
Available online at www.sciencedirect.com
1071-5819/$ - se

http://dx.doi.or

nCorrespond

E-mail addr
Int. J. Human-Computer Studies 70 (2012) 888–906

www.elsevier.com/locate/ijhcs
Generating phenotypical erroneous human behavior to evaluate
human–automation interaction using model checking

Matthew L. Boltona,n, Ellen J. Bassb, Radu I. Siminiceanuc

aSan José State University Research Foundation, NASA Ames Research Center, Moffett Field, CA, USA
bDepartment of Systems and Information Engineering, University of Virginia, Charlottesville, VA, USA

cNational Institute of Aerospace, Hampton, VA, USA

Received 3 July 2011; received in revised form 16 April 2012; accepted 30 May 2012

Communicated by E. Motta

Available online 9 June 2012
Abstract

Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human

operators, human–automation interaction associated with both normative and erroneous human behavior can contribute to such

failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating

how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic

models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is

capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple

phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern

capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally

verified with a model checker. This allows analysts to prove that a human–automation interactive system (as represented by the model)

will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related

to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We

demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a

generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring.

We discuss how our method could be used to evaluate larger applications and recommend future paths of development.

& 2012 Elsevier Ltd. All rights reserved.

Keywords: Human–automation interaction; Model checking; Task analysis; Human error; Formal methods
1. Introduction

Complex systems depend on goal-oriented human
operators interacting with automation in a dynamic envir-
onment. Thus, failures in such systems will often result
from poor human–automation interaction (HAI). Erro-
neous human behavior (Hollnagel, 1993), where the
human operator does not follow the normative procedure
for interacting with a system has been associated with
failures in aviation (BASI, 1998; FAA Human Factors
Team, 1996; Hughes and Dornheim, 1995; Johnson and
Holloway, 2004), process control (O’Hara et al., 2008),
e front matter & 2012 Elsevier Ltd. All rights reserved.

g/10.1016/j.ijhcs.2012.05.010

ing author. Tel.: þ1 650 604 2505; fax: þ1 650 604 3729.

ess: mlb4b@virginia.edu (M.L. Bolton).
medicine (Kohn et al., 2000), and other safety critical
domains. A number of model-driven analysis techniques
have been developed to give engineers methods and tools
for evaluating HAI in system design and analysis. How-
ever, there are gaps in the techniques that attempt to use
formal methods to evaluate the impact of human behavior
on system safety. We describe these model-driven
approaches before presenting a new method that attempts
to address some of their shortcomings.
1.1. Model-driven design and analysis

Model-driven design and analysis techniques (Hussmann
et al., 2011) use models of the automation, human–device

www.elsevier.com/locate/ijhcs
dx.doi.org/10.1016/j.ijhcs.2012.05.010
www.elsevier.com/locate/ijhcs
dx.doi.org/10.1016/j.ijhcs.2012.05.010
dx.doi.org/10.1016/j.ijhcs.2012.05.010
dx.doi.org/10.1016/j.ijhcs.2012.05.010
mailto:mlb4b@virginia.edu


M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 889
interfaces, human task behavior, human cognition, and/or
environmental conditions to provide guarantees about the
performance of the system using formal methods.

Formal methods are a set of languages and techniques
for the specification, modeling, and verification of systems
(Wing, 1990). While there are a number of different ways
in which models can be both manually and automatically
verified, two particular computer software technologies,
automated theorem provers and model checkers, have
been shown to be useful for the formal verification of
large complex systems. Theorem proving is a deductive
technique that closely resembles the traditional pencil-and-
paper proof activity: from a set of axioms, using a set of
inference rules, one builds theories and proves theorems to
verify correctness claims about the system under investiga-
tion with the help of a proof assistant program. Model
checking is an automated approach used to verify that a
formal model of a system satisfies a set of desired proper-
ties (a specification) (Clarke et al., 1999). A formal model
describes a system as a set of variables and transitions
between variable values (states). Specification properties
are commonly represented in a temporal logic, usually
Linear Temporal Logic or Computation Tree Logic, using
the variables that describe the formal system model to
construct propositions. Verification is the process of prov-
ing that the system meets the properties in the specifica-
tion. Model checking performs this process automatically
by exhaustively searching a system’s statespace to deter-
mine if these criteria hold. If there is a violation, an
execution trace is produced (a counterexample). This
counterexample depicts a model state (a valuation of the
model’s variables) corresponding to a specification viola-
tion along with a list of the incremental model states that
led up to the violation.

Formal, model-based approaches have been used to
model human–device and human–computer interfaces
both with and without the underlying automation
(Abowd et al., 1995; Degani, 2004; Degani et al., 2011;
Degani and Heymann, 2002; Dix et al., 2008; Dwyer et al.,
1997, 2004; Harel, 1987; Harrison and Duke, 1995; Parnas,
1969; Sherry and Ward, 1995; Thimbleby and Gow,
2007a). These models can then be used in a variety of
formal analyses to evaluate the HAI. For example:
researchers have formulated a number of generic temporal
logic properties for evaluating interface usability with a
model checker (Abowd et al., 1995; Berstel et al., 2005;
Campos and Harrison, 1997, 2009; Patern �o, 1997); a
variety of techniques have been developed for detecting
potential mode confusion1 in automated systems
(Bredereke and Lankenau, 2005; Buth, 2004; Campos
and Harrison, 2001, 2011; Degani and Heymann, 2002;
Javaux, 2002; Joshi et al., 2003; Leveson et al., 1997;
Rushby, 2002; Wheeler, 2007); graph theory can be used to
1Mode confusion is a HAI issue which occurs when the human operator

is unable to keep track of the state or mode of the device automation

(Norman, 1990; Sarter and Woods, 1995).
evaluate usability (Thimbleby and Gow, 2007b); methods
have been developed for generating test cases that will
guarantee coverage of the devices features and displays
(Duan et al., 2010; Giannakopoulou et al., 2011); code for
implementing modeled human–computer interfaces can be
automatically generated (Berstel et al., 2005); and human–
device interfaces can be automatically generated to ensure
certain usability properties are maintained (Combéfis et al.,
2011; Gimblett and Thimbleby, 2010; Heymann and
Degani, 2007).

1.2. Formally evaluating the impact of human behavior on

system safety

Of particular relevance to this work are model-driven
analysis techniques that attempt to use formal methods and
human-behavior modeling to evaluate system safety. In these
approaches, the human operator’s behavior is determined by
device interface models, cognitive models of human behavior,
or task-analytic models of human behavior.

1.2.1. Using device interfaces to define human behavior

In the simplest approach, the human operator’s beha-
vior is determined by the human–device interface such that
any input acceptable by the interface is allowed. The
human–device interface and/or automation behavior,
including its response to human behavior, is modeled
formally. Formal verification is then used to determine if
there is any way the system could ever violate a safety
property (Abowd et al., 1995; Campos and Harrison, 1997,
2008; Thomas, 1994).
This approach is powerful in that it will tell an analyst

whether or not there is ever a situation where human
behavior could contribute to a system failure. However, it
gives the analyst little insight into what the human
operator was doing when a failure occurred. Additionally,
this approach can find failure sequences that a human
operator may never actually perform. Finally, there are
many safety critical systems where the human operator will
always be able to cause a failure. For example, an aircraft
pilot is always capable of causing a crash.

1.2.2. Using cognitively driven models of human behavior

Another approach explicitly includes human behavior as
part of the larger formal system model. In the work of
Blandford et al. (Blandford et al., 2004, 1997; Butterworth
et al., 1998, 2000) human behavior is driven by a formal
model of human cognition (based on Programmable User
Models; Young et al., 1989). These cognitive models
encompass the human operator’s goals, his or her beliefs
and knowledge about the operation of the system, the
information available to him or her from the human–
device interface, and the actions he or she can use to
interact with the system. When such models are integrated
into a formal system model, system safety and liveness
properties can be evaluated using model checkers
and/or automated theorem provers. With this approach,



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906890
erroneous behavior can result from the human cognitive
process. Cognitive models can be used to generate simple
erroneous behaviors such as the repetition, omission,
intrusion, replacement, mis-sequencing or mis-timing of
actions (Curzon and Blandford, 2002). They can also be
used to generate post completion errors (Curzon and
Blandford, 2004), a type of omission which occurs when
a human operator successfully completes his or her
primary goal with a device but fails to perform supple-
mental actions to fully complete the task (Byrne and
Bovair, 1997). These types of analyses can also be used
to determine how different types of human operators
(novice or expert) may impact system performance based
on how their knowledge of, beliefs about, and goals for the
operation of the system can result in repetitions of actions
or post completion errors (Curzon et al., 2007). The
architecture has been extended to a generic cognitive
framework that models the effect of salience, cognitive
load, and the interpretation of spatial cues and assesses
whether they result in erroneous human behavior
(Rukš_enas et al., 2008; Rukšenas et al., 2009; Rukš_enas
et al., 2007). Habituation, impatience, and carefulness have
also been incorporated into these types of models (Basuki
et al., 2009). Means of evaluating distributed cognition
formally have also been explored (Masci et al., 2011).

