
Innovations Syst Softw Eng
DOI 10.1007/s11334-016-0272-z

ORIGINAL PAPER

Improving the scalability of formal human–automation
interaction verification analyses that use task-analytic models

Matthew L. Bolton1 · Xi Zheng1 · Kylie Molinaro1 · Adam Houser1 · Meng Li1

Received: 12 June 2015 / Accepted: 27 January 2016
© Springer-Verlag London 2016

Abstract The enhanced operator function model with
communications (EOFMCs) is a task-analytic modeling for-
malism used for including human behavior in formal models
of larger systems. This allows the contribution of human
behavior to the safety of the system to be evaluated with
model checking. The previous method for translating the
EOFMCs into model checker input language was concep-
tually straightforward, but extremely statespace inefficient.
This limited the applications that could be formally veri-
fied using EOFMC. In this paper, we present an alternative
approach for formally representing EOFMCs that substan-
tially decreases the model’s statespace size and verification
time. This paper motivates this effort, describes how the
improvement was achieved, presents benchmarks demon-
strating the improvements in statespace size and verification
time, discusses the implications of these results, and outlines
directions for future improvement.

Keywords Model checking · Task analytic models ·
Formal methods · Scalability

B Matthew L. Bolton
mbolton@buffalo.edu

Xi Zheng
xzheng24@buffalo.edu

Kylie Molinaro
kyliemol@buffalo.edu

Adam Houser
adamhous@buffalo.edu

Meng Li
mli42@buffalo.edu

1 Department of Industrial and Systems Engineering, State
University of New York at Buffalo, Amherst, NY 14260, USA

1 Introduction

Human factors engineers use task-analytic behavior mod-
els to describe the normative human behaviors required to
control a system [37]. These models represent the mental
and physical activities operators use to achieve the goals
the system was designed to support. The Enhanced Oper-
ator Function Model (EOFM) [16] and its extension the
Enhanced Operator Function Model with Communications
(EOFMCs) [6] (both derived from the Operator Function
Model [40]) are task-analytic modeling formalisms that
allow the task behavior of a single human or a team of
humans, respectively, to be used in formal verification analy-
sis. Specifically, EOFMC (henceforth used to refer to both
EOFMC and EOFM given that EOFMC encapsulated the
behavior of EOFM) can be used with model checking
(an automated, search-based approach to formal verifica-
tion [21]) and additional system modeling to allow analysts
to prove whether system models will or will not be safe
while considering the human behaviors in an EOFMC. Fur-
ther, EOFMC supports miscommunication generation that
allows its impact to be considered in the formal verification
analyses.

However, because EOFMC-based verification analyses
rely on model checking [21], they are subject to its scala-
bility limitations. Specifically, model checking suffers from
combinatorial explosion: where adding additional model
components can result in exponential increases in model
statespace size [21]. This can result in models that are too big
or take too long to verify. EOFMC analyses have been eval-
uated for their scalability. This has revealed that statespace
size and verification times of models that include EOFMC
behavior scale exponentially with the human operator tasks
[16,17] and the maximum number of miscommunications
included in the models [9]. As has been seen in practice, this

123

M. L. Bolton et al.

can severely limit what systems and types of model behavior
can be evaluated [12].

If task models are going to be used to formally evalu-
ate the safety and performance of critical human-interactive
systems, steps need to be taken to improve its scalability.
This paper presents a reinterpretation of EOFMC’s formal
semantics and associated translator that allow for a significant
improvement in the scalability of EOFMC-based verification
analyses without the loss of functionality.

In the following, we first discuss the background that
is necessary for understanding EOFMC and its supported
analyses. Then we explain the theory behind the scalabil-
ity improvement for EOFMC, mathematically describe how
the new translator interprets the formal semantics, and reveal
how this was implemented. Afterward, test scalability bench-
marks are presented to demonstrate the improvements the
new implementation affords for both artificial and realistic
test cases. Finally, the results are discussed and avenues for
future work are explored.

2 Background

2.1 Formal methods and model checking

Formal methods are well-defined mathematical languages
and techniques for the specification, modeling, and verifica-
tion of systems [46]. Specification properties mathematically
describe desirable system conditions; systems are modeled
using mathematical languages; and verification then math-
ematically proves whether or not the model satisfies the
specification. Model checking is an automated approach to
formal verification [21]. In model checking, a formal model
describes a system as a state transition model: a set of
variables and transitions between variable states. Desirable
specification properties are usually represented in a tempo-
ral logic [29]. Verification is performed automatically by
exhaustively searching a system’s statespace to determine if
these properties hold. If they do, the model checker returns a
confirmation. Otherwise, a counterexample is produced that
shows how the specification violation occurred as a trace
through the statespace of the model.

Formal methods are typically used to evaluate computer
systems [21]. However, they have been used successfully to
analyze human–automation interaction [18]. Of relevance to
this paper is the work that has considered human operator
task behavior in formal verification analysis as part of larger
formal system models. Task analytic models are typically
represented as a hierarchy of activities that decompose into
other activities and (at the lowest level) atomic actions. In
these models, strategic knowledge (condition logic) controls
when activities can execute, and modifiers between activities
or actions control how they execute in relation to each other.

Because task-analytic models can be represented discretely,
they can be used to include human behavior in formal system
models.

A number of researchers have incorporated task-analytic
models into formal system models of human–automation
interactive systems by either modeling task behavior natively
in the formal notation [4,5,20,31] or translating task-analytic
models implemented in task-analytic representations (such
as ConcurTaskTrees [43], EOFMC, or UAN [33]) into the
formal notation [1,2,11,12,16,30,41,42,44]. This allows
system safety properties to be verified in light of the modeled
human behavior.

Of these, EOFMC is one of the most advanced and fea-
ture rich in that it can support the modeling of single [16] and
multiple operators [6]; allows for the generation of erroneous
human behavior using two different, theoretically driven
techniques [15,17]; supports counterexample visualization
[13]; can generate miscommunications between human oper-
ators [9]; is capable of generating checkable specification
properties from task models that assert properties impor-
tant to human–automation interaction [8,19]; and can be
used to automatically generate functional descriptions of
human–machine interfaces from task models [39]. Thus, by
improving the scalability of EOFMC, this work has the poten-
tial to have the most impact on the related formal analyses
that can be done with task models.

2.2 EOFMC

EOFMC is an XML-based task-analytic modeling formal-
ism that enables analysts to consider how human operator
behavior (including multiple interacting and communicat-
ing humans) impacts system performance and safety using
formal verification [6,16]. EOFMC represents a single
human or groups of humans as an input/output system.
Inputs may come from a human interface, environment,
and/or mission goals. Output variables are human actions.
The operators’ task models describe how human actions
may be generated and how the values of local variables
change based on input and local variables (representing per-
ceptual or cognitive processing, task behavior, and inner
group coordination and communication). All variables are
defined in terms of constants, user defined types, and basic
types.

