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Abstract—Judgment analysis (JA) is a technique for modeling and in-
terpreting human judgments that is usually based on multiple linear re-
gression. However, the linear assumptions inherent to this approach can be
limiting for modeling both the human judgments and the environmental
criterion. This paper addresses this by introducing a formulation of JA
based on large memory storage and retrieval (LAMSTAR) artificial neural
networks. We describe our LAMSTAR network JA process and use it to an-
alyze data from an air traffic control conflict prediction task. These results
are compared with those of a traditional regression-based lens model anal-
ysis. We found that the LAMSTAR-based JA did a better job of capturing
human judgment, while the regression-based model was more appropriate
for the criterion. This suggest that the LAMSTAR-based JA approach has
utility when human judgments are not well represented by a linear model.
We discuss our results with respect to both the specific application we eval-
uated as well as meta-analyses of the JA literature. We also explore avenues
for future research.

Index Terms—Judgment, lens model, linear regression, neural
networks.

I. INTRODUCTION

Human judgment represents a person’s assessment of an attribute or
quality from the environment based on the available ecological informa-
tion. Because judgment occurs in many human activities, its accuracy
can be critical to a human’s ability to successfully achieve goals when
interacting with their environment. Thus, being able to understand and
predict human judgment can provide engineers and analysts with infor-
mation that can help them analyze, design, and evaluate systems that
rely on humans for their safe and efficient operation. As such, attempts
have been made to mathematically model human judgment as a trans-
formation of information from the environment. The most successful
of these is judgment analysis (JA). JA typically uses multiple linear re-
gression to model and interpret human judgments and compare them to
an environmental criterion. However, the linear assumptions inherent
to this approach can be limiting. This paper explores the development
of a JA technique based on large memory storage and retrieval (LAM-
STAR) artificial neural networks (ANNs) that do not require the linear
assumptions of typical judgment analyses. In the remainder of this sec-
tion, we discuss JA, ANNs, and LAMSTAR networks to motivate the
development of our new JA approach.

A. Judgment Analysis

JA, which is based on Brunswiks probabilistic functionalism [1],
[2], describes human judgments as an ecological response to the
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Fig. 1. Graphical representation of the double-system lens model. Note that i
is an integer in the range [1, N ].

environment, mediated by cues. To date, applications of JA have mostly
used multiple linear regression (via multiple specific formulations
[2]) to create a number of measures of judgment performance. In this
work, we are primarily concerned with the double-system lens model
[2] (see Fig. 1).

The double-system lens model, which is employed frequently in the
literature [3], [4], uses symmetric statistical models between the envi-
ronment and judgment to describe the judgment process. Specifically,
the same measurable environmental cues are used as predictors (in-
dependent variable) in two fitted linear regression models: one to the
criterion (the actual value of the environmental quality that is being
judged; Ŷe ) and one to judgment values (Ŷs ). The weights assigned
to the cues (independent variables) allow analysts to compare how
differently the cues factor into the prediction of the criterion (ecologi-
cal validities) and the judgment (cue utilizations). The cue utilizations
can be compared between participants to determine how the judgment
strategies of each differ. In cases where the cue data have been nor-
malized, cue weights can also be used to compare the relative weight
each cue has in influencing a predicted dependent measure (criterion
or judgment). Further, the lens model equation [5], [6]

ra = G · Re · Rs + C ·
√

1 − R2
e ·

√
1 − R2

s (1)

gives analysts a means of evaluating the achievement of the judge while
accounting for the different factors that affect it. ra is the achievement
of the judge represented as the correlation between the criterion (Ye )
and judgment (Ys ). Thus, achievement is measured from low to high
by a value between 0 and 1. G represents linear knowledge, a measure
of how the model predictions between the environment and the human
correspond. This is measured as the correlation between Ŷe and Ŷs . Re

is a measure of the environmental predictability, how well the model of
the environment corresponds to the environmental criterion, measured
as a correlation between Ye and Ŷe . Similarly, Rs represents cognitive
control in that it is a measure of how well the human judgment model
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matches the actual human judgment (the correlation between Ys and
Ŷe ). Finally, C represents unmodeled agreement: a measure of the
correspondence between the information not captured between the two
models. This is measured as the correlation between the residuals of
the environment model (Ŷe − Ye ) and the judgment model (Ŷs − Ys ).