Because they explicitly model human behavior and
because they represent the cognitive basis for erroneous
behavior, the techniques discussed here give analysts
additional insights into why failures occur. However, these
analyses require each cognitive mechanism to be incorpo-
rated into the model. As such, they miss un-modeled
behaviors. Finally, the cognitive models employed in these
techniques are less commonly used than other human
behavior modeling techniques such as task models.

1.2.3. Using models of task analytic human behavior

A third approach for assessing the impact of human
behavior on system safety incorporates task analytic
models into formal verification analyses. When designing
the procedures, displays, controls, and training associated
with the HAI of an automated system, human factors
engineers typically use task analytic methods to describe
the normative human behaviors required to control the
system (Kirwan and Ainsworth, 1992). Information from
these methods can be used to model the mental and
physical activities that operators use to achieve goals with
the system.

Task analytic models are computational structures
represented as a hierarchy of activities that decompose
into other activities and (at the lowest level) atomic
actions. Task analytic models such as ConcurTaskTrees
(CTT) (Patern �o et al., 1997), Operator Function Model
(OFM) (Mitchell and Miller, 1986), Enhanced Operator
Function Model (EOFM) (Bolton et al., 2011), User
Action Notation (UAN) (Hartson et al., 1990), AMBOSS
(Giese et al., 2008), and HAMSTERS (Martinie et al.,
2011) can be represented using discrete graph structures.
In these models, strategic knowledge (condition logic)
controls when activities can execute, and modifiers between
activities or actions control how they execute in relation to
each other.
Because they can be represented discretely, task analytic

models can be used to include human behavior in formal
system models. A number of researchers have incorporated
task analytic models into formal system models of human–
automation interactive systems by either modeling task
behavior natively in the formal notation (Basnyat et al.,
2007, 2008; Campos, 2003; Gunter et al., 2009) or
translating task analytic models implemented in task
analytic representations (such as CTT, EOFM, or UAN)
into the formal notation (Aı̈t-Ameur and Baron, 2006; Aı̈t-
Ameur et al., 2003; Bolton and Bass, 2009b, 2010a; Bolton
et al., 2011; Fields, 2001; Palanque et al., 1996; Patern �o
and Santoro, 2001; Patern �o et al., 1998). This allows
system safety properties to be verified in light of the
modeled, normative human behavior, thus giving research-
ers a means of proving that (assuming the representative-
ness of their system model) the system will always operate
safely if the human operators adhere to the modeled
behavior.
These analyses have the advantage that they allow

engineers to reuse the information gleaned from task
analytic methods. However, these approaches are limited
because the models only encompass normative human
behavior and thus the analyses provide no insight into
the impact of erroneous human behavior. To address this,
researchers have investigated how erroneous human beha-
vior can be systematically incorporated into task analytic
behavior models, often with the explicit or implied ability
to evaluate the impact of the generated erroneous human
behavior on system properties using formal verification.
For example, several researchers have demonstrated how
task analytic models of normative human behavior can be
manually permuted to include erroneous human behaviors:
either simple deviations from the performance of actions in
a task (Bolton et al., 2008; Fields, 2001) or more compli-
cated, cognitively significant divergences such as post com-
pletion errors (Basnyat and Palanque, 2005; Palanque and
Basnyat, 2004; Patern�o and Santoro, 2002). Bastide and
Basnyat (2007) and Fields (2001) have taken this a step
further by introducing ‘‘error patterns’’ representing erro-
neous behavior deviations from normative task behavior
models, where the manual application of the transformation
rules will automatically incorporate the erroneous behavior
in the desired location. This approach allows an expert on
erroneous human behavior to examine a normative human
task behavior model and selectively include erroneous
human behaviors in locations where he or she thinks they
might occur. The impact of the included erroneous behaviors
can then be evaluated with formal verification (Bolton et al.,
2008; Fields, 2001).
The approaches covered in this section have an advan-

tage over the cognitive modeling-based techniques dis-
cussed above in that they leverage information commonly



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 891
developed in the task analysis process. Further, the
erroneous behavior manually incorporated into the task
behavior models can be included for both cognitive or
non-cognitive reasons. However, the fact that erroneous
behaviors must be manually included in these analyses
means that these methods will not provide insight into the
impact of unanticipated erroneous human behavior, while
the more advanced cognitive models can.

1.3. Objectives

Clearly, analysts have some options if they want to
evaluate the impact of human behavior of system safety
formally. What is missing is an approach that would allow
engineers to reuse task analytic behavior models to
evaluate the impact of potentially unanticipated, erroneous
deviations from normative behavior. Such an approach
would avoid the pitfalls of the human device interface and
cognitive modeling approaches. Further, it would be able
to leverage the advantages of using task analytic behavior
models without forcing the analyst to select which erro-
neous behaviors to include.

In this work, we present a technique capable of perform-
ing such an analysis. Our technique uses a well established
taxonomy of erroneous human behavior (based on
Hollnagel, 1993) to automatically generate erroneous
behavior within instantiated EOFM task analytic models
of normative human behavior. Because instantiated
EOFMs can be automatically translated into formal
modeling notation (Bolton et al., 2011), the impact of
the generated, and potentially unanticipated, erroneous
Fig. 1. An example of the visual representation of a task structure in an insta

completion condition. It decomposes into activities aActivity2 and aActivity3 w

decomposes into Action1 with an ord decomposition operator. aActivity3 has b

aActivity5 with an optor_par operator. aActivity4 and aActivity5 each decompo

former and Action4 and Action5 with an ord decomposition for the latter.
human behavior on system safety can be evaluated using
formal verification with a model checker. In the remainder
of this paper we discuss our analysis method for the formal
verification of HAI and show how erroneous human
behavior can be automatically generated and evaluated
as part of this process. We report benchmarks which show
how our method scales with respect to the number of
available human actions and the maximum number of
erroneous acts allowed with different task structures. We
demonstrate how our method can be used to find viola-
tions of system safety properties due to automatically
generated erroneous human behavior with a radiation
therapy machine example. We show how our method can
be used to explore design interventions which eliminate the
discovered problem. Finally, we discuss our results and
recommend avenues of future research.

2. Using EOFM in the formal verification of HAI

We have developed a method (Bolton and Bass, 2009b)
to evaluate HAI formally using task analytic models of
human behavior. The method utilizes a formal modeling
architectural framework which encompasses models of
human missions (i.e. goals), human task behavior (the
activities and actions the human operator uses to achieve
mission goals), human–device interfaces (displays and
controls available to the human operator through the
device), device automation (underlying device behavior),
and the operational environment (Bolton and Bass,
2010a). In our analysis framework, human task models
are created using an intermediary language called
ntiation of an EOFM. Activity aActivity1 has both a precondition and a

ith an or_seq decomposition operator. aActivity2 has a precondition and

oth repeat and completion conditions. It decomposes into aActivity4 and

se into two actions, Action2 and Action3 with an xor decomposition for the



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906892
Enhanced Operator Function Model (EOFM) (Bolton
et al., 2011), an XML-based human task modeling repre-
sentation derived from the Operator Function Model
(OFM) (Mitchell and Miller, 1986; Thurman et al.,
1998). EOFMs are hierarchical representations of goal-
driven activities that decompose into lower level activities,
and finally, atomic actions. EOFMs express task knowl-
edge by explicitly specifying the conditions under which
human operator activities can be undertaken: what must
be true before they can execute (preconditions), when they
can repeat (repeat conditions), and when they have
completed (completion conditions). Any activity can
decompose into one or more other activities or one or
more actions. A decomposition operator specifies the
temporal relationships between and the cardinality of the
decomposed activities or actions (when they can execute
relative to each other and how many can execute).

EOFMs can be represented visually as tree-like graphs
(see Fig. 1). Actions are rectangles and activities are
rounded rectangles. An activity’s decomposition is pre-
sented as an arrow, labeled with the decomposition
operator, that points to a large rounded rectangle contain-
ing the decomposed activities or actions. In the work
presented here, four of the nine decomposition operators
(Bolton et al., 2011) are used:
�
 ord — all activities or actions in the decomposition must
execute in the order they appear;

�
 or_seq — one or more of the activities or actions in the

decomposition must execute, where only one activity or
action can be executing at a given time;

�
 optor_par — zero or more of the activities or actions in

the decomposition must execute, where the execution of
activities or actions can overlap; and

�
 xor — exactly one activity or action in the decomposi-

tion must execute.

Conditions on activities are represented as shapes or arrows
(annotated with the logic) connected to the activity that they
constrain. The form, position, and color of the shape are
determined by the type of condition. A precondition is a
yellow, downward-pointing triangle; a completion condition is
a magenta, upward-pointing triangle; and a repeat condition is
an arrow recursively pointing to the top of the activity. More
details can be found in Bolton et al. (2011).

EOFM has formal semantics which specify how an instan-
tiated EOFMmodel executes (Bolton et al., 2011). Specifically,
each activity or action can have one of three execution states:
waiting to execute (Ready), executing (Executing), and done
(Done). An activity or action transitions between each of these
states based on its current state; the state of its immediate
parent, its siblings (activities or actions contained in the same
decomposition), and its immediate children in the hierarchy;
and the decomposition operators that connect the activity to
its parent and its children.