Tasks in an EOFMC instance are represented as a hierar-
chy of goal-directed activities that ultimately decompose into
atomic actions. Each task descends from a top level activity,
where there can be multiple tasks in a given EOFMC. Tasks
either belong to one human operator or are shared between
human operators. A shared task is assigned to two or more
associates, and a subset of associates for the general task is
identified for each activity. Thus, it is explicit which human
operators are participating in which activity.

123

Improving the scalability of formal human–automation interaction verification...

Activities can have preconditions, repeat conditions, and
completion conditions. These are represented by Boolean
expressions written in terms of input, output, and local vari-
ables, as well as constants. They specify what must be true
before an activity can execute (precondition), when it can
execute again (repeat condition), and what is true when it
has completed execution (completion condition).

Actions appear at the bottom of the task hierarchy. They
can be any of the following: (a) observable, singular ways
the human operator can interact with the environment (output
variables); (b) a cognitive or perceptual act, where a value is
assigned to a local variable; or (c) human–human communi-
cations, where a communicator performs a communication
action and the information conveyed is stored in recipient
local variables.

A decomposition operator specifies the temporal relation-
ships and the cardinality of the decomposed activities or
actions (when they can execute relative to each other and
how many can execute). EOFMC supports all of the decom-
position operators in Table 1.

EOFMC instances can be visualized as tree-like graphs
(see Fig. 1) where actions are depicted by rectangles and
activities by rounded rectangles. Decompositions are arrows,
labeled with the decomposition operator, extending below
an activity that points to a large rounded rectangle with
the decomposed activities or actions. In these visualizations,
strategic knowledge conditions are connected to the activ-
ity they modify: a Precondition is represented by a yellow,
downward pointing triangle connected to the left side of the
activity; a CompletionCondition is presented as a magenta,
upward pointing triangle connected to the right of the activ-
ity; and a RepeatCondition is conveyed as a recursive arrow
attached to the top of the activity. More information can be
found in [13].

By exploiting the shared activity and communication
action feature of EOFMC, human–human communication
protocols can be modeled as shared task activities. Human
communication actions can represent human–human com-
munication. However, other actions can model the way that
the human operator interacts with other elements of the
work environment. Thus a human–human communication
protocol can represent the human–human communication
procedure and the human operator responses.

Actions occur at the bottom of EOFMC task hierar-
chies. Actions are modeled as either an assignment to an
output variable (indicating an action has been performed)
or a local variable (representing a perceptual, cognitive,
or communication action). Shared activities can explicitly
include human–human communication action inside of a
com decomposition. In such decompositions, communicated
information from one human operator can be received by
other human operators (modeled as an update to a local
variable).

2.2.1 Miscommunication generation

EOFMC supports the ability to automatically generate mis-
communications in EOFMC models [9], so their impact on
safety can be evaluated with formal verification. In miscom-
munication generation, any given communication action can
execute normatively, have the source of the communication
convey the wrong information, have one or more of the com-
munication recipients receive the wrong information, or both.
In all analyses, the analyst is able to control the maximum
number of miscommunications that can occur (Max). The
net effect of this is that analysts can evaluate how robust a
protocol is for all possible ways that Max or fewer miscom-
munications can occur.

Activity.StartCondition := Parent.Executing ∧

⎧⎪⎪⎨
⎪⎪⎩

PreviousSibling.Done, if Parent.Decomposition = ord∧
S∈Siblings S.Ready, if Parent.Decomposition = xor∧
S∈Siblings ¬S.Executing, for all other non-parallel decompositions

T rue, otherwise

(1)

Activity.EndCondition :=
(∧

C∈Children
¬C.Executing

)

∧
⎛
⎝

⎧⎨
⎩

∨
C∈Children C.Done, if Activity.Decomposition ∈ {or_seq, or_par, xor}

T rue, if Activity.Decomposition = optor∧
C∈Children ¬C.Done, otherwise

⎞
⎠ (2)

Action.StartCondition := Parent.Executing ∧

⎧⎪⎪⎨
⎪⎪⎩

PreviousSibling.Done, if Parent.Decomposition = ord∧
S∈Siblings S.Ready, if Parent.Decomposition = xor∧
S∈Siblings ¬S.Executing, for all other non-parallel decompositions

T rue, otherwise

(3)

Action.EndCondition := Action.Executing (4)

123

M. L. Bolton et al.

Table 1 EOFMC decomposition operators

Operator Description

optor_seq Zero or more of the sub-acts must execute in any
order one at a time

optor_par Zero or more of the sub-acts must execute in any
order and can execute in parallel

or_seq One or more of the sub-acts must execute in any
order one at a time

or_par One or more of the sub-acts must execute in any
order and can execute in parallel

and_seq All of the sub-acts must execute in any order one at a
time

and_par All of the sub-acts must execute in any order and can
execute in parallel

xor Exactly one sub-act must execute

ord All sub-acts must execute in the order they appear

sync All sub-acts must execute synchronously

com A communication action is performed

2.2.2 EOFMC formal semantics

EOFMC has formal semantics that specify how an EOFMC
instance executes. Each activity or action has one of three
execution states: waiting to execute (Ready), executing (Exe-

cuting), and done (Done). An activity or action transitions
between states (Fig. 2) based on its current state; its start con-
dition (StartCondition—when it can start executing based on
the state of its immediate parent, its parent’s decomposition
operator, and the execution state of its siblings); its end con-
dition (EndCondition—when it can stop executing based on
the state of its immediate children in the hierarchy and its
decomposition operators); its reset condition (Reset—when
it can revert to Ready based on the execution state of its
parents); and, for an activity, its strategic knowledge (the
Precondition, RepeatCondition, and CompletionCondition).

Strategic knowledge conditions are explicitly specified in
EOFMC XML. However, the StartCondition, EndCondition,
and Reset condition for each activity and action are derived
from the execution state of itself, its parent, its siblings (acts
in the same decomposition), and its children (acts that are
decomposed from it). The logical relationship between these
execution states is determined by the decomposition operator
of the given activity’s or action’s parent and/or the given
activity’s decomposition operator.

The logical formulations for the start and end conditions
are shown in (1)–(4). Note that in these, for any given activity
or action (Act):

Act.Ready := Act.ExecutionState = Ready, (5)

Fig. 1 An example of the visual representation of a task structure in an
EOFMC instance (originally from [17]). Activity aActivity1 has both
a precondition and a completion condition. It decomposes into activi-
ties aActivity2 and aActivity3 with an or_seq decomposition operator.
aActivity2 has a precondition and decomposes into Action1 with an ord

decomposition operator. aActivity3 has both repeat and completion con-
ditions. It decomposes into aActivity4 and aActivity5 with an optor_par
operator. aActivity4 and aActivity5 each decompose into two actions,
Action2 and Action3 with an xor decomposition for the former and
Action4 and Action5 with an ord decomposition for the latter

123

Improving the scalability of formal human–automation interaction verification...