In this form, JA has been successfully used to model and evaluate
human judgment in a number of domains including policy making [7],
[8], medicine [9], weather forecasting [10], education [11], and air traf-
fic control [12]–[14]. Despite this success, there are several limitations
to this approach. This technique assumes that human judgments and the
criterion can be reasonably molded as a linear combination of weighted
ecological cues and, thus, satisfy all of the requirements for multiple
linear regression. While this can result in good models for both the hu-
man and the environment in many situations [3], [4], [15], [16], there
can be exceptions for both. First, there are cases where human judgment
is based on a nonlinear synthesis of environmental information. This
can include situation where people are under time pressure, they are
using intuition, they must consider multiple alternatives, they must use
their imagination, or they must use their experience to match patterns
to the current situation [17]. There can also be situations where regres-
sion models do not do a good job capturing the environment when the
criterion being modeled is not linear. Regression-based analyses can
get around some nonlinearities by transforming information into cues
that can be used in a linear model. However, this relies on the ability
of the analyst to identify and apply this conversion and include it in
the model, if such a transformation even exists. This plays directly into
regression’s second limitation, cue identification. Specifically, analysts
must identify cues that can be linearly combined in a meaningful way
so that the resulting model actually reflects the criterion being captured
as well as the judgment strategy employed by the participants. This can
be the most challenging part of regression-based JA.

B. Artificial Neural Networks

An alternative approach to modeling judgment that addresses some
of the issues associated with regression-based JA comes from the field
of ANNs. ANNs are models designed to generate judgments based on
transformations of input information. The mechanism for these trans-
formations is a collection of interconnected nodes designed to mimic
the way neurons process information in animal central nervous sys-
tems. Specifically, each node has an adaptive weight that is used to
modify the input information. Nodes are connected in multiple layers
and node weights are adjusted progressively by a learning algorithm to
fit the predicted judgment to the desired outcome. One of the most suc-
cessful algorithms has been backpropagation (BP) [18], which enables
the fitting of nonlinear judgment outputs.

Neural networks have advantages over regression-based JA tech-
niques such as the lens model. First, they are capable of modeling
nonlinear judgments [18], thus making them more flexible and poten-
tially more accurate than lens models. Second, they do not require an
analyst to explicitly identify the exact transformations of the available
input data to produce linearly combinable cues. Because it does not
require predictors (i.e., cues) to be linearly combinable, the neural net
can transform the input data in whatever linear or nonlinear ways best
achieve the desired judgment outcome. Thus, it is potentially easier to
model human judgment using ANN techniques.

BP ANNs have been used to model human judgment in a number of
different domains including automobile driver decision making, eco-
nomics, and medical diagnosis [19]–[21]. They have also been used in
a number of domains to model nonlinear environments [22]. However,
these have focused on mimicking or simulating human judgments or

Fig. 2. LAMSTAR network fitting procedure.

environmental behavior rather than analyzing them. This is likely due
to BP ANNs’ black box nature: that an analyst cannot easily deter-
mine why a network is making the judgment predictions it is making,
something that lens-model-based JA can do.

BP ANN analyses can be limited for several other reasons [22],
[23]. First, network predictions can converge to local rather than global
extrema. This can make predictions inaccurate. Second, the BP learning
algorithm is very slow [24], which can limit when it can be used.

C. Large Memory Storage and Retrieval Networks

LAMSTAR ANNs were developed to address some of the issues as-
sociated with BP networks [25]–[27]. LAMSTAR networks can handle
larger quantities of data [28], are less sensitive to local extrema and
thus more likely to converge to the desired outcome [25], [26], and are
significantly faster than BP networks with comparable classification
accuracy [29]. They can also work with a variety of different numeri-
cal data sources, with varying scales and accuracy between measures.
Most importantly for this work is the fact that a LAMSTAR network
is capable of providing information that allow analysts to evaluate
how different independent variable inputs contribute to particular judg-
ments. To understand this, one must understand how a LAMSTAR
network learns (see Fig. 2).

Before a LAMSTAR network can be constructed, a preprocessing
procedure must occur, where independent variables are categorized into
subwords (collections of variables). Each variable can be assigned to
only one subword (each variable is assumed to be quantitative). Then,
during the network training process, any subword that significantly
contributes to a judgment prediction is imprinted in a database as a
neuron that can be used to produce judgments in the final model (see
Fig. 3). Thus, over the course of the learning phase, each subword
category will amass neurons in a self-organizing map indicating how
many times a subword contributed to the development of a judgment.
As such with a completed model, an analyst can evaluate how differ-
ent independent variable subwords contributed to judgment prediction
based on the total number of neurons (the link weight) associated with
that subword. These totals can be used to compare how different words
of variables contributed to different predictions, profile the judgment
strategies of different judges, and compare judgment strategies. Details
about the inner workings of the LAMSTAR network learning process
can be found in [30].