Instantiated EOFM task models can be automatically
translated (Bolton et al., 2011) into the language of the
Symbolic Analysis Laboratory (SAL) (De Moura et al.,
2003) using the language’s formal semantics where they
can be integrated into a larger system model using a
defined architecture and coordination protocol (Bolton
and Bass, 2010a; Bolton et al., 2011). Formal verifications
are performed on this complete system model using SAL’s
Symbolic Model Checker (SAL-SMC). Any produced
counterexamples can be visualized and evaluated using
EOFM’s visual notation (see Bolton and Bass, 2010b).
These techniques have been successfully used to evaluate a
patient controlled analgesia pump (Bolton and Bass,
2009b, 2010a), an automobile cruise control system
(Bolton and Bass, 2010b; Bolton et al., 2011), and an
aircraft on approach (Bolton and Bass, in press).
We next discuss the design philosophy behind our erroneous

behavior generation method and describe how it can be
automatically incorporated into this infrastructure.

3. Erroneous behavior generation

3.1. Phenotypes of erroneous human behavior

Erroneous human behaviors have been classified based
on how they arise from human decision making, cognition,
and task execution (Hollnagel, 1993; Jones, 1997; Norman,
1988; Reason, 1990). Task analytic behavior models gen-
erally do not model low level perceptual, motor, and
cognitive processes (exceptions are discussed by John and
Kieras, 1996). However, they do model human task
behavior hierarchically down to the atomic, observable
action level. For this reason, Hollnagel’s (Hollnagel, 1993)
phenotypes of erroneous action are appropriate.
Hollnagel (1993) showed that erroneous human behaviors

can be classified based on how they observably manifest as a
divergence from a plan or normative sequence of actions (a
task). He called these the phenotypes of erroneous human
action. In this taxonomy, erroneous behaviors are composed
of one or more erroneous acts, all capable of being detected
by observing the performance of a single act in a plan. These
‘‘zero-order’’ phenotypes include: prematurely starting an
action, delaying the start of an action, prematurely finishing
an action, delaying the completion of an action, omitting an
action, jumping forward (performing an action that should
be performed later), jumping backward (performing a
previously performed action), repeating an action, and
performing an unplanned action (an intrusion). These serve
as the building blocks for additional, ‘‘first-order’’, pheno-
types: spurious intrusions (actions are added to plans via
zero-order intrusions), jumping forward or backward in a
plan (multiple skips or jumps), place losing (performing
planned actions in an arbitrary order via multiple skips and
jumps), recovery (performing previously omitted actions via
multiple jumps), capture (performing part of another action
sequence in the wrong place via multiple intrusions), reversal
(reversing the execution of two adjacent actions via a skip
and a jump backward), and time compression (multiple
premature starts and/or premature finishes).



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 893
4. Phenotypical erroneous human behavior generation

Hollnagel’s phenotypes (Hollnagel, 1993) for delays and
premature starts and finishes refer to time explicitly, which
is not currently supported by our method (Bolton and
Bass, 2009b). However, all of the other zero-order pheno-
types relate to the performance or non-performance of
actions; all of which are compatible with the formal
semantics and structure of the EOFM. Thus the intent of
this work was to develop an erroneous behavior generation
process capable of replicating Hollnagel’s (Hollnagel,
1993) zero-order phenotypes of erroneous human behavior
for omitting, skipping, re-performing, repeating, or intrud-
ing an action for each original action in an instantiated
EOFM. To allow for more complex erroneous human
behaviors, erroneous behavior generation must be capable
of chaining zero-order erroneous human acts. An uncon-
strained number of erroneous acts could result in an
unbounded human task behavior model, which would
eliminate the benefit of including human behavior in the
model. Thus, the erroneous behavior generation process
must support a mechanism for constraining the number of
erroneous acts that can be performed in the formally
translated erroneous human behavior model. To facilitate
analysis with our method, the erroneous behavior genera-
tion structure should be represented in the EOFM lan-
guage thus making it compatible with the EOFM to SAL
translation process and counterexample visualization.

To accomplish these goals, we replace each action in an
instantiated EOFM task model with an EOFM task
Fig. 2. Visualization of the EOFM structure used to genera
structure that generates erroneous behavior. Thus, for
every given action in the original normative structure,
the new structure can allow for the original action and/or
one or more zero-order phenotypes. The ability to perform
multiple erroneous acts allows zero-order erroneous acts to
be chained together to form higher order erroneous
behaviors. A counter keeps track of the number of
erroneous acts, and the number of erroneous acts is limited
by a maximum. What follows is a discussion of the details
for implementing erroneous behavior generation in this
manner, and how it was adapted into our method for the
formal verification of HAI.
To generate erroneous actions, zero-order phenotypes

for omissions, skips, re-performances, repetitions, and
intrusions are incorporated into an instantiated EOFM
by replacing each atomic action (Actionx) with a custo-
mized structure (Actionx0) (Fig. 2). This design includes an
upper bound on the number of erroneous acts (EMax) and
a variable (ECount) that keeps track of the number of
erroneous acts that the task model has performed. Any
activity that represents an erroneous act has a precondition
asserting that it cannot be performed unless the current
number of performed erroneous actions is less than the
maximum ðECountoEMaxÞ. Every time an activity repre-
senting an erroneous act executes, ECount is incremented
by one (ECountþþ).

Actionx0 decomposes into several additional activities,
allowing Actionx0 to complete execution if one or more of
these activities executes (via the or_seq decomposition
operator). CorrectAction allows the original correct action
te zero-order phenotypical erroneous human behavior.



Fig. 3. Instantiated EOFM normative task behavior structures used as inputs to verification benchmark experiments: (a) A single activity decomposing

into a single action with an ord decomposition; (b) A single activity decomposing into two actions with an ord decomposition; and (c) A single activity

decomposing into two actions with an optor_par decomposition.

M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906894
(Actionx to be performed). The Omission activity allows a
human operator to perform the erroneous act of omitting
the original action, represented as the DoNothing action.
The Repetition activities each allow the correct action to be
performed erroneously multiple times, one for each activ-
ity. The Commission activities each allow any other single
erroneous action to be performed (via the xor decomposi-
tion operator) where the set of erroneous actions corre-
sponds to the n human actions available to the human
operator. There are EMax Commission and Repetition

activities, thus allowing for up to EMax erroneous actions
to occur in place of or in addition to the original action.

Aside from keeping the number of erroneous acts from
exceeding the maximum, the precondition of each activity in
this structure ensures that there is only one way to produce a
given sequence of actions for each instance of the structure. An
omission can only execute if no other activity in the structure
has executed (all other activities must be Ready) and every
other activity can only execute if there has not been an
omission (Omission¼Ready). The first repetition activity
(Repetition1) cannot execute unless the correct action activity
is done (CorrectAction¼Done). Every subsequent repetition
activity (Repetitioni) cannot execute unless the previous
repetition activity has executed (Repetitioni�1 ¼Done). Simi-
larly, every commission activity Commissioni where i41
cannot execute unless the previous commission activity is
done (Commissioni�1 ¼Done).

This design allows the specified zero-order erroneous
behavior phenotypes to be generated when the EOFM
executes. Skips and omissions occur through the execution
of the Omission activity. Repeating the current action can
occur through a Repetition activity. Re-performing a
previously completed action or performing an intrusion
can occur by executing either a previously performed
action or some other action (respectively) through one of
the Commission activities. Multiple erroneous actions can
occur before, after, or instead of the correct action due to
the or_seq decomposition and multiple erroneous acts can
occur between erroneous behavior generating structures
for different actions. Thus, the use of this structure allows
for single, zero-order erroneous actions as well as more
complicated (first-order or second-order) erroneous beha-
viors to be generated.
Our Java-based EOFM to SAL translator (Bolton et al.,
2011) was modified to incorporate the erroneous behavior
generation structure into any instantiated EOFM. The
translator takes a normative human behavior model (an
instantiated EOFM XML file) and the maximum number
of erroneous acts (EMax) as input and traverses the
EOFM structure, replacing each action with its corre-
sponding erroneous behavior generative structure (Fig. 2).
To accommodate the verification process, the translator
represents EMax as a constant and the range for the
number of possible erroneous acts (0 to EMax) as a type.
It modifies each human operator by adding a variable
representing the current number of performed erroneous
acts (ECount) and a DoNothing human action.
The translator produces two files as output. The first is

an EOFM XML file representing the created erroneous
human behavior model (separate from the model of
normative behavior). The second is the translated SAL
representation of this model.

5. Testing and benchmarks

Benchmarking was performed to shed light on how the
erroneous behavior generation process impacted model
complexity and scalability. For these analyses, we wanted
to develop an understanding of how the erroneous beha-
vior generation process contributed to the statespace size
and verification times of task behavior models instantiated
in EOFM. The complexity added to an instantiated
EOFM task behavior model can be influenced by two
factors. The first is the complexity of the erroneous
behavior generation structure that replaces each action.
This, in turn, can be influenced by the maximum number
of erroneous acts (EMax), which determines how many
Commission and Repetition activities are in the erroneous
behavior generation structure; and the number of available
human actions, which populate the generating structure’s
Commission activities. The second factor that impacts
complexity is the relationship between each of the generat-
ing structures based on the decomposition operators that
control it (Bolton et al., 2011).
We conducted a series of verifications using three

different instantiated EOFM normative task behavior



Fig. 4. Plot of the verification results (verification time in seconds and the number of visited states) vs. the maximum number of erroneous acts (EMax)

for between 1 and 16 available human actions for each of the three task structures ((a), (b), and (c)) from Fig. 3 on log-linear coordinates.