(a) (b)

Fig. 2 Transition diagrams representing how activities (a) and actions (b) transition between execution states in EOFMC formal semantics

Act.Executing := Act.ExecutionState = Executing, (6)

and

Act.Done := Act.ExecutionState = Done. (7)

For any given activity or action in a decomposition, a
StartCondition [(1) and (3), respectively] comprises two con-
juncts: one stipulating conditions on the execution state of
its parent and the other on the execution state of its siblings
based on the parent’s decomposition operator. Note that the
start condition for an activity and action are formulated the
same way.

An activity without a parent (a top-level activity) will elim-
inate the first conjunct. Top-level activities that are defined
for a given humanoperator treat each other as siblings in the
formulation of the second conjunct with an assumed and_seq
relationship. All other activities are treated as if they are in
an and_par relationship and are thus not considered in the
formulation of the start condition. Top-level activities that are
defined for sharedeofms treat all other activities as if they are
in an and_par relationship; thus they have start conditions
that are always true.

An EndCondition also comprises two conjuncts, both
related to an activity’s sub-acts. The first asserts that none
of the sub-acts are executing. The second asserts that the
execution states of the activity’s sub-acts satisfy the require-
ments stipulated by the activity’s decomposition operator (2).
Because an action has no sub-acts, an action’s EndCondition
defaults to True when an action is executing (4).

The Reset condition is different from the other transitions.
Specifically, it is True when an activity’s or action’s parent
transitions from Done to Ready or from Executing to Execut-
ing (when it repeats execution). If the activity has no parent

(if it is at the top of the decomposition hierarchy), Reset is
True if that activity is Done.

The transition criteria for an activity (Fig. 2a) are described
in more detail below: (a) an activity is initially in the inac-
tive state, Ready. If the StartCondition and Precondition are
satisfied and the CompletionCondition is not, then the activ-
ity can transition to the Executing state. However, if the
StartCondition and CompletionCondition are satisfied, the
activity moves directly to Done. (b) When in the Executing
state, an activity will repeat execution when its EndCondi-
tion is satisfied as long as its RepeatCondition is true and
its CompletionCondition is not. An activity transitions from
Executing to Done when both the EndCondition and Com-
pletionCondition are satisfied. (c) An activity will remain in
the Done state until its Reset condition is satisfied, where it
returns to the Ready state.

The transition criteria for an action are simpler (Fig. 2b)
since an action cannot have strategic knowledge. Note that
because actions do not have any sub-acts, their EndCondi-
tions are always True when the action is Executing. Also, note
that because actions in a sync or com decomposition occur
at the same time, the variables representing their execution
states must transition through states at the same time. Further,
note that when the action is Executing, this is when a given
output variable action should be True or when the local vari-
able or communication action information transfer to local
variables occurs. This is also when any miscommunications
can manifest (see [9] for more details).

2.2.3 Translation

Instantiated EOFMC task models can be translated into the
language of the Symbolic Analysis Laboratory (SAL; see

123

M. L. Bolton et al.

[22]) using these formal semantics (in this case using a
Java program) [16], where the task model can interact with
other modeled system elements. For this, each activity’s and
action’s execution state is explicitly modeled as a variable
that can transition between Ready, Executing, and Done
in accordance with the transitions in Fig. 2 and the other
EOFMC formal semantics. Each of these transitions is rep-
resented as a single non-deterministic, guarded transition in
a single SAL module.

The SAL model containing the human operator task
behavior is ultimately asynchronously composed of one or
more other modules meant to represent other system behav-
ior analysts may wish to implement in the model. To support
a coordination protocol between these asynchronously com-
posed modules, the translator defines two Boolean variables
in the group module (see [10] and [12]):

1. An input variable InterfaceReady to the human task mod-
ule that is True when the interface is ready to receive
input.

2. An output variable ActionsSubmitted to the human task
module that is True when one or more human output
actions are performed.

The ActionsSubmitted output variable is initialized to False.
A deeper description of this translation process can be

found in [16] and [7].
This is an intuitive way of representing the execution

state of activities and actions and realizing the EOFMC for-
mal semantics in a translator. However, it can also be very
statespace inefficient. This is true for two primary reasons.
First, the number of variables required for representing the
entire task model must match the number of activities and
actions in the task model. Secondly, the inherently hier-
archical nature of EOFMC models results in a number of
intermediate states and state transitions that represent the exe-

cution state of activities. As such, there can be many states
representing changes in a task model’s aggregate statespace
that do not result in changes to the state of a task’s actions.
Because the actions are the only part of the task model that
can affect change in other elements of the system, these inter-
mediate states are very inefficient.

3 A more statespace-efficient translator

In this section, we describe a new translator that uses a differ-
ent method for implementing the EOFMC formal semantics
to reduce the statespace size of the resulting model. The trans-
lator design presented here accomplishes this by removing
unnecessary variables and intermediate transitions.

The major insight that makes this design possible is that
the execution state of an activity can be viewed as an abstrac-
tion of the execution state of the activities and actions it
decomposes into. Since every EOFMC activity must ulti-
mately decompose into actions, the execution state of every
activity can be represented as a Boolean expression based on
the execution state of its actions. Thus, the modified trans-
lator design (with one exception) removes the variables for
EOFMC activity execution states and represents an entire
model’s behavior based on the execution state and transitions
between the execution state of its actions.

In this design, the explicit representation of action exe-
cution state remains the same as in the original translator
implementation (each action has a variable representing its
execution state). Thus, the Boolean expressions used to rea-
son about those states are given by (8)–(10).

However, in most situations, each possible execution state
of each activity is recursively represented as a Boolean
expression of the execution state of its children. We define
the execution state of an activity as seen in (11)–(13).

Action.Ready := Action.ExecutionState = Ready (8)
Action.Done := Action.ExecutionState = Done (9)
Action.Executing := Action.ExecutionState = Executing (10)

Activity.Ready :=
(∧

C∈Children

C.Ready

)
∧ ¬Activity.Repeating (11)

Activity.Done :=
{

Activity.ExecutionState = Done if Activity has a RepeatCondition or a CompletionCondition(∧
C∈Children C.Done

)
Otherwise

(12)

Activity.Executing := ¬Activity.Ready ∧ ¬Activity.Done (13)
Activity.CanRepeat := Activity.StartCondition ∧ Activity.EndCondition ∧ Activity.RepeatCondition ∧ ¬Activi t y.CompletionCondition

∧
⎛
⎜⎝

⎧⎪⎨
⎪⎩

Activity.Executing ∨
(

Activity.Ready

∧Activity.Precondition

)
if Activity.Decomposition ∈ {optor_seq, optor_par}

Activity.Executing otherwise

⎞
⎟⎠ (14)

123

Improving the scalability of formal human–automation interaction verification...

