also conducted to

ensure that there would never be a circumstance in any of the models in which four actions

were performed (C.2) and that there was never a circumstance in which three actions were

performed in which the correct action a was not one of the actions (C.3). Both verified to

true in all models. These verifications coupled with those associated with (C.1) and Table

C.1 prove that the erroneous behavior generation structure is producing the expected action
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Table C.1: Expected Verification Results for (C.1)

Expected Verification Result

Action Sequences Max. ] Erroneous Acts

a1 a2 a3 a4 0 1 2

ε ε ε ε × X X
a ε ε ε X X X
b ε ε ε × X X
c ε ε ε × X X
a a ε ε × X X
a b ε ε × X X
b a ε ε × X X
a c ε ε × X X
c a ε ε × X X
b b ε ε × × X
b c ε ε × × X
c b ε ε × × X
c c ε ε × × X
a a a ε × × X
a a b ε × × X
a b a ε × × X
b a a ε × × X
a a c ε × × X
a c a ε × × X
c a a ε × × X
a b c ε × × X
a c b ε × × X
b a c ε × × X
b c a ε × × X
c a b ε × × X
c b a ε × × X

Note. In the above a X indicates that when the associated action sequence is checked against the indicated
model with (C.1), that it was expected to return a counterexample. A × indicates that (C.1) was expected to
verify to true, indicating the infeasibility of the action sequence.

sequences without producing any that weren’t for up to two erroneous behaviors.

G (a4 6= ε) (C.2)



Appendix C. Phenotypical Erroneous Human Behavior Validation 222

G





aParent = done

∧action1 6= ε

∧action2 6= ε

∧action3 6= ε

∧action4 = ε


⇒


action1 = a

∨action2 = a

∨action3 = a




(C.3)

Verifications were also run for the models supporting both one and two erroneous acts

to ensure that the erroneous act counter would never exceeded the maximum (C.4) and that

they would still allow for the correct action to be performed without any erroneous acts

occurring (C.5). Both verified to true for the two models.

G (ECount ≤ ErrorMax ) (C.4)

G


 aParent = done

ECount = 0

⇒


action1 = a

∧action2 = ε

∧action3 = ε

∧action4 = ε




(C.5)

These tests provide reasonable confidence that the phenotypical erroneous behavior

generation process is behaving as intended. This conclusion is also supported by the appli-

cation discussed in Chapter 5 in which the erroneous human behavior generation process

produced results consistent with what was expected.
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Strategic Knowledge-based Erroneous

Behavior Validation

SAL was used to validate that translated instantiated EOFMs with strategic knowledge-

based erroneous behaviors were exhibiting the expected behavior. This was done by de-

veloping a number of temporal logic specification patterns designed to verify that models

were conforming to the activity execution state transitions from Figure 6.1, both normative

and erroneous. All validations were performed for the execution of activity (Figure D.1)

whose formal representation was created by translating its associated instantiated EOFM

into SAL with a maximum of one erroneous transition (KMax = 1). This translated EOFM

interacts with a simple human-device interface model which can receive all human opera-

tor actions. The operator also receives Boolean inputs (precondition, repeatcondition, and

completioncondition) from the human-device interface model which provide it with simu-

lated pre, repeat, and completion conditions which can change between true and false (or

remain unchanged) at each step in a system model’s execution.

activity has the following start and end conditions:

startcondition = (activity = ready)

223
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activity

precondition

repeatcondition

completioncondition

ord

action1 action2

Figure D.1: A visualization of an EOFM instance with a single top level activity decom-
posing into two actions with an ord decomposition operator.

endcondition = (acivity = executing ∧ action2 = done)

These were used to construct LTL properties to test that the execution state of activity

was adhering to the transition specified in Figure 6.1, one specification for each transition.

To check that activity could properly erroneously transition from ready to executing, we

created a specification which asserted that, if the activity is going to make this transition

erroneously (as indicated by the instrumentation of KCount), this always implies that its

startcondition is true and either its precondition is false or its completioncondition is true:

G





activity = ready

∧X(activity = executing)

∧KCount = 0

∧X(KCount = 1)


⇒

 startcondition

∧¬(precondition ∧ ¬completioncondition)




(D.1)

To check that activity could properly normatively transition from ready to executing,

we created a specification which asserted that, if the activity was making this transition

normatively (without an instrumentation of KCount), that this always implies that its start-
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condition is true, its precondition is true, and its completioncondition false:

G





activity = ready

∧X(activity = executing)

∧

 KCount = 0 ∧ X(KCount = 0)

∨KCount = 1 ∧ X(KCount = 1)




⇒


startcondition

∧precondition

∧¬completioncondition




(D.2)

To check that activity could properly erroneously repeat, we created a specification

which asserted that, if the activity remained executing with an erroneous transition, this

would always imply that its endcondition is true and that either the repeatcondition is false

or that the completioncondition is true:

G





activity = executing

∧X(activity = executing)

∧KCount = 0

∧X(KCount = 1)


⇒ endcondition ∧ ¬

 repeatcondition

∧¬completioncondition




(D.3)

To check that activity could properly normatively repeat, we created a specification

which asserted that, if the activity is executing with its endcondition true, its repeatcondi-

tion true, its completioncondition false, and no change in the number of erroneous transi-

tion; that this will always imply that the activity is executing in the next state:

G





activity = executing

∧endcondition

∧repeatcondition

∧¬completioncondition

∧

 (KCount = 0 ∧ X(KCount = 0))

∨(KCount = 1 ∧ X(KCount = 1))




⇒ X(activity = executing)


(D.4)

To check that activity could properly erroneously transition from executing to done,

we created a specification which asserted that, if it makes this transition erroneously, this
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always implies that its endcondition is true and its completioncondition is false:

G





activity = executing

∧X(activity = done)

∧KCount = 0

∧X(KCount = 1)


⇒

 endcondition

∧¬completioncondition




(D.5)

To check that activity could properly normatively transition from executing to done, we

created a specification which asserted that, if the activity was making this transition nor-

matively, that this always implies that its endcondition is true and its completioncondition

is true:

G





activity = executing

∧X(activity = done)

∧

 (KCount = 0 ∧ X(KCount = 0))

∨(KCount = 1 ∧ X(KCount = 1))




⇒

 endcondition

∧completioncondition




(D.6)

To check that activity could properly erroneously transition from ready to done, we cre-

ated a specification which asserted that, if it makes this transition erroneously, this always

implies that its startcondition is true and its completioncondition is false:

G





activity = ready

∧X(activity = done)

∧KCount = 0

∧X(KCount = 1)


⇒

 startcondition

∧¬completioncondition




(D.7)

To check that activity could properly normatively transition from ready to done, we

created a specification which asserted that, if the activity was making this transition nor-

matively, that this always implies that its startcondition is true and its completioncondition

is true:

G





activity = ready

∧X(activity = done)

∧

 (KCount = 0 ∧ X(KCount = 0))

∨(KCount = 1 ∧ X(KCount = 1))




⇒

 startcondition

∧completioncondition




(D.8)
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Finally, we checked that the number of erroneous transitions would never exceed the

maximum:

G (KCount ≥ 0 ∧KCount ≤ EMax ) (D.9)

All of these specifications verified to true or generated the expected witnesses giving

us reasonable confidence that the strategic knowledge-based erroneous human behavior

generation process was working as intended. This conclusion is also supported by the ap-

plication discussed in Chapter 6 in which the erroneous human behavior generation process

produced results consistent with what was expected.
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