M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 895
models (Fig. 3). The structure shown in Fig. 3(a) represents
the simplest valid instance of an EOFM: where a single
activity decomposes into a single action. Thus, bench-
marks collected from verifications using this model as
input provide insight into the scalability of the erroneous
behavior generation structure in isolation. The structures
shown in Fig. 3(b) and (c) represent the simplest EOFM
task structure in which there is more than one action. The
ord decomposition operator2 (used in Fig. 3(b)) has the
least impact on model complexity while the optor_par
2All of the sub-activities or actions must execute sequentially in the

order they are listed.
decomposition operator3 (used in Fig. 3(c)) has the most
(Bolton et al., 2011). Thus, the model in Fig. 3(b) supports
lower bound analysis of the impact the erroneous behavior
structures has on verification results while the model in
Fig. 3(c) supports an upper bound analysis.
In the analysis, we varied the number of available

human actions (between 1 and 16) and the maximum
number of erroneous acts (between 0 and 8) for each of the
task structures ((a), (b), and (c)) from Fig. 3. We used our
translator to create a formal SAL model for each distinct
3Zero or more of the sub-activities or actions can execute in any order

and the execution of activities or actions can overlap.



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906896
combination. Each model was formally verified once
against a valid specification using SAL-SMC on a compu-
ter workstation with a 3.0 GHz dual-core Intel Xeon
processor and 16 GB of RAM running the Ubuntu 9.04
desktop, where both the total number of visited states and
the verification time, as reported by SAL-SMC, were
recorded. These results are presented in Fig. 4. Note that
the results for task structure (c) with an EMax of 8 and 16
human actions are not reported because the verification
exceeded the memory capacity of the computer.

A visual inspection of these results suggested that, for all
three task structures, the statespace and verification times
initially increased with the introduction of the erroneous
generation structure (EMax¼0 to EMax¼1). It then grew
exponentially with EMax, where the rate of exponential
growth was higher for larger numbers of allowable human
actions. We confirmed this exponential relationship by calcu-
lating the R2 of the log of both the number of visited states
and the verification time as predicted by the value of EMax

(for EMax40) for each number of available human actions
(Table 1). R2 ranged from 0.938 to 1. All were significant at
po0:05. Thus, both statespace and verification time increase
at an approximately exponential rate with EMax.

As expected, models based on task structure (a) (which
had only one action in its normative configuration) were
less complex (had fewer visited states) for comparable
numbers of human actions and EMax values than the
models based on the other two task structures (which both
had two actions in their normative configuration). Simi-
larly, models based on task structure (b) which had the
more restrictive ord decomposition operator had smaller
statespaces for comparable parameters than models based
on task structure (c) which utilized optor_par. Verification
times generally increased with the complexity of the model.
6. Application

To demonstrate how this type of erroneous behavior
generation can be used, we evaluate a model of a human
operated radiation therapy machine4 based loosely on the
Therac-25, a radiation therapy machine responsible for the
deaths of several patients in the 1980s (Leveson and
Turner, 1993). This device is a room-sized, computer-
controlled, medical linear accelerator. It has two treatment
modes: the electron beam mode is used for shallow tissue
treatment, and the x-ray mode is used for deeper
treatments—requiring electron beam current approxi-
mately 100 times greater than that used for the electron
beam mode. The x-ray mode uses a beam spreader (not
used in electron beam mode) to produce a uniform
treatment area and attenuate radiation of the beam. An
x-ray beam treatment application without the spreader in
place can deliver a lethal dose of radiation.
4A full listing of all of the model code used in this process can be found

at http://cog.sys.virginia.edu/formalmethods/
In the following, we describe the components of the
formal model and the specification that were used as the
basis for all analyses. We then describe a sequence of
verification analyses in which the maximum number of
erroneous acts (EMax) was iteratively increased. Verifica-
tion results and statistics are reported for each verification
analysis.
6.1. Formal model

6.1.1. Human–device interface

The human–device interface model (Fig. 5) includes
interactions with the five relevant keyboard keys (‘X’,
‘E’, Enter, Up and ‘B’) and the information on the
monitor. The interface state (InterfaceState; Fig. 5(a))
starts in Edit where the human operator can press ‘X’ or
‘E’ (PressX or PressE) to select the x-ray or electron beam
mode and transition to the ConfirmXrayData or Confir-

mEBeamData states, respectively. When in the ConfirmX-

rayData or ConfirmEBeamData states, the appropriate
treatment data are displayed (DisplayedData; Fig. 5(b)),
and the human operator can confirm the displayed data by
pressing enter (advancing to the PrepareToFireXray or
PrepareToFireEBeam states) or return to the Edit state by
pressing up (PressUp) on the keyboard. In the PrepareTo-

FireXray or PrepareToFireEBeam states, the human
operator must wait for the beam to become ready
(BeamState; Fig. 5(c)), at which point he or she can press
‘B’ (PressB) to administer treatment by firing the beam.
This transitions the interface state to TreatmentAdminis-

tered. The operator can also return to the previous data
confirmation state by pressing up.
6.1.2. Device automation

The device automation model (Fig. 6) controls the
power level of the beam, the position of the spreader,
and the firing of the beam. The power level of the beam
(BeamLevel; Fig. 6(a)) is initially not set (NotSet). When
the human operator selects the x-ray or electron beam
treatment mode, the power level transitions to the appro-
priate setting (XrayLevel or EBeamLevel, respectively).
However, if the human operator selects a new power level,
there is a delay in the transition to the correct power level,
where it remains in an intermediary state (XtoE or EtoX)
at the old power level before automatically transitioning to
the new one. The position of the spreader (Spreader;
Fig. 6(b)) starts either in or out of place (InPlace or
OutOfPlace). When the human operator selects the x-ray
or electron beam treatment mode, the spreader transitions
to the appropriate setting (InPlace or OutOfPlace respec-
tively). The firing state of the beam (BeamFireState;
Fig. 6(c)) is initially waiting to be fired (Waiting). When
the human operator fires the beam (pressing ‘B’ when the
beam is ready), the beam fires (Fired) and returns to its
waiting state.



Fig. 5. State transition representation of the formal human-device interface model. Rounded rectangles represent states. Arrows between states represent

transitions. Dotted arrows indicate initial states. (a) InterfaceState. (b) DisplayedData. (c) BeamState.

Fig. 6. State transition representation of the formal device automation model. (a) BeamLevel. (b) Spreader. (c) BeamFireState.

M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 897
6.1.3. Human mission

The human mission identifies the goals the human
operator is attempting to achieve when interacting with
the device: the type of treatment the human operator is
attempting to administer. In the formal model, this is
represented as a variable (TreatmentType) that can initi-
alize to either Xray or EBeam.

6.1.4. Normative human task behavior

Three goal-directed task models describe the adminis-
tration of treatment with the radiation therapy machine
(Fig. 7): selecting the treatment mode (aSelectXorE;
Fig. 7(a)), confirming treatment data (aConfirm; Fig. 7(b)),
and firing the beam (aFire; Fig. 7(c)).
These models access input variables from the human–

device interface (the interface state (InterfaceState), the
displayed treatment data (DisplayedData), and the ready
status of the beam (BeamState)) and the mission (treat-
ment type (TreatmentType)) to generate the human actions
for pressing the appropriate keyboard keys.
When the interface is in the edit mode (aSelectXorE;

Fig. 7(a)), the practitioner can select the appropriate
treatment mode based on the mission TreatmentType by
performing either the PressX or PressE actions. When the



Fig. 7. Visualization of the EOFMs for interacting with the radiation therapy machine: (a) selecting the treatment mode (aSelectXorE), (b) confirming

treatment data (aConfirm), and (c) firing the beam (aFire).

M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906898
interface is in either of the two data confirmation states
(aConfirm; Fig. 7(b)) the practitioner can choose to
confirm the displayed data (if the displayed data corre-
spond to the desired treatment mode) by pressing enter or
return to the Edit state by pressing up. When the interface
is in either of the states for preparing to fire the beam
(aFire; Fig. 7(c)), the practitioner can choose to fire the
beam if the beam is ready by pressing ‘B’ or return to the
previous interface state by pressing up.
6.2. Specification

We specify that we never want the radiation therapy
machine to irradiate a patient by administering an
unshielded x-ray treatment using Linear Temporal Logic
as shown in (1).

G:

BeamFireState¼ Fired

4BeamLevel ¼XRayPowerLevel

4Spreader¼OutOfPlace

0
B@

1
CA ð1Þ

This can be interpreted as ‘‘we never want the beam to
fire when it is at the x-ray level and the spreader is out of
place.’’

6.3. Analyzing system safety with normative human

behavior

6.3.1. Translation

The EOFM instance was translated into SAL code using
our modified translator and incorporated into the larger



Fig. 8. Visualization of the EOFM structure that was produced when the erroneous behavior generating structure with a maximum of one erroneous act

(EMax¼1) was incorporated into the aSelectXorE activity (Fig. 7(a)).

M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 899
formal system model using only the normative human
behavior (EMax¼0). The normative behavior model’s
EOFM representation was 74 lines of XML code. Its
corresponding formal representation was 166 lines of SAL
code. The majority of the increase in code size is due to the
fact that the SAL model must explicitly represent the formal
semantics of the EOFM and the coordination protocol that
allows the task model to interact with other system elements.