Activity.CanDone :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Activity.CompletionCondition ∧ ¬Activity.CanRepeat

∧
(

(Activity.Executing ∧ Activity.EndCondition)

∨ (Activity.Ready ∧ Activity.StartCondition)

)
if Activity has a Completion.Condition

¬Activity.CanRepeat

∧
⎛
⎜⎝

(Activity.Executing ∧ Activity.EndCondition)

∨
(

Activity.Ready ∧ Activity.StartCondition

∧Activity.Precondition

) ⎞
⎟⎠ if Activity.Decomposition ∈ {optor_seq, optor_par}

¬Activity.CanRepeat ∧ Activity.Executing

∧ Activity.EndCondition
otherwise

(15)

Activity.CanExecute := Activity.Ready ∧ Activity.StartCondition ∧ Activity.Precondition ∧ ¬Activity.CompletionCondition (16)

Action.StartCondition :=
(

Parent.Executing
∨Parent.CanExecute

)
∧

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PreviousSibling.Done, if Parent.Decomposition = ord∧
S∈Siblings S.Ready, if Parent.Decomposition = xor∧
S∈Siblings ¬S.Executing, for all other non-parallel decompositions

True, otherwise

(17)

Activity.StartCondition :=
(

Parent.Executing
∨Parent.CanExecute

)
∧

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PreviousSibling.Done, if Parent.Decomposition = ord∧
S∈Siblings S.Ready, if Parent.Decomposition = xor∧
S∈Siblings ¬S.Executing, for all other non-parallel decompositions

True, otherwise

(18)

An activity is Ready (11) if all of its children are Ready
and the activity is not repeating. Note that because all actions
are initially assigned to Ready, this means that an activity will
always default to Ready in its initial state. Further, note that
(11) uses the variable Activity.Repeating. Activity.Repeating
is a Boolean variable that exists if the given Activity has a
RepeatCondition. It is True if the Activity is repeating and
False otherwise. This variable was created to ensure that, if
an activity needs to repeat and thus reset all of its descendants
to Ready, the activity will still be treated as if it is Executing.

An activity is Done (12) if all of its children are Done
and it does not have a repeat or completion condition.
However, if it does have one of these conditions, some addi-
tional infrastructure is required. Specifically, an executing
activity with a repeat condition may have all of its children
become Done before it repeats and/or an activity with a
completion condition may have all of its children become
done without the completion condition being satisfied. Thus,
to avoid erroneous Done states, a variable is created for
activities with these conditions Activity.ExecutionState that
indicates if the activity is Done or not. It is important to
note that this definition of Done is slightly stronger than a
simple satisfaction of an activity EndCondition. This was
done purposely to ensure that there was no ambiguity about
whether an activity was Done: certain decompositions (for
example, or_seq and or_par) can have associated end condi-
tions that can be satisfied before an activity necessarily needs
to become Done.

An activity is Executing (13) if it is not Ready or Done.
These definitions ignore some ambiguities about execu-

tion state that arise with the use of optor decompositions

operators. Specifically, they ignore that an activity with such
a decomposition could be Executing or Done even if all of
its children are Ready. This potential problem arises because
the modified translator eliminates most of the intermediate
transitions between activity execution states that would have
prevented such issues. To both address this and give actions
enough information to determine when they can transition,
expressions are formulated to indicate when an activity can
transition to a new execution state (based on the transitions
from Fig. 2), thus ensuring that actions will be able to deter-
mine when the necessary intermediary transitions would have
allowed them to occur. We define expressions for indicating
when an activity can repeat (14), can transition to Done (15),
and can Execute (16).

An activity can repeat (14) if its StartCondition, EndCon-
dition, and RepeatCondition are satisfied, its Completion-
Condition is not, and it is Executing or, if it has an optor
decomposition, it is Ready with a satisfied Precondition.

If an activity has a CompletionCondition, it can become
done if its completion condition is satisfied and it is either
Executing with a satisfied EndCondition or Ready with a
satisfied StartCondition. If it has an optor decomposition, the
condition is the same except that when the activity is Ready
with a satisfied StartCondition, the Precondition must also
be true. Otherwise, the activity need only be Executing with
a true EndCondition.

Note that the expressions for representing CanRepeat (14)
and CanDone (15) take some minor liberties with the for-
mal semantics for how optor decompositions are handled.
Specifically, an activity with such a decomposition can go
from Ready to Done or Ready to Repeating (Executing as

123

M. L. Bolton et al.

if it was repeating) by automatically transitioning through
(effectively skipping) Executing states where nothing would
occur. Thus, although this does not explicitly follow the for-
mal semantics from Fig. 2, it is still consistent with it.

An activity can execute (16) if it is Ready, its StartCondi-
tion and Precondition are True, and its CompletionCondition
is False.

In (14)–(16), if a given activity does not contain a strategic
knowledge condition (a Precondition, CompletionCondition,
or RepeatCondition), the condition (or the negation of the
condition) should be eliminated.

To account for the fact that there is no explicit state for
determining if a parent activity is Executing, the StartCon-
dition needs to be slightly modified to include the ability for
an activity or act to satisfy its StartCondition if the activities
it descends from can execute; see (17) and (18).

Even with these changes, the EndCondition definitions
from (2) and (4) remain the same.

These mathematical expressions were collectively used to
express the nondeterministic, guarded transitions that defined
the behavior of the formal task behavior model. As with
the previous version of the translator, task behavior was
represented in a single module, where input variables rep-
resented system information available to the human operator
task model (corresponding to the input variables from the
EOFMC’s XML), outputs represented the human actions,
and local variables were used to keep track of activity
(where necessary) and action execution state (all initialized
to Ready). This module also contained the Boolean input
ActionsSubmitted and Boolean output InterfaceReady vari-
ables used for coordination between other system elements
in the formal model and the formal representation of the task
behavior (this was discussed in Sect. 2.2.3).

As with the original model, non-deterministic transitions
were used to define how transitions occurred in between
activity and action execution state. However, these were
formulated slightly differently given the elimination of the
explicit representation of most activity execution states.

For each action, a Ready to Executing transitions could
occur if Action.Ready ∧ Action.StartCondition ∧
InterfaceReady (the transition guard). In such a transition, the
associated action’s execution state would be set to Execut-
ing, the variables representing the performance of the action
would be set to the appropriate value, and ActionsSubmitted
would be set to True. A single general transition was respon-
sible for handling all action Executing to Done transitions.
Specifically, if ActionsSubmitted ∧ ¬InterfaceReady, then
(for the next state) ActionsSubmitted would be set to False,
the execution state of all executing actions would be set to
Done, and the variables representing action outputs would
be reset. Note that these transitions are consistent with the
behavior from the previous version of the translator [9,12,

16], where only the reformulation of Action.StartCondition
would impact the final translated form.