Despite their advantages, LAMSTAR networks have never been used
in JA.
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Fig. 3. Basic LAMSTAR architecture [30]. Note that SOM stands for
self-organizing map.

D. Objective

In this work, we describe how LAMSTAR networks were used to
develop a JA technique analogous to the double system lens model
that avoids the linear assumptions and cue identification issues of
regression-based judgment analyses. First, we outline how our LAM-
STAR network JA process was formulated. Then, we use it to analyze
data from an air traffic control conflict prediction task [12] and com-
pare its results to those of a lens model analysis. Finally, we discuss
our results and outline avenues of future research.

II. LARGE-MEMORY-STORAGE-AND-RETRIEVAL-BASED

JUDGMENT ANALYSIS

Our LAMSTAR-based JA is visualized in Fig. 4. In this reformula-
tion, it is assumed that the analysts has a set of independent variables
representing information from the environment that a human judge can
synthesize into judgments. The analyst is also presumed to have the
set of human judgments associated with values of those independent
variables (Ys ) as well as an environmental criterion (Ye ) that repre-
sents the true value of the quantity being judged. The analyst must
then manually separate the variables into groups representing general
concepts from the environment that relate to the criterion. These should
be both ecological and relate to concepts the human would use to make
judgments. These groups are treated as the LAMSTAR subwords.

After grouping the independent variables into subwords, the LAM-
STAR learning process can be performed over a given dataset. This
will produce LAMSTAR network models for both the environment
(Ŷe ) and the human judgment (Ŷs ) with estimated unique LAMSTAR
link weights (wei and wsi ) serving as the analogs of the ecological
validities (rei ) and the cue utilizations (rsi ) from the double-system
lens model.

From these data, additional parameters can also be calculated to help
analysts understand the achievement of the human judgment that are

Fig. 4. Graphical representation of LAMSTAR-based JA. Note that i is an
integer with range [1, N ].

analogs of the double-system lens model statistics. An achievement
score ra is the correlation between the criterion and the judgment (as
with the lens model). We can also calculate environment predictability
Re and cognitive control Rs parameters as the correlation between
the actual observations and those predicted by the models for the cri-
terion and human judgment, respectively. A parameter M is used to
represent a measure of the shared knowledge captured by the models
as the correlation of Ŷe and Ŷs (note that this is the analog of G from
the regression-based double-system lens model). Finally, unmodeled
agreement (C) is the correlation of the residuals of each fitted model. It
is important to note that because this new lens model formulation does
not use multiple linear regression, these statistics will no longer relate
to each other via the lens model equation (1).

III. METHODS

A. Experimental Task

To evaluate our LAMSTAR-based JA technique and compare it with
a traditional double-system lens model JA, we used data from a simple
air traffic control task originally described in [12]. In this, participants
were presented with a cockpit display concept representing traffic in-
formation (see Fig. 5). It is the task of the participant to monitor the
relative trajectories of an intruding aircraft to ownship, represented in
the center of the display. For each trial, the trajectory of the intruding
aircraft was shown for a randomly selected time, uniformly distributed
between 15 and 30 s. After this interval, the participant was tasked
with judging the probability that the intruding aircraft would cause a
loss of separation (get within 5 nmi of ownship) at its point of closest
approach (POA).

B. Participants

In this study, we used data collected from six undergraduate engi-
neering students, originally collected by Bass and Pritchett [12]. All
participants were male. Note that this is a subset of the data collected
for [12]. The reason for this is discussed under the next section.

C. Independent Variables and Experimental Design

In all trials, ownship is assumed to be navigating in straight and
level cruise flight that is being controlled by the autopilot. The ownship
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Fig. 5. Example scenario presented on the air traffic cockpit display concept.
Ownship is the white airplane symbol at the center of the display. The incoming
aircraft is the green triangle. Its heading in degrees is displayed next to it in
green text. Six white concentric circles represent distance from ownship going
from 5, 10, 20, 30, 40, and 50 nmi. A compass is represented on the 40-nmi
circle.

retains a constant heading of 174°, an indicated airspeed of 400 kn, and
altitude of 30 000 ft. In each trial, the intruding aircraft was assigned
an altitude of 30 000 ft, one of six relative headings (±45°, ±90°, and
±135°), and five indicated airspeeds (300, 350, 400, 450, and 500 kn).
The trajectory of the incoming aircraft was also determined by the
distribution of error in the air speed, N (μ = 0 nmi/h, σ = 15 nmi/h);
heading (CourseError), N (μ = 0°, σ = 3°); and lateral position
N (μ = 0 nmi, σ = 0.27 nmi). Finally, six lateral positions of the
intruder aircraft were selected to ensure a uniform distribution in the
probability of an LOA.