6.3.2. Verification

When (1) was checked against the formal system model,
it verified to true in 0.90 s having visited 1648 states. Thus,
the radiation therapy machine will never irradiate a patient
if the human operator behaves normatively.
6.4. Analyzing system safety with up to one erroneous act

6.4.1. Translation

The EOFM instance was re-translated into SAL code,
this time allowing for up to one erroneous act (EMax¼1).
The produced erroneous EOFM model (an example of
which appears in Fig. 8) was 272 lines of XML code. Its
formal representation was 739 lines of SAL code.



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906900
6.4.2. Verification

The specification in (1) was checked against this new
system model. This produced a counterexample after
44.11 s indicating that, when the human operator performs
up to one erroneous act, the specification in (1) can be
violated.

To aid in the problem diagnosis, the counterexample
was visualized using a technique documented by Bolton
and Bass (2010b). In this approach, for each step in a
counterexample, formal model variables are listed under
categories based on their location in the architecture of the
formal model (human–device interface, device automation,
human mission, human task behavior, and operational
environment). Changes in variable values from the pre-
vious step are highlighted. Further, the execution state of
the EOFM task model is rendered using the EOFM visual
notation for each step of the counterexample, where an
activity in a rendered structure is color coded to indicate if
it is Ready, Executing, or Done.

The counterexample illustrated one way that the speci-
fication violation could occur:
1.
Fig

hum
The model initialized with the interface in the edit state
with no displayed data and the beam not ready; the
beam power level not set; the spreader out of place; the
beam fire state waiting; and the human mission indicat-
ing that the human operator should administer electron
beam treatment.
2.
Fig. 10. Plot of the verification results (verification time in seconds and the

number of visited states) vs. the maximum number of erroneous acts (EMax)

for all successful verifications with the radiation therapy machine application.
When attempting to select the electron beam mode, the
practitioner erroneously pressed ‘X’ instead of ‘E’ via a
generated Commission activity in aSelectXorE from
Fig. 7 (in the counterexample visualization, this is
indicated by ECount changing from 0 to 1 and the
rendering of the EOFM task structure showing that the
generated Commission activity was Executing). This
caused the interface to transition to the x-ray data
confirmation state and display the x-ray treatment data.
The spreader was also moved in place and the beam was
set to the x-ray power level.
3.
 Because the incorrect data were displayed, the practi-
tioner pressed up to return the interface to the
edit mode.
4.
 The practitioner selected electron beam treatment mode
by pressing the ‘E’ key. The interface transitioned to the
electron beam data confirmation state and displayed the
electron beam treatment data. The spreader was moved
out of place and the beam prepared to transition to the
electron beam power level (XtoE in Fig. 6(a)).
. 9. State transition diagram depicting the modified formal model’s

an–device interface indications of the beams ready state.
5.
 The practitioner confirmed the treatment data by
pressing enter and the interface transitioned to the
electron beam’s waiting to fire state.
6.
 The beam became ready.

7.
 The practitioner fired the beam by pressing ‘B’. Because

the beam power level had not yet transitioned to the
electron beam power level, the beam fired at the x-ray
power level with the spreader out of place.
6.4.3. Redesign

One way of eliminating this discovered system failure is
by modifying when the beam becomes ready in the
human–device interface. This can be done by adding the
additional constraint that the beam will not transition to
ready unless it is set to the correct power level (Fig. 9).
6.4.4. Re-verification

When this modified model was incorporated into the
system model with the erroneous human behavior model
(EMax¼1) and checked against (1), it verified to true in
47.06 s having visited 114,708 states.



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 901
6.5. Analyzing system safety with two or more erroneous

acts

6.5.1. Translation

Using the modified human–device interface design from
the previous section, the EOFM instance was re-translated
into SAL code three more times allowing for up to two
(EMax¼2; 455 lines of XML and 1028 lines of SAL code),
three (EMax¼3; 598 lines of XML and 1364 lines of SAL
code), and four (EMax¼4; 741 lines of XML and 1700
lines of SAL code) erroneous acts.

6.5.2. Verification

In all cases, when (1) was checked against the resulting
system model, it verified to true (see Fig. 10 for verification
statistics). Thus, with the redesigned human–device inter-
face, the model indicates that the patient will never be
irradiated even if the human operator performs up to four
erroneous acts.

7. Discussion

The method presented here represents a novel contribu-
tion to model-driven design and analysis techniques that
use formal verification to evaluate the role of human
behavior in system safety. Using task analytic behavior
models, phenotypical erroneous behavior generation, for-
mal modeling, and model checking, the presented methods
gives analysts the ability to use task analytic human
behavior models to evaluate whether or not normative
human behavior and/or potentially unanticipated varia-
tions from that behavior will or will not contribute to
violations of system safety. Further, the nature of the
presented technique allows the analyst to scale his or her
evaluation to allow for the generation of a number of
different erroneous behaviors. By using an EOFM task
structure to replace every action in an instantiated EOFM,
the method is capable of generating zero-order phenotypes
of erroneous human action: omitting an action, skipping
an action, re-performing a previously completed action,
repeating the last performed action, or intruding an action.
The use of the structure in each action, and the use of the
or_seq decomposition operator (which allows one or more
sub-activities to execute) in each instance of the structure
allow multiple zero-order phenotypical erroneous acts to
generate all of Hollnagel’s first-order phenotypes except
for time compression. The number of possible erroneous
acts is constrained by a maximum and a counter prevent-
ing generated erroneous behavior from making the task
behavior model unbounded. The erroneous behavior gen-
eration structure is represented in EOFM constructs and is
thus compatible with the EOFM to SAL translator and
counterexample visualizer.

While simple, the radiation therapy machine example
illustrates how this process can be used to find potential
system problems due to erroneous human behavior in HAI
systems. The discovered problem is very similar to one
found in the Therac-25 (Leveson and Turner, 1993).
Similar problems have also resulted in injury and death
with a number of modern radiation therapy machines
(Bogdanich, 2010).

7.1. Excluding specific erroneous behaviors

The nature of model checking is such that an analyst
may uncover a counterexample illustrating a system
problem involving an erroneous human behavior neither
interesting nor correctable. In this situation, the analyst
may wish to rerun the analysis without considering a
specific erroneous behavior.
In the current implementation, this can be achieved by

modifying the specification to ensure that the unwanted
behavior is never executed. This can be accomplished with
the following specification:

ðGðErroneousAct¼ReadyÞÞ ) ðOriginalSpecificationÞ ð2Þ

This asserts that, for the EOFM Action or Activity
representing the erroneous act the analyst wishes to ignore
(ErroneousAct) and the original desired specification (Ori-

ginalSpecification), the erroneous act never executing
(GðErroneousAct¼ReadyÞ) will imply that the original
specification will always be true.
For example, where PressX represents the action for

erroneously pressing ‘X’ instead of ‘E’ when selecting the
treatment mode, we can apply this to the un-corrected
radiation therapy machine model with EMax¼1 erro-
neous human behaviors as:

ðGðPressX ¼ReadyÞÞ

) G:

BeamFireState¼ Fired

4BeamLevel ¼XRayPowerLevel

4Spreader¼OutOfPlace

0
B@

1
CA

0
B@

1
CA ð3Þ

This specification verifies to true.
Note that (2) can be modified to exclude additional

erroneous acts simply by adding them to the expression to
the left of the implication operator.
Future work should investigate other means of allowing

analysts to exclude specific erroneous acts or groups of
them from formal verifications.

7.2. Statespace complexity

The fact that the complexity (and verification time) of
the model increases exponentially with the maximum
number of allowable erroneous acts indicates that analysts
will be limited in the number of erroneous acts they can
introduce in a formal verification. Even with the simple
benchmark models with maxima of only eight erroneous
acts, we were able to generate models that took longer
than an hour to verify and exceeded the memory capacity
(16 GB) of our analysis machine. These limitations are also
seen in the radiation therapy application in the exponential
increase seen in the statespace with each increase in



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906902
maximum number of erroneous acts (Fig. 10). That said,
verifications with up to a maximum a four erroneous acts
were performed with the application without coming close
to reaching the analysis limit.

There may be possibilities for future improvements.
Some of the increased complexity of the model containing
erroneous behavior is associated with the fact that every
activity or action incorporated into an instantiated EOFM
task behavior model adds a variable (representing the
activity’s or action’s execution state) with three possible
values. Thus, the complexity of the model would likely
decrease with a reduction in the number of additional
activities and actions contained in the generative structure.
One way of doing this would be to remove the multiple
Repetition and Commission activities and allow single
instances of them to execute multiple times. Implementing
this with our current technology would require that the
erroneous behavior generation structure not adhere to the
EOFM’s formal semantics (Bolton et al., 2011). Future
work should investigate if such a solution improves model
complexity and whether EOFM formal semantics should
be extended to support this.

Another possibility for reducing the statespace of the
model lies in eliminating the intermediary transitions of
EOFM activity and action execution states. In the current
implementation of the translator (Bolton et al., 2011), the
formal model represents every transitional step of an
activity’s execution state as a single transition in the formal
model. While this accurately adheres to the formal seman-
tics of the language, the formal model requires a discrete
state for every intermediary transition in the task model
hierarchy. These intermediary transitions are of no con-
sequence to the other elements of the system model, which
are only concerned with the resulting human actions. Thus,
the complexity of the formal task model representation
could be reduced by decreasing the number of internal
transitions required to traverse an instantiated EOFM’s
translated task structure (including the erroneous behavior
generation structure) during execution. Future work
should investigate the feasibility of this approach.