Although the execution states of activities were, for the
most part, not explicitly represented, there were still several
activity-related transitions. First, a transition was created to
transition the activity to Done (encapsulating possible Ready
to Done and Executing to Done transitions from Fig. 2a). For
this, if the guard asserting Activity.CanDone was satisfied,
the execution state of all descendent actions would be set to
Done; the execution state of the activity or any descendent
activity with repeat or completion conditions would be set
to Done; and all Activity.Repeating variables associated with
the activity or any of its decedents would be set to False. Sec-
ond, for every activity with a repeat condition, a transition
was created to represent its repetition behavior (an Execut-
ing to Executing transition from Fig. 2a). Specifically, if a
guard asserting that Activity.CanRepeat was satisfied, then
Activity.Repeating would be set to True and all of the vari-
ables associated with decedent activities and actions would
be set to Ready: all descendent execution states set to Ready
and all sub-activity Repeating variables set to false. Finally,
if an activity is at the very top of the task model hierarchy, it
needs to be able to reset itself to Ready. Thus, for every top-
level activity, a transition was created that could only occur
if a guard asserting Activity.Done was satisfied. If the transi-
tion occurs, all variables representing descendent execution
states would be set to Ready and any Repeat variables asso-
ciated with descendent activities would be set to False. Note
that these last two transitions account for the Reset behavior
required by the formal semantics (Fig. 2).

Aside from these changes, the modified translator acted in
accordance with the original formal semantics and translator
(see Sect. 2.2).

4 Testing

To evaluate whether the modified translator was correctly
replicating the behavior of the original translator, it was tested
using a series of simple instantiated models. These models
were created to test both that the translators were producing
the expected sequences of actions for the different EOFMC
decomposition operators and that consistent sequences were
being produced between translators.

To accomplish this, three different EOFMC tasks were
created (Fig. 3). For each of these, versions were constructed
that used each of the possible decomposition operators (Table
1).1 These particular task models were used because they

1 Note that because the com operator is so different from the others,
it was not included in these tests. Because the com operator behavior
only effects action behavior, it behaves in accordance with the previ-
ous translator [9]. Thus, the new translator should not affect the way

123

Improving the scalability of formal human–automation interaction verification...

(a) (b) (c)

Fig. 3 EOFMC task structures used to test that the modified translator correctly replicated EOFMC behavior. operator in all of the task structures
above shows where the decomposition operator was varied in each model. a Task for Test 1. b Task for Test 2. c Task for Test 3

encapsulate a representative spectrum of EOFM behavior
sufficient for testing the features of the new translator. Specif-
ically, the use of three actions allows for a number of different
action sequences for different decomposition operators. The
differences in the levels of hierarchy between the task for
Test 2 (Fig. 3b) and the other tasks ensures that we are test-
ing conditions, both where activities decompose into actions
and when activities decompose into other activities. This was
important because of the different way that activity execu-
tion states were handled in the new version of the translator.
The task for Test 3 (Fig. 3c) accounts for the presence of
strategic knowledge conditions, while the other two tasks do
not use strategic knowledge. This is also important because
the presence of the strategic knowledge affects the behavior
of EOFMC activities and the new formulation of the formal
semantics.

The EOFMC task models (each of the tasks from Fig. 3
with the different decomposition operators) were translated
into SAL using the original and the new, modified translator.2

Formal models created with both translators were completed
by pairing the formal task representing with a module capa-
ble of accepting all of the actions it performed. An additional
module was also included in the formal representation that
would observe the actions being performed and update the
value of variables that indicate if any of the 26 possible
action sequences had executed. Note that, across all decom-

com decompositions are executed. Further, no anomalies were observed
in the verification results of the realistic benchmarks reported sub-
sequently. Thus, the evidence suggests that com decompositions are
behaving the way they are supposed to.
2 Note that the formal representation was slightly modified to remove
the topmost activities’ Done to Ready transitions. This ensured that
the task would not repeat due to a Reset and thus not produce action
execution sequences outside of a single execution.

positions, an action sequence could have between 0 and 3
different ordered entries. Each entry could be a single action,
a pair of concurrently executing actions, or all three actions
executing concurrently (full listings of these can be seen in
Tables 2, 3 and 4).

Additional model behaviors were also included in the for-
mal models for tests using the task in Fig. 3c. Specifically, the
formal module that accepted human operator inputs ensured
that variables iX and iY were always true and that iZ would
only become true once the task was repeating. This was
meant to ensure that the task would repeat exactly once.
Additionally, these formal models contained two modules
for recognizing action sequences: one when the task was not
repeating and one when it was.

All of the formal models were given specifications assert-
ing the absence of each action sequence. Formal models with
task behavior from the model in Fig. 3c had specifications
for asserting the absence of each action sequence twice, once
before the repeat and once after. Model checking was used
to verify all of the properties for each model. With this setup,
if the model checker returned a counterexample, the associ-
ated action sequence was possible. A confirmation showed
the opposite.3

The results of these analyses are shown in Tables 2, 3
and 4, corresponding to the models associated with the task
shown in Fig. 3a, b and c, respectively. These results show
two things. First, each of the tests produced all of the action
sequences that would be expected for the given task and
decomposition operator and none that would not be expected.
Second, the action sequences for comparable models created
using the original and the new translator were identical in all

3 A full listing of all of the models used in these analyses can be found
at http://fhsl.eng.buffalo.edu/resources/.

123

M. L. Bolton et al.

Table 2 Testing results for models created using the task from Fig. 3a

Model Decomposition Operator and Translator

optor seq optor par or seq or par and seq and par xor ord sync

Sequence Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New

1
2
3

1 → 2
1 → 3
2 → 1
2 → 3
3 → 1
3 → 2

1 → 2 → 3
1 → 3 → 2
2 → 1 → 3
2 → 3 → 1
3 → 1 → 2
3 → 2 → 1

1 & 2
1 & 3
2 & 3

1 → 2 & 3
2 & 3 → 1
2 → 1 & 3
1 & 3 → 2
3 → 1 & 2
1 & 2 → 3
1 & 2 & 3

1, 2, and 3 are used to reference hAction1, hAction2, and hAction3 respectively from the tasks in 3. Actions to the left and right of an & symbol
indicate that they occurred concurrently. Actions or groups of concurrent actions separated by a → indicate sequential execution from left to right.
A � indicates that the associated sequence was observed in the given version of the model. The × indicates it was not

cases. This provides strong evidence that the new translator
properly represents EOFMC task behavior.4

Additionally, a number of models from the EOFMC lit-
erature (see Sect. 6) were retranslated into SAL using the
modified translator and paired with the other elements of their
original formal models. These were evaluated for a variety
of different specifications (related to the specific context of
each model) to ensure that they produced the same analysis
results with the new translator and the original.5 In all cases,
the models created using the modified translator produced
the expected verification results. Further, these were consis-
tent with the results obtained from models created using the
original translator.