These parameters determined the independent variables for each
trial, all of which were measured at the time human judgments were
made. These included the speed and heading of ownship (SpeedOwn
and HdgOwn) and the intruder (SpeedIntr and HdgIntr) and the error
in these values (SpeedError and CourseError). It also resulted in hu-
man perceivable distances between the aircraft: the displayed distance
between them (RangeDisp); ownship’s distance to the PCA (OwnDist-
ToPCA); and the intruders distance to the PCA (IntDistToPCA), all in
nmi. Additionally, a derived variable representing the expected hori-
zontal miss distance (the lateral separation at the PCA; MDist) was
calculated from the aircraft trajectories and its associated error. A final
derived variable (Noise) was calculated as “the signed reciprocal of the
standard deviation of the horizontal position error” [12] to represent
the position error and its relationship to the calculated probability of an
LOA. The independent variables were used to create 45 unique repre-
sentative trials. Each participant saw the same randomly ordered trials
(see [12] for more details).

Bass and Pritchett [12] collected data from 16 participants over
three phases with up to 180 trials per phase. There were 45 trials per
session within a phase. We specifically used a subset of these data
for several reasons. First, this work was not interested in exploring
the relationship between humans and automation judgment assistance,
which was the subject of the later phases in [12]. Thus, we only used

TABLE I
LAMSTAR MODEL SUBWORDS

Subword Independent Variables

1 SpeedError SpeedOwn SpeedIntr
2 CourseError HdgOwn HdgIntr
3 RangeDisp OwnDistToPCA IntDistToPCA

data from the first phase (the “training” phase) because it collected
human judgments based purely on environmental cues. Additionally, to
facilitate direct comparison between models derived from participants,
we wanted to use participants that saw the same trials at the same time
in the experiment. Due to the counterbalancing in [12], this meant that
only the trials of six participants from a single trial session could be
compared. Thus, this limited our dataset to six participants with 45
trials per participant. The trials we used came from the first session of
the participants’ “training” phase.

Despite these reductions, the data should be sufficient for construct-
ing the regression and LAMSTAR models we used in the presented
analyses. Specifically, Bass and Pritchett [12] only used data from 45
trials to construct regression-based JA models for the last phase (the
“prediction” phase) of their trials. Similarly, the number of trials (45)
is larger than datasets used in the initial testing and validation efforts
for LAMSTAR models (see [30]).

D. Dependent Measures

For each trial, a human judgment (Ys ) was collected representing
what the participant thought the probability of a loss of separation was.
Additionally, the actual probability of a loss of separation (Ye ) was
calculated based on the relative positions and trajectories of the two
aircraft and the represented speed, position, and course error.1 Specifi-
cally, the aircraft’s position was projected to the POA based on current
values and errors in the aircraft’s heading, position, and velocity. Based
on the predicted POA, the distribution of miss distances was calculated.
The probability of a loss of separation was then calculated using the
cumulative distribution function of the horizontal miss distance. More
details can be found in [12].

The independent variables and dependent measures were used to
calculate the double-system lens model and LAMSTAR lens model
parameters. For the lens model, multiple linear regression was used to
fit linear models to Ye and the Ys values of each participant using MDist
and Noise as the independent variables. These variables were used be-
cause they represented linearly combinable cues consistent with the
judgment task and were employed in the original analyses by Bass and
Pritchett [12]. These models were then used to calculate the remainder
of the lens model parameters. For the LAMSTAR models, the non-
derived independent variables were categorized into three different sub-
words (see Table I) each representing general categories of information
an operator might use to make judgments: speed information, course
information, and relative distance information, respectively. Note that
we did not explicitly represent time to loss of separation in our sub-
words because it was not used in the actual calculation of the criterion
and could not be explicitly observed on the display. It could, however,
be derived using the information in the other subwords. The subwords
were used to fit the model using LAMSTAR learning for the environ-
ment (Ye ) and the judgments of each participant (each participant’s
Ys ). Once the LAMSTAR model was created, it was used to calculate

1Speed, lateral position, and course error were all normally distributed with
σ = 15 kn, σ = 500 m, and σ = 3°, respectively.
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TABLE II
REGRESSION-BASED AND LAMSTAR-BASED LENS MODEL RESULTS

Note: SD stands for standard deviation. CI stands for confidence interval. All averages, SDs, and CIs are computed from correlation coefficients. Thus, each is computed by transforming
each individual value using Fishers Z-Transformation, computing the statistic from the Z scores, and converting the result back into a correlation coefficient using the inverse of the
Fishers Z-Transformation.

model predictions for all 45 trials, and the remaining LAMSTAR-based
lens model parameters were calculated (see Section II).