The reported benchmarks (Fig. 4) show that some
decomposition operators scale better than others. It is
not clear how often the less scalable decompositions will be
used. However, every decomposition operator has been
used in some application (Bolton, 2010, 2011; Bolton and
Bass, 2009a,b, 2010a,b, in press; Bolton et al., 2011).
Future work should investigate how the frequency with
which different decomposition operators are used will
impact the scalability of the method.

Even though the scalability of the current implementa-
tion could be improved, the radiation therapy example
illustrates that significant insights into the safety of a
system can be found with only a maximum of one
erroneous act. As such, our method would likely be most
effective if applied iteratively (as was done in this paper),
where analysts start with a maximum of one erroneous act
and progressively increase the maximum number of
erroneous acts until the necessary insights are gained or
the model exceeds the available computational resources.

7.3. Future extension of our method

Our method currently does not support Hollnagel’s
(Hollnagel, 1993) phenotypes for delaying, prematurely
starting, or prematurely finishing an action. Future work
should investigate if these types of erroneous behaviors can
be incorporated into our analyses using timed automata
(Henzinger et al., 1991).
The EOFM language supports the synchronous execu-

tion of actions, where a sync decomposition operator is
used to specify that all of the actions in a given decom-
position execute at the same time. Hollnagel’s phenotypes
assume that human behavior is executing sequentially,
with no parallelism or synchronization between human
actions. For this reason, the current method does not
support the erroneous behavior generation for synchro-
nized human actions and does not support synchronized
erroneous actions within a given generative structure, such
as a human performing two erroneous actions synchro-
nously or performing the correct action synchronously
with erroneous actions. Future work should investigate
how parallelism could be incorporated into our erroneous
human behavior generation structure, and investigate how
this impacts the statespace complexity and verification
time of models in which it is used.
For a large maximum number of erroneous acts, our

approach will ultimately be capable of reproducing the
more complicated and cognitively significant erroneous
behavior patterns that have been explored by Basnyat and
Palanque (2005), Palanque and Basnyat (2004), and
Patern �o and Santoro (2002). However, doing so will also
generate a significant number of complex erroneous beha-
viors that are not as cognitively probable (see Reason,
1990). Future work should explore alternative erroneous
behavior generation processes that might be capable of
generating these types of patterns with EOFM and our
analysis method.
If the model checker encounters a situation that the

human task behavior model cannot address (it deadlocks),
it will abandon it as a path of inquiry in the model. This is
not realistic because, if real human operators encounter
such situations, they may respond in a number of different
ways. For example, they may attempt other means of
achieving the task, they may restart the task, or they may
abandon it and move on to other tasks. All of these
behaviors could be viewed as erroneous since they do not
conform to the task model. Thus, they should be included
in formal verification analyses concerned with generating
erroneous human behavior. Palanque et al. (2011) have
modeled interruptions when evaluating systems with task
analytic behavior models. Doherty et al. (2008) have
investigated a ‘resourced action’ approach to modeling
human goal directed behavior without formally articulated
task models. Future work should investigate whether these



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 903
techniques could be adapted to model the human response
to task deadlock in our infrastructure.
7.4. Comparison of existing techniques

As described in the introduction, there are tradeoffs in
scope and purpose between the different methods that
allow formal verification to be used to evaluate the safety
of human-automation interactive systems. There are scal-
ability tradeoffs as well. Analyses that only use a model of
the human–device interface will likely scale better than the
other presented techniques, but will explore many different
human behaviors that may not be realistic or useful.
Techniques that use erroneous behavior patterns that
analysts must manually include in task analytic models
will also likely scale better than the presented method,
but they will not allow for the inclusion of unanticipated
erroneous behavior. Analyses using cognitive models
allow the impact of unanticipated (cognitively caused)
erroneous behavior to be evaluated, but it is not clear
how such analyses will scale compared to the method
presented here.

To better understand the tradeoffs between techniques,
future work should investigate how an infrastructure could
be constructed to enable all of these approaches to be
applied to a common system. Such an infrastructure would
facilitate the comparison of the different techniques across
many applications. This would allow analysts to determine
what types of systems the different techniques are compa-
tible with, how they scale relative to each other, and what
types of problems they can discover.

It should be noted that, because of the similar modeling
approaches, the method presented here should be capable
of being used synergistically with the unconstrained and
other task-model-based techniques that have been dis-
cussed. For example, an analyst can use unconstrained
task behavior (a task model that allows a human operator
to perform any action at any time) to evaluate system
safety properties that must always be true no matter the
human behavior. The analyst can incorporate a normative
human task behavior model and verify that other system
safety properties that depend on human behavior will be
maintained. The analyst can then apply the technique
presented in this paper to see if expected deviations from
the task model (based on the phenotypes of erroneous
action) will result in violations of these safety properties.
Finally, the analyst can evaluate whether more complex
erroneous behaviors impact system safety by incorporating
the erroneous behavior patterns discussed by (Basnyat and
Palanque, 2005; Palanque and Basnyat, 2004; Patern �o and
Santoro, 2002) into the normative task behavior model. It
is not clear how the methods that utilize cognitive
architectures could be made to work synergistically with
these other techniques. This should be explored in future
research.
Acknowledgments

The majority of the work documented in this manuscript
was performed while the first author was pursuing his
Ph.D. in systems engineering from the University of
Virginia. The project described was supported in part by
Grant Number T15LM009462 from the National Library
of Medicine (NLM), NASA Cooperative Agreement
NCC1002043, and NASA award NNA10DE79C. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the NIA,
NASA, the NLM, or the National Institutes of Health.

References

Abowd, G.D., Wang, H., Monk, A.F., 1995. A formal technique for

automated dialogue development. In: Proceedings of the 1st Con-

ference on Designing Interactive Systems. ACM, New York, pp. 219–

226.

Aı̈t-Ameur, Y., Baron, M., 2006. Formal and experimental validation

approaches in HCI systems design based on a shared event B model.

International Journal on Software Tools for Technology Transfer 8

(6), 547–563.

Aı̈t-Ameur, Y., Baron, M., Girard, P., 2003. Formal validation of HCI

user tasks. In: Proceedings of the International Conference on Soft-

ware Engineering Research and Practice. CSREA Press, Las Vegas,

pp. 732–738.

BASI, 1998. Advanced Technology Aircraft Safety Survey Report.

Technical Report. Department of Transport and Regional Dedvelop-

ment, Bureau of Air Safety Investigation, Civic Square.

Basnyat, S., Palanque, P., 2005. A task pattern approach to incorporate

user deviation in task models. In: Proceedings of the first ADVISES

Young Researchers Workshop. Ris f National Laboratory, Roskilde,

pp. 10–19.

Basnyat, S., Palanque, P., Schupp, B., Wright, P., 2007. Formal socio-

technical barrier modelling for safety-critical interactive systems

design. Safety Science 45 (5), 545–565.

Basnyat, S., Palanque, P., Bernhaupt, R., Poupart, E., 2008. Formal

modelling of incidents and accidents as a means for enriching training

material for satellite control operations. In: Proceedings of the Joint

ESREL 2008 and 17th SRA-Europe Conference. Taylor and Francis

Group, London, pp. CD–ROM.

Bastide, R., Basnyat, S., 2007. Error patterns: systematic investigation of

deviations in task models. In: Task Models and Diagrams for Users

Interface Design. Springer, Berlin, pp. 109–121.

Basuki, T.A., Cerone, A., Griesmayer, A., Schlatte, R., 2009. Model-

checking user behaviour using interacting components. Formal

Aspects of Computing, 1–18.

Berstel, J., Reghizzi, S.C., Roussel, G., Pietro, P.S., 2005. A scalable

formal method for design and automatic checking of user interfaces.

ACM Transactions on Software Engineering and Methodology 14,

124–167.

Blandford, A., Butterworth, R., Curzon, P., 2004. Models of interactive

systems: a case study on programmable user modelling. International

Journal of Human-Computer Studies 60 (2), 149–200.

Blandford, A., Butterworth, R., Good, J., 1997. Users as rational

interacting agents: formalising assumptions about cognition and

interaction. In: Proceedings of the 4th International Eurographics

Workshop, on the Design, Specification and Verification of Interactive

Systems, vol. 97. Springer, Berlin, pp. 45–60.

Bogdanich, W., 2010. The radiation boom: radiation offers new

cures, and ways to do harm. The New York Times 23 (January),

23–27.

Bolton, M.L., 2010. Using task analytic behavior modeling, erroneous

human behavior generation, and formal methods to evaluate the role



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906904
of human-automation interaction in system failure. Ph.D. Thesis.

University of Virginia, Charlottesville.

Bolton, M.L., 2011. Validating human-device interfaces with model

checking and temporal logic properties automatically generated from

task analytic models. In: Proceedings of the 20th Behavior Represen-

tation in Modeling and Simulation Conference. The BRIMS Society,

Sundance, pp. 130–137.