4 It is important to note the the original translator was involved in rig-
orous validation testing to ensure that it was behaving in conformance
with the formal semantics (see [7]).
5 Note that more verifications were run beyond those used in the real-
istic benchmarks discussed in Sect. 6. Deadlock checking was also
performed on all of the models. No deadlock states were detected.

5 Artificial benchmarks

To compare the scalability of the modified translator to the
original translator, a series of artificial benchmarks were
used. These benchmarks iteratively increased the number of
EOFMC task structures used in a formal model created from
each respective translator. Verification was performed using
a valid specification property and results (number of visited
states and verification time) were compared.

All of these benchmarks used the task structure shown in
Fig. 4. In this task structure, a top-level activity aActX decom-
poses into two lower-level activities using an optor_par
decomposition. Each of these sub-activities then uses an
optor_par decomposition to decompose into a single action:
h1 for aActXa and h2 for aActXb. Note that the optor_par
decomposition was used in the benchmark tasks, because
it is the decomposition operator associated with the largest
statespace complexity [16].

Each benchmark case used one or more instances of this
task structure. There were ten total benchmarks, where the
first benchmark contained one instance of the benchmark

123

Improving the scalability of formal human–automation interaction verification...

Table 3 Testing results for models created using the task from Fig. 3b

Model Decomposition Operator and Translator

optor seq optor par or seq or par and seq and par xor ord

Sequence Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New

1
2
3

1 → 2
1 → 3
2 → 1
2 → 3
3 → 1
3 → 2

1 → 2 → 3
1 → 3 → 2
2 → 1 → 3
2 → 3 → 1
3 → 1 → 2
3 → 2 → 1

1 & 2
1 & 3
2 & 3

1 → 2 & 3
2 & 3 → 1
2 → 1 & 3
1 & 3 → 2
3 → 1 & 2
1 & 2 → 3
1 & 2 & 3

No sync operator is used here because they are only allowed for decompositions of an activity into one or more actions

task (Fig. 4) and every subsequent benchmark contained one
more instance than the one previous.

A separate EOFMC XML file was created for each bench-
mark. Each was translated into SAL using both the original
and modified translator. The formal representation of the task
models were each synchronously composed with another
module that would simply receive all performed human
actions in accordance with the EOFMC-supported coordi-
nation protocol [12,16].

Each of the resulting 20 benchmark models were checked
against the specification property shown in (19), which was
valid for all models.

G¬(aAct1.Ready ∧ aAct1.Executing) (19)

When SAL’s symbolic model checker (SAL-SMC) was
used to perform formal verification, (19) verified as being true
for every model. For each model’s verification, the number
of visited states and total verification times (which included
prepossessing time for SAL-SMC to convert the model into a
binary decision diagram) were recorded. To compare the per-
formance of the original translator to the new one, a reduction
factor was computed (OldTranslatorValue / NewTranslator-
Value) for both measures. Finally, an exponential function

was fit to the data for each translator’s model and an R2 was
computed. These results are presented in Table 5.

These show that for both the number of visited states
and the verification time, the models generated by both the
original and modified translator scale exponentially with the
number of tasks included in the model (the exponential mod-
els fit with R2 ≥ 0.99). However, the models generated by
the modified translator have much fewer states and verify
much faster than those created using the original translator.
Given this relationship, it is not surprising that the reduction
factor from the statistics observed for the original transla-
tor models to those from the modified translator’s models
increased as the number of included tasks increased.

6 Realistic benchmarks

While the artificial benchmarks give us some indication of
how models created by the two translators scale as the num-
ber of task models increases, they do not necessarily give
us an indication of how they will perform on realistic exam-
ples. To evaluate this, additional benchmarks were conducted
using instantiated EOFMs and EOFMCs (and their asso-

123

M. L. Bolton et al.

Table 4 Testing results for models created using the task from Fig. 3c

Model Decomposition Operator and Translator

optor seq optor par or seq or par and seq and par xor ord sync

Sequence Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New Orig. New

1
2
3

1 → 2
1 → 3
2 → 1
2 → 3
3 → 1
3 → 2

1 → 2 → 3
1 → 3 → 2
2 → 1 → 3
2 → 3 → 1
3 → 1 → 2
3 → 2 → 1

1 & 2
1 & 3
2 & 3

1 → 2 & 3
2 & 3 → 1
2 → 1 & 3
1 & 3 → 2
3 → 1 & 2
1 & 2 → 3
1 & 2 & 3

Sequence on Repeat

1
2
3

1 → 2
1 → 3
2 → 1
2 → 3
3 → 1
3 → 2

1 → 2 → 3
1 → 3 → 2
2 → 1 → 3
2 → 3 → 1
3 → 1 → 2
3 → 2 → 1

1 & 2
1 & 3
2 & 3

1 → 2 & 3
2 & 3 → 1
2 → 1 & 3
1 & 3 → 2
3 → 1 & 2
1 & 2 → 3
1 & 2 & 3

ciated complete formal system models) used in previous
analyses. In all cases, the EOFMC models were translated
into SAL using both translators. The translated version of the
task behavior was then paired with the rest of their respective

formal system models. SAL-SMC was then used to ver-
ify the same valid property for both versions of the model.
The number of visited states and verification times were
recorded.

123

Improving the scalability of formal human–automation interaction verification...

Fig. 4 The EOFMC task pattern used in benchmark experiments. Note
that X represents the number of the instance in the given benchmark,
where X can be between 1 and 10

Six different benchmark models were used. The first,
which we will call “aircraft,” represents a pilot’s checklist-
guided behavior (and the related aircraft systems) for
performing the before-landing checklist on an instrument
landing (see [14,19]). In this model, formal verification was
used to ensure that, if pilots prefer to arm aircraft spoilers, the
spoilers will be armed when the aircraft is ready to descend to
the runway (see [14]). A second model, henceforth referred
to as “Therac-25,” represents a radiation therapy machine
through which a technician must program and administer
treatments [17]. In this case, the verified specification prop-
erty checked that a full, unshielded radiation dose was never
administered without a protective spreader in place. A third
model, called “PCA,” represents a pain medication pump that
is programmed by a practitioner (see [12,15]). This was ver-
ified against a property specifying that, when treatment was
being administered, the prescription programmed into the
device matched what was prescribed. Finally, three differ-
ent communication protocols were used, each representing
a different procedure for communicating a heading change
between air traffic control and the two pilots flying an air-
craft [9]. Each protocol (1–3) was designed to be robust for
different maximum numbers of miscommunications. Thus,
four versions of each of these models were created, each
allowing for a different maximum on the number of mis-
communications allowed to be generated6 between 0 and 3.
In all instances of the protocol model, a specification was
verified that the topmost activity associated with the coordi-
nated heading change eventually finishes executing (becomes
Done).