E. Hypotheses and Statistical Analyses

Statistical tests were used to compare the lens model parameters
of the two models. Specifically, Fisher’s r-to-z ′ and z ′-to-r transfor-
mations were used to compute the average, standard deviation, and
95% confidence interval bounds of each of the lens model parameters
for each model over all of the participants. Because of dependence
between the Re values computed for the two models, a Steiger’s Z
statistic was used to compare them [31]. To compare the average G to
M as well as the Rs and C values between models, we used two-tailed
paired t-tests on the r-to-z ′ transformed correlations. All comparisons
were conducted using a Šidák corrected 0.5 significance level of
α = 1 − (1 − 0.05)1/4 = 0.0127 to account for multiple comparisons.

Because the Lamstar model was expected to better capture the non-
linear and linear elements of both human judgments and the criterion,
we hypothesized it would produce higher Rs and Re values than the
one based on multiple linear regression. No particular expectations
were made about the relationships between G and M or between the
two model’s values of C .

IV. RESULTS

The lens model equations, subword weights, and lens model param-
eters from the analyses as well as the associated parameter averages
are shown in Table II.

Achievement (ra ) across all participants and on average was low.
This is consistent with the results reported by Bass and Pritchett [12].
The Steiger’s Z test comparing the Re values showed that it was sig-
nificantly lower (Z̄∗

1 = 6.98, df = 42, p < 0.01) for the LAMSTAR
model than for the regression-based model, a finding contradicting our
hypothesis (this is discussed in Section V). The Rs values for each
participant were always higher for the LAMSTAR model than for the
regression-based one. The paired t-test of the r-to-z ′ transformed cor-
relations produced evidence consistent with our hypothesis: that the
Rs value was significantly higher (t = 4.21, df = 5, p = 0.01) for the
LAMSTAR model than for the regression-based model.

While the G values from the regression-based models were always
larger than the corresponding M values from the LAMSTAR models,

Fig. 6. Comparison of LAMSTAR link weights observed for each participant
and the environment from Table II.

there was no significant difference between them (t = 3.13, df = 5, p =
0.03). Similarly, although both the individual and average C values for
the LAMSTAR models were larger than the corresponding individual
and average C values from the lens model, there was no significant
difference between the averages (t = 2.35, df = 5, p = 0.07).

The results can also be used to compare the judgment strategies of
participants to each other as well as the models generated for the envi-
ronment. There are clear differences between the ecological validities
of the environment model (Ŷe ) and the cue utilizations of the subject
models (Ŷs ). Specifically, in all cases, the weight placed on MDist and
Noise were nearly always an order of magnitude smaller than they were
on the participant models. Similarly, two participants (3 and 4) actually
weighted MDist positively, while all of the other participants (and the
environment) weighted them negatively. Interestingly, participants 3
and 4 also had the lowest achievement scores.

The LAMSTAR link weights (w values) also provide insights into
participant judgments (see Fig. 6). Specifically, with the exception
of participant 4, all participants seemed to factor elements of course
(wsCourse ) into their judgments more heavily than the other factors. In
all cases, information related to distance (wsD istance ) made the least
contribution. Further, all of the participants seemed to make use of all
three subwords less than the environment. There was no clear relation-
ship between judgment strategy and achievement (ra ).

Finally, it is interesting to note that there is a much closer correspon-
dence between Re and Rs values in the LAMSTAR model than the
regression-based one.
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Fig. 7. Comparison of our lens model equation statistics (see Table II) with the averages from published lens model meta-analysis. Values are printed next to
averages on the plot. Results from meta-analysis 1 are from [3] and [32]. Results from meta-analysis 2 are from [4]. Note that Kaufmann et al. [3] reported 80%
credibility intervals; thus, these are reported above. A credibility interval was not reported with the C statistic [32], thus its absence in the figure above.