Bolton, M.L., Bass, E.J., 2009a. Enhanced operator function model: a

generic human task behavior modeling language. In: Proceedings of

the IEEE International Conference on Systems Man and Cybernetics.

IEEE, Piscataway, pp. 2983–2990.

Bolton, M.L., Bass, E.J., 2009. A method for the formal verification of

human interactive systems. In: Proceedings of the 53rd Annual

Meeting of the Human Factors and Ergonomics Society. HFES,

Santa Monica, pp. 764–768.

Bolton, M.L., Bass, E.J., 2010a. Formally verifying human-automation

interaction as part of a system model: limitations and tradeoffs. Innova-

tions in Systems and Software Engineering: A NASA Journal 6 (3),

219–231.

Bolton, M.L., Bass, E.J., 2010b. Using task analytic models to visualize

model checker counterexamples. In: Proceedings of the 2010 IEEE

International Conference on Systems, Man, and Cybernetics. IEEE,

Piscataway, pp. 2069–2074.

Bolton, M.L., Bass, E.J. Using model checking to explore checklist-

guided pilot behavior. International Journal of Aviation Psychology,

in press.

Bolton, M.L., Bass, E.J., Siminiceanu, R.I., 2008. Using formal methods

to predict human error and system failures. In: Proceedings of the 2nd

International Conference on Applied Human Factors and Ergo-

nomics. Applied Human Factors and Ergonomics International, Las

Vegas, pp. CD–ROM.

Bolton, M.L., Siminiceanu, R.I., Bass, E.J., 2011. A systematic approach to

model checking human-automation interaction using task-analytic models.

IEEE Transactions on Systems, Man, and Cybernetics, Part A 41 (5),

961–976.

Bredereke, J., Lankenau, A., 2005. Safety-relevant mode confusions–

modelling and reducing them. Reliability Engineering and System

Safety 88 (3), 229–245.

Buth, B., 2004. Analyzing mode confusion: an approach using FDR2. In:

Proceeding of the 23rd International Conference on Computer Safety,

Reliability, and Security. Springer, Berlin, pp. 101–114.

Butterworth, R., Blandford, A., Duke, D., 1998. The role of formal proof

in modelling interactive behaviour. In: Proceedings of the 5th Inter-

national Eurographics Workshop on the Design, Specification and

Verification of Interactive Systems. Springer, Berlin, pp. 87–101.

Butterworth, R., Blandford, A., Duke, D., 2000. Demonstrating the

cognitive plausibility of interactive system specifications. Formal

Aspects of Computing 12 (4), 237–259.

Byrne, M.D., Bovair, S., 1997. A working memory model of a common

procedural error. Cognitive Science 21 (1), 31–61.

Campos, J.C., 2003. Using task knowledge to guide interactor specifica-

tions analysis. In: In Proceedings of the 10th International Workshop

on Interactive Systems, Design, Specification, and Verification.

Springer, Berlin, pp. 171–186.

Campos, J.C., Harrison, M., 1997. Formally verifying interactive systems:

a review. In: Proceedings of the Fourth International Eurographics

Workshop on the Design, Specification, and Verification of Interactive

Systems. Springer, Berlin, pp. 109–124.

Campos, J.C., Harrison, M.D., 2001. Model checking interactor specifi-

cations. Automated Software Engineering 8 (3), 275–310.

Campos, J.C., Harrison, M.D., 2008. Systematic analysis of control panel

interfaces using formal tools. In: Proceedings of the 15th International

Workshop on the Design, Verification and Specification of Interactive

Systems. Springer, Berlin, pp. 72–85.

Campos, J.C., Harrison, M.D., 2009. Interaction engineering using the ivy

tool. In: Proceedings of the 1st ACM SIGCHI Symposium on

Engineering Interactive Computing Systems. ACM, New York,

pp. 35–44.
Campos, J.C., Harrison, M.D., 2011. Modelling and analysing the

interactive behaviour of an infusion pump. In: Proceedings of the

Fourth International Workshop on Formal Methods for Interactive

Systems. EASST, Potsdam.

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. MIT

Press, Cambridge.

Combéfis, S., Giannakopoulou, D., Pecheur, C., Feary, M., 2011.

Learning system abstractions for human operators. In: Proceedings

of the 2011 International Workshop on Machine Learning Technol-

ogies in Software Engineering. ACM, New York, pp. 3–10.

Curzon, P., Blandford, A., 2002. From a formal user model to design

rules. In: Proceedings of the 9th International Workshop on Inter-

active Systems. Design, Specification, and Verification. Springer,

London, pp. 1–15.

Curzon, P., Blandford, A., 2004. Formally justifying user-centered design

rules: a case study on post-completion errors. In: Proceedings of the

4th International Conference on Integrated Formal Methods.

Springer, Berlin, pp. 461–480.

Curzon, P., Rukš_enas, R., Blandford, A., 2007. An approach to formal

verification of human-computer interaction. Formal Aspects of Com-

puting 19 (4), 513–550.

De Moura, L., Owre, S., Shankar, N., 2003. The SAL language manual.

Tech. Rep. CSL-01-01, Computer Science Laboratory, SRI Interna-

tional, Menlo Park.

Degani, A., 2004. Taming HAL: Designing Interfaces Beyond 2001.

Macmillan, New York.

Degani, A., Gellatly, A., Heymann, M., 2011. Hmi aspects of automotive

climate control systems. In: Proceeding of the IEEE International

Conference on Systems, Man, and Cybernetics. IEEE, Piscataway,

pp. 1795–1800.

Degani, A., Heymann, M., 2002. Formal verification of human-automa-

tion interaction. Human Factors 44 (1), 28–43.

Dix, A., Ghazali, M., Gill, S., Hare, J., Ramduny-Ellis, D., 2008.

Physigrams: modelling devices for natural interaction. Formal Aspects

of Computing, 1–29.

Doherty, G., Campos, J.C., Harrison, M.D., 2008. Resources for situated

actions. In: Proceedings of the 15th International Workshop on

Interactive Systems. Design, Specification, and Verification. Springer,

Berlin, pp. 194–207.

Duan, L., Hofer, A., Hussmann, H., 2010. Model-based testing of infotain-

ment systems on the basis of a graphical human-machine interface. In:

Proceedings of the 2nd International Conference on Advances in System

Testing and Validation Lifecycle. IEEE, Piscataway, pp. 5–9.

Dwyer, M.B., Carr, V., Hines, L., 1997. Model checking graphical user

interfaces using abstractions. In: Proceedings of the Sixth European

Software Engineering Conference. Springer, New York, pp. 244–261.

Dwyer, M.B., Robby, Tkachuk, O., Visser, W., 2004. Analyzing interac-

tion orderings with model checking. In: Proceedings of the 19th IEEE

International Conference on Automated Software Engineering. IEEE

Computer Society, Los Alamitos, pp. 154–163.

FAA Human Factors Team, 1996. Federal aviation administration

human factors team report on: the interfaces between flightcrews

and modern flight deck systems. Tech. rep., Federal Aviation Admin-

istration, Washington, DC.

Fields, R.E., 2001. Analysis of erroneous actions in the design of critical

systems. Ph.D. Thesis. University of York, York.

Giannakopoulou, D., Rungta, N., Feary, M., 2011. Automated test case

generation for an autopilot requirement prototype. In: Proceedings of

the IEEE International Conference on Systems, Man, and Cyber-

netics. IEEE, Piscataway, pp. 1825–1830.

Giese, M., Mistrzyk, T., Pfau, A., Szwillus, G., von Detten, M., 2008.

AMBOSS: a task modeling approach for safety-critical systems. In:

Proceedings of the Second International Conference on Human-

Centered Software Engineering. Springer, Berlin, pp. 98–109.

Gimblett, A., Thimbleby, H., 2010. User interface model discovery:

Towards a generic approach. In: Proceedings of the 2nd ACM

SIGCHI Symposium on Engineering Interactive Computing Systems.

ACM, New York, pp. 145–154.



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906 905
Gunter, E.L., Yasmeen, A., Gunter, C.A., Nguyen, A., 2009. Specifying

and analyzing workflows for automated identification and data

capture. In: Proceedings of the 42nd Hawaii International Conference

on System Sciences. IEEE Computer Society, Los Alatimos, pp. 1–11.

Harel, D., 1987. Statecharts: a visual formalism for complex systems.

Science of Computer Programming 8 (3), 231–274.

Harrison, M.D., Duke, D., 1995. A review of formalisms for describing

interactive behaviour. In: Proceedings of the Workshop on Software

Engineering and Human-Computer Interaction. Springer, London,

pp. 49–75.

Hartson, H.R., Siochi, A.C., Hix, D., 1990. The UAN: a user-oriented

representation for direct manipulation interface designs. ACM Trans-

actions on Information Systems 8 (3), 181–203.

Henzinger, T.A., Manna, Z., Pnueli, A., 1991. Timed transition systems.

In: Proceedings of the REX Workshop. Springer, Berlin, pp. 226–251.

Heymann, M., Degani, A., 2007. Formal analysis and automatic genera-

tion of user interfaces: approach, methodology, and an algorithm.

Human Factors 49 (2), 311–330.

Hollnagel, E., 1993. The phenotype of erroneous actions. International

Journal of Man-Machine Studies 39 (1), 1–32.