6 Note that the modified translator includes miscommunication gener-
ation in the same way as the original translator.

The verification statistics for each of these models are pre-
sented in Table 6. These also include a calculated reduction
factor indicating how much of a reduction was observed for
each collected statistic between the models generated by the
original translator and the modified one. Further, because pre-
vious results showed that the collected verification statistics
increased exponentially with the maximum number of gen-
erated miscommunications in communication protocols [9],
an R2 statistic was calculated based on a fitted exponential
function between the maximum number of miscommunica-
tions (as the independent variable) and both the number of
visited states and verification times for models generated by
each translator for each communication protocol.

These results show that, in all cases, the modified trans-
lator outperformed the original translator in terms of both
the size of the model (number of visited states) and the total
verification time. Excluding the PCA model, all of the other
models saw an average reduction factor of approximately 2
for both measures. However, much higher reduction factors
were found for the PCA model. The R2 statistics for the
communication protocol models were all evaluated close to
1. Thus, for communication protocols, the number of visited
states and the verification time appear to scale exponentially
with the maximum number of miscommunications for mod-
els generated by both translators.

7 Discussion

The modified translator does not prevent EOFMC models
from scaling exponentially with the number of task structures
or with the maximum number of allowable miscommuni-
cations. However, the benchmarks clearly indicate that the
models created by the modified translator are smaller and
verify faster than their counterparts created using the origi-
nal translator. Thus, the use of the modified translator should
improve the scalability of formal verification analyses that
use EOFMC and thus enable more complex systems to ulti-
mately be evaluated.

The variability observed in the results suggests that scal-
ability improvements are dependent on the nature of the
model. However, it does appear that the improvements in
scalability of models produced by the modified translator
become more apparent as the complexity of the EOFMC
model instance increases. For example, in the artificial
benchmarks (Table 5), the reduction factor between the
two translated versions of the models for both verification
metrics increased drastically as the number of task struc-
tures increased. This is reflected in the realistic benchmarks
as well. Specifically, the PCA model has the most com-
plex EOFMC instance of all of the other benchmarks and
clearly saw a higher reduction factor for both verification
metrics.

123

M. L. Bolton et al.

Table 5 Artificial verification benchmark results

Number Number of Visited States Reduction Percent Verification Time (s) Reduction Percent

of Tasks Original Modified Factor Decrease Original Modified Factor Decrease

1 92 18 5.11 80.43% 0.06 0.04 1.50 33.33%

3 23,600 184 128.26 99.22% 0.39 0.13 3.00 66.67%
4 308,000 480 641.67 99.84% 2.07 0.18 11.50 91.30%

6 45,200,000 2816 16,051.14 99.99% 47.98 0.45 106.62 99.06%
7 524,000,000 6528 80,269.61 100.00% 48.02 0.62 77.45 98.71%

2 1640 64 25.63 96.10% 0.13 0.07 1.86 46.15%

5 3,800,000 1184 3209.46 99.97% 10.34 0.30 34.47 97.10%

8 5,960,000,000 14,848 401,400.86 100.00% 1890.95 0.86 2198.78 99.95%
9 66,800,000,000 33,280 2,007,211.54 100.00% 12,475.62 1.28 9746.58 99.99%
10 740,000,000,000 73,728 10,036,892.36 100.00% 42,889.46 1.60 26,805.91 100.00%

ŷ= 10.96e2.51x ŷ= 10.70e0.90x ŷ= 0.01e1.55x ŷ= 0.03e0.41x

R2 ≈ 1 R2 ≈ 1 R2 = 0.98 R2 = 0.99

Table 6 Realistic application verification benchmark results

Number of Visited States Reduction Percent Verification Time (s) Reduction Percent

Model Original Optimized Factor Decrease Original Optimized Factor Decrease

%67.911.173.014.0%54.6102.1391132tfarcriA
Cruise Control 11,964 5162 2.32 56.85% 0.77 0.33 2.33 57.14%
Therac 25 31,968 7200 4.44 77.48% 0.44 0.23 1.91 47.73%
PCA 4,072,083 15,388 264.63 99.62% 90.4 5.60 16.14 93.81%

Protocol 1 Max = 0 6351 2371 2.68 62.67% 1.98 0.98 2.02 50.51%
Protocol 1 Max = 1 75,806 39,844 1.90 47.44% 2.32 1.30 1.78 43.97%
Protocol 1 Max = 2 1,297,497 713,299 1.82 45.02% 2.92 1.51 1.93 48.29%
Protocol 1 Max = 3 2,697,676 1,483,300 1.82 45.02% 3.56 1.75 2.03 50.84%

ŷ= 8689.30e2.10x ŷ= 3578.30e2.22x ŷ= 1.95e0.20x ŷ= 1.02e0.19x

R2 = 0.95 R2 = 0.95 R2 ≈ 1 R2 = 0.97

Protocol 2 Max = 0 6250 2390 2.62 61.76% 1.67 0.98 1.70 41.32%
Protocol 2 Max = 1 59,935 35,843 1.67 40.20% 2.93 1.39 2.11 52.56%
Protocol 2 Max = 2 259,983 156,087 1.67 39.96% 3.61 2.06 1.75 42.94%
Protocol 2 Max = 3 1,013,966 635,336 1.60 37.34% 4.58 2.51 1.82 45.20%

ŷ= 8099.90e1.67x ŷ= 3510.60e1.82x ŷ= 1.85e0.32x ŷ= 1.01e0.32

R2 = 0.98 R2 = 0.97 R2 = 0.94 R2 = 0.98

Protocol 3 Max = 0 3216 1221 2.63 62.03% 2.67 1.61 1.66 39.70%
Protocol 3 Max = 1 34,531 20,734 1.67 39.96% 4.73 2.87 1.65 39.32%
Protocol 3 Max = 2 142,001 103,678 1.37 26.99% 9.79 5.98 1.64 38.92%
Protocol 3 Max = 3 392,742 343,966 1.14 12.42% 18.72 11.08 1.69 40.81%

ŷ= 4643.10e1.58x ŷ= 1912.70e1.85x ŷ= 2.59e0.66x ŷ= 1.57e0.65x

R2 = 0.96 R2 = 0.96 R2 ≈ 1 R2 ≈ 1

7.1 Counterexample interpretation

The original EOFMC translator supported a counterexample
visualization to help analysts diagnose specification viola-
tions [13] (discussed in Sect. 2.1). Although not reported
here, this same visualization was adapted for use with the
modified translator. In this, the modified translator uses the
new expressions representing execution state to determine
what the execution state is of each activity in each counterex-
ample step. Thus, the modified translator does not negatively

impact the ability of analysts to interpret verification results
when using EOFMC.