V. DISCUSSION

The fact that the Rs values for the LAMSTAR models were sig-
nificantly higher than those for judgment-based models was expected.
This provides evidence that the LAMSTAR-based approach to judg-
ment analysis is better at capturing human judgment strategies than the
regression-based model, at least for the presented application. Meta-
analyses have been conducted on regression-based lens model experi-
ments across the academic literature [3], [4]. If we compare the results
of our lens model analyses to the averages and confidence intervals
of the meta-analyses (see Fig. 7), we see that cognitive control (Rs )
appears to be lower in our data than in the meta-analyses. These results
seem to show that the LAMSTAR approach could generally be more
applicable in domains where human judgment is not well represented
by a regression model.

While we hypothesized that the LAMSTAR model would better fit to
the criterion, it is, post-facto, not shocking that this was not the case for
the presented scenario. Specifically, the criterion values were generated
based on the linear relationship shown in the fitted regression model.
Thus, while the LAMSAR model did not fit the criterion data, here, it
may do a better job of this for other task environments.

The comparison in Fig. 7 shows that our achievement values (ra )
were lower than average and that, for the regression-based model,
both environmental predictability (Re ) and linear knowledge (G) were
higher than the average. Our average unmodeled linear knowledge
(C) was comparable to the meta-analysis average, although we did
see a wide spread of values for C . Collectively, these results (along
with those seen for Rs ) suggest that the data used in our analysis
are not representative of the data used by other researchers. Thus, the
LAMSTAR model may only be applicable in a minority of situations.
Future work should investigate what domains the LAMSTAR approach
is appropriate for and why.

The analysis we used was based on the judgments of nonexperts.
It is possible that the low Rs scores we observed for the regression-
based models occurred because the novices used a less linear judgment
strategy than would have been used by experts. Future work should
investigate whether the LAMSTAR JA approach is appropriate for
expert judges in the presented domain as well as others.

The LAMSTAR approach is convenient in that it can be used to pre-
dict human and environmental judgments within the range of possible

inputs the same way the regression-based models can. Furthermore, the
link weights provide some insight into what information factors into
the predicted value. However, there does not appear to be an easily dis-
cernable relationship between the weights and achievement. Further,
the link weights are not as easily interpreted as the cue utilizations
produced for regression-based models. Future work will need to focus
on how to best interpret LAMSTAR link weights.

Fig. 7 also gives us insights into how the LAMSTAR model param-
eters compare with those observed across multiple regression-based
lens model analyses. While not quite statistically significant, the aver-
age value of M was lower than the average G value observed in this
study. It was also lower than the G values seen in the meta-analyses.
Given the nonlinear ways that LAMSTAR models are fit, it is not sur-
prising that the M values were not only low, but lower than G values
for regression-based models. This suggests that M may not be a use-
ful measure when conducting a LAMSTAR-based JA. This should be
investigated in future research.

The totality of our findings suggests that the LAMSTAR models and
regression-based models are appropriate in different situations. Judg-
ment analyses are predominantly concerned with understanding human
judgments and comparing their judgment strategies to the environmen-
tal criterion [33], [34]. Thus, when linear models do a good job of
capturing the human judgment and environment, the regression-based
models will provide the most insights given the explanatory power
of the ecological validities and cue utilizations. However, when a lin-
ear model does not fit the data well, the LAMSTAR model could be
capable of providing models of and insights about the criterion and
the human judgments, albeit without the deep explanative power of
the regression-based model. Because JA can also be used as the basis
for creating predictive models of human judgments, the LAMSTAR
approach could definitely be advantageous in situations where human
judgments do not appear to be linear.

This is the first study to investigate the use of LAMSTAR networks in
JA. While the sample size used to fit the models was reasonable, because
of restrictions in the utilized dataset, only data from six participants
were considered. Thus, more work is needed. Future research should
investigate how our results generalize for judgment tasks that both
lend themselves to regression-based analyses and those that do not
while considering larger numbers of participants and larger datasets in
general.
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Finally, there are extensions of JA that go beyond the double-system
lens model. For example, the n-system lens model allows for analysis
of and comparisons between multiple judges [2]. Future efforts could
focus on using LAMSTAR networks for these types of lens model
extensions.

VI. CONCLUSION

Given that this work is the first to adapt LAMSTAR networks for
use in JA and that the approach appears to have utility, this work makes
a significant contribution. However, this is just the first step toward
understanding the implications of this novel approach. Future work
should build on this infrastructure to extend the capabilities of this
method to improve the ability of the method to provide insights into
human judgments. Future work should also focus on using the method
in other domains to better understand its generalizability.
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