Hughes, D., Dornheim, M.A., 1995. Accidents direct focus on cockpit

automation. Aviation Week and Space Technology 142 (5), 52–54.

Hussmann, H., Meixner, G., Detlef, Z., 2011. Model-Driven Develop-

ment of Advanced User Interfaces. Springer, Berlin.

Javaux, D., 2002. A method for predicting errors when interacting with

finite state systems. How implicit learning shapes the user’s knowledge

of a system. Reliability Engineering and System Safety 75, 147–165.

John, B.E., Kieras, D.E., 1996. Using GOMS for user interface design

and evaluation: which technique? ACM Transactions Computer-

Human Interaction 3 (4), 287–319.

Johnson, C., Holloway, C., 2004. On the over-emphasis of human ‘error’

as a cause of aviation accidents: ‘systemic failures’ and ‘human error’

in US NTSB and Canadian TSB aviation reports 1996–2003. In:

Proceedings of the 22nd International System Safety Conference.

International Systems Safety Society, Unionville, pp. CD–ROM.

Jones, P.M., 1997. Human error and its amelioration. In: Handbook of

systems engineering and management. Wiley, Malden, pp. 687–702.

Joshi, A., Miller, S.P., Heimdahl, M.P., 2003. Mode confusion analysis of

a flight guidance system using formal methods. In: Proceedings of the

22nd Digital Avionics Systems Conference. IEEE, Piscataway,

pp. 2.D.1-1–2.D.1-12.

Kirwan, B., Ainsworth, L.K., 1992. A Guide to Task Analysis. Taylor

and Francis, London.

Kohn, L.T., Corrigan, J., Donaldson, M.S., 2000. To Err is Human:

Building a Safer Health System. National Academy Press,

Washington.

Leveson, N.G., Pinnel, L.D., Sandys, S.D., K., S., Reese, J.D., 1997.

Analyzing software specifications for mode confusion potential. In:

Proceedings of the Workshop on Human Error and System Develop-

ment. University of Glasgow, Glasgow, pp. CD–ROM.

Leveson, N.G., Turner, C.S., 1993. An investigation of the therac-25

accidents. Computer 26 (7), 18–41.

Martinie, C., Palanque, P., Barboni, E., Ragosta, M., 2011. Task-model

based assessment of automation levels: application to space ground

segments. In: Proceedings of the 2011 IEEE International Conference

on Systems, Man, and Cybernetics. IEEE, Piscataway, pp. 3267–3273.

Masci, P., Curzon, P., Blandford, A., Furniss, D., 2011. Modelling

distributed cognition systems in PVS. In: Proceedings of the Fourth

International Workshop on Formal Methods for Interactive Systems.

EASST, Potsdam.

Mitchell, C.M., Miller, R.A., 1986. A discrete control model of operator

function: a methodology for information display design. IEEE

Transactions on Systems Man Cybernetics Part A: Systems and

Humans 16 (3), 343–357.

Norman, D.A., 1988. The Psychology of Everyday Things. Basic Books,

New York.

Norman, D.A., 1990. The problem with automation: inappropriate

feedback and interaction, not over-automation. Philosophical
Transactions of the Royal Society of London. Series B Biological

Sciences 327, 585–593.

O’Hara, J.M., Higgins, J.C., Brown, W.S., Fink, R., Persensky, J., Lewis,

P., Kramer, J., Szabo, A., Boggi, M.A., 2008. Human factors

considerations with respect to emerging technology in nuclear power

plants. Technical Report NUREG/CR-6947. United States Nuclear

Regulatory Commission, Washington, DC.

Palanque, P., Basnyat, S., 2004. Task patterns for taking into account in an

efficient and systematic way both standard and erroneous user behaviours.

In: IFIP 13.5 Working Conference on Human Error, Safety and Systems

Development. Kluwer Academic Publisher, Norwell, pp. 109–130.

Palanque, P., Winckler, M., Martinie, C., 2011. A formal model-based

approach for designing interruptions-tolerant advanced user interfaces.

In: Hussmann, H., Meixner, G., Zuehlke, D. (Eds.), Model-Driven

Development of Advanced User Interfaces. Springer, Berlin, pp. 143–169.

Palanque, P., Bastide, R., Senges, V., 1996. Validating interactive system

design through the verification of formal task and system models. In:

Proceedings of the IFIP TC2/WG2.7 Working Conference on Engi-

neering for Human-Computer Interaction. Chapman and Hall, Ltd.,

London, pp. 189–212.

Parnas, D.L., 1969. On the use of transition diagrams in the design of a

user interface for an interactive computer system. In: Proceedings of

the 24th National ACM Conference. ACM, New York, pp. 379–385.

Patern�o, F., 1997. Formal reasoning about dialogue properties with

automatic support. Interacting with Computers 9 (2), 173–196.

Patern�o, F., Mancini, C., Meniconi, S., 1997. Concurtasktrees: a dia-

grammatic notation for specifying task models. In: Proceedings of the

IFIP TC13 International Conference on Human-Computer Interac-

tion. Chapman and Hall, Ltd., London, pp. 362–369.

Patern�o, F., Santoro, C., 2001. Integrating model checking and HCI tools

to help designers verify user interface properties. In: Proceedings of the

7th International Workshop on the Design, Specification, and Ver-

ification of Interactive Systems. Springer, Berlin, pp. 135–150.

Patern�o, F., Santoro, C., 2002. Preventing user errors by systematic

analysis of deviations from the system task model. International

Journal of Human-Computer Studies 56 (2), 225–245.

Patern�o, F., Santoro, C., Tahmassebi, S., 1998. Formal model for

cooperative tasks: concepts and an application for en-route air traffic

control. In: Proceedings of the 5th International Conference on the

Design, Specification, and Verification of Interactive Systems.

Springer, Vienna, pp. 71–86.

Reason, J., 1990. Human Error. Cambridge University Press, New York.

Rukš_enas, R., Back, J., Curzon, P., Blandford, A., 2008. Formal

modelling of salience and cognitive load. In: Proceedings of the 2nd

International Workshop on Formal Methods for Interactive Systems.

Elsevier Science Publishers, Amsterdam, pp. 57–75.

Rukšenas, R., Back, J., Curzon, P., Blandford, A., 2009. Verification-

guided modelling of salience and cognitive load. Formal Aspects of

Computing 21 (6), 541–569.

Rukš_enas, R., Curzon, P., Back, J., Blandford, A., 2007. Formal

modelling of cognitive interpretation. In: Proceedings of the 13th

International Workshop on the Design, Specification, and Verification

of Interactive Systems. Springer, London, pp. 123–136.

Rushby, J., 2002. Using model checking to help discover mode confusions

and other automation surprises. Reliability Engineering and System

Safety 75 (2), 167–177.

Sarter, N.B., Woods, D.D., 1995. How in the world did we ever get into

that mode? Mode error and awareness in supervisory control. Human

Factors 37 (1), 5–19.

Sherry, L., Ward, J., 1995. A formalism for the specification of

operationally embedded reactive systems. In: Proceeding of the 14th

Digital Avionics Systems Conference. IEEE, Piscataway, pp. 416–421.

Thimbleby, H., Gow, J., 2007a. Applying graph theory to interaction

design. In: Proceedings of the 2007 Engineering Interactive Systems

Conference. Springer, Berlin, pp. 501–519.

Thimbleby, H., Gow, J., 2007b. Applying graph theory to interaction

design. In: Proceedings of Engineering Interactive Systems 2007.

Springer, Berlin, pp. 501–519.



M.L. Bolton et al. / Int. J. Human-Computer Studies 70 (2012) 888–906906
Thomas, M., 1994. The story of the therac-25 in lotos. High Integrity

Systems 1 (1), 3–15.

Thurman, D.A., Chappell, A.R., Mitchell, C.M., 1998. An enhanced

architecture for OFMspert: a domain-independent system for intent

inferencing. In: Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics. IEEE, Piscataway, pp. 955–960.

Wheeler, P.H., 2007. Aspects of automation mode confusion. Master’s

Thesis. Massachusetts Institute of Technology, Cambridge.
Wing, J.M., 1990. A specifier’s introduction to formal methods. Computer

23 (9), 8 10–22, 24.

Young, R.M., Green, T.R.G., Simon, T., 1989. Programmable user

models for predictive evaluation of interface designs. In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems.

ACM, New York, pp. 15–19.


	Generating phenotypical erroneous human behavior to evaluate human-automation interaction using model checking
	Introduction
	Model-driven design and analysis
	Formally evaluating the impact of human behavior on system safety
	Using device interfaces to define human behavior
	Using cognitively driven models of human behavior
	Using models of task analytic human behavior

	Objectives

	Using EOFM in the formal verification of HAI
	Erroneous behavior generation
	Phenotypes of erroneous human behavior

	Phenotypical erroneous human behavior generation
	Testing and benchmarks
	Application
	Formal model
	Human-device interface
	Device automation
	Human mission
	Normative human task behavior

	Specification
	Analyzing system safety with normative human behavior
	Translation
	Verification

	Analyzing system safety with up to one erroneous act
	Translation
	Verification
	Redesign
	Re-verification

	Analyzing system safety with two or more erroneous acts
	Translation
	Verification


	Discussion
	Excluding specific erroneous behaviors
	Statespace complexity
	Future extension of our method
	Comparison of existing techniques

	Acknowledgments
	References