7.2 Erroneous human behavior generation

The original version of the EOFMC to SAL translator
supported two methods for generating erroneous human
behavior [15,17] beyond the miscommunication generation
technique [9] that was retained in the new translator presented
here. Given that erroneous behavior generation scales poorly

123

Improving the scalability of formal human–automation interaction verification...

as the maximum number of erroneous behaviors increases
[15,17], it could benefit from the statespace and verification
time improvements of the new translator. Future work should
investigate if EOFMC’s erroneous behavior generation capa-
bilities can be adapted to the new translation method.

7.3 Additional analysis options

In removing the intermediary state transitions between the
performance of actions in the formal representation of
EOFMC instances, the modified translator opens up possibil-
ities for formal analyses that would not have been previously
achievable. Specifically, the presence of the intermediary
transitions discouraged the use of bounded model check-
ing with EOFMC-based models, because they would prevent
interesting behavior from occurring with reasonable upper
search bounds. However, models produced with the modi-
fied translator do not contain these transitions and should
thus be more appropriate for bounded analyses. Future work
should explore this option.

A potential extension of this would be to include the mod-
eling of time in EOFMC-supported verifications. In SAL,
explicit time can be modeled for and evaluated with the infi-
nite bounded model checker. Thus, the ability to do bounded
model checking will also enable the explicit representation
of time in EOFMC analyses. The ability to model explicit
time could open up a range of formal analyses for evaluating
interface usability [36] and timing-related safety concerns
[38]. Of course, including explicit time in EOFMC-supported
analyses will degrade scalability. Thus, future work should
investigate how to include explicit time and evaluate its
impact on scalability.

7.4 Future scalability improvements

The modified translator has shown itself to be success-
ful at reducing the complexity of formal models that use
EOFMC. However, further improvements might be possible.
For example, EOFMC models currently use asynchronous
composition to attach the modules created by the EOFMC
translators to the larger formal system models. As part of this,
the coordination protocol [12] is used to determine whether
the human module or other modules are allowed to transition.
The use of this protocol adds additional states, transitions,
and verification time to the aggregated system model. The
protocol could be eliminated by synchronously composing
the formal task model module to the other modules of the sys-
tem. Future work should investigate ways of making EOFMC
work with synchronous composition, so that the states and
transitions associated with the coordination protocol can be
eliminated.

Other opportunities for scalability improvement may be
offered through other analysis environments. For exam-

ple, labeled transition systems like those supported by state
charts [32] allow separate parallel model components to be
combined together using labels to identify synchronized tran-
sitions. Such a system has shown itself to naturally support
the modeling of human interactive systems [23–28,34,35].
Future work should investigate if labeled transition systems
would afford additional improvements in EOFMC analysis
scalability.

Finally, both the original and the modified translators
separately represent the execution state of each task struc-
ture in an EOFMC instance. This is an intuitive approach.
However, additional statespace improvements could poten-
tially be gained by allowing task structures to share model
resources. One potential approach would be to alter the
architecture assumed by formal models using EOFMC. For
example, EOFMC could use a synchronous observer archi-
tecture [45], where the module generated by the EOFMC
translator would examine the global model state and each
simulated human action as it occurred. This module would
also be responsible for indicating if the current sequence of
actions was valid. When such an implementation would be
used in formal verifications, specifications would be formu-
lated to only consider valid human action sequences. This
architecture would be effectively treating the EOFMC model
as an automaton that accepts strings of system conditions and
human actions. Thus, automata theory could be used to find
a minimal representation of the EOFMC instance so as to
minimize its complexity. For example, algorithms such as
L* [3] could potentially be used to automatically learn such
minimal models. Future work should explore this direction.

Acknowledgments The project described was supported by NASA
under award NNA10DE79C and the National Science Foundation under
Grant No. IIS-1429910.

References

1. Aït-Ameur Y, Baron M (2006) Formal and experimental validation
approaches in HCI systems design based on a shared event B model.
Int J Softw Tools Technol Transfer 8(6):547–563

2. Aït-Ameur Y, Baron M, Girard P (2003) Formal validation of HCI
user tasks. In: Proceedings of the international conference on soft-
ware engineering research and practice. CSREA Press, Las Vegas,
pp 732–738

3. Angluin D (1987) Learning regular sets from queries and coun-
terexamples. Inf Comput 75(2):87–106

4. Basnyat S, Palanque P, Schupp B, Wright P (2007) Formal socio-
technical barrier modelling for safety-critical interactive systems
design. Saf Sci 45(5):545–565

5. Basnyat S, Palanque PA, Bernhaupt R, Poupart E (2008) Formal
modelling of incidents and accidents as a means for enriching train-
ing material for satellite control operations. In: Proceedings of the
Joint ESREL 2008 and 17th SRA-Europe Conference, Taylor and
Francis Group, London, pp CD–ROM

6. Bass EJ, Bolton ML, Feigh K, Griffith D, Gunter E, Mansky W,
Rushby J (2011) Toward a multi-method approach to formalizing

123

M. L. Bolton et al.

human–automation interaction and human–human communica-
tions. In: Proceedings of the IEEE international conference on
systems, man, and cybernetics. IEEE, Piscataway, pp 1817–1824

7. Bolton ML (2010) Using task analytic behavior modeling, erro-
neous human behavior generation, and formal methods to evaluate
the role of human–automation interaction in system failure. PhD
thesis, University of Virginia, Charlottesville

8. Bolton ML (2013) Automatic validation and failure diagnosis of
human-device interfaces using task analytic models and model
checking. Comput Math Organ Theory 19:288–312

9. Bolton ML (2015) Model checking human–human communication
protocols using task models and miscommunication generation. J
Aerosp Inf Syst. doi:10.2514/1.I010276

10. Bolton ML, Bass EJ (2009a) Building a formal model of a human-
interactive system: insights into the integration of formal methods
and human factors engineering. In: Proceedings of the 1st NASA
formal methods symposium. NASA Ames Research Center, Mof-
fett Field, pp 6–15

11. Bolton ML, Bass EJ (2009b) A method for the formal verification
of human interactive systems. In: Proceedings of the 53rd annual
meeting of the human factors and ergonomics society. HFES, Santa
Monica, pp 764–768

12. Bolton ML, Bass EJ (2010a) Formally verifying human–
automation interaction as part of a system model: limitations and
tradeoffs. Innov Syst Softw Eng NASA J 6(3):219–231

13. Bolton ML, Bass EJ (2010) Using task analytic models to visualize
model checker counterexamples. In: Proceedings of the 2010 IEEE
international conference on systems, man, and cybernetics. IEEE,
Piscataway, pp 2069–2074

14. Bolton ML, Bass EJ (2012) Using model checking to explore
checklist-guided pilot behavior. Int J Aviat Psychol 22(4):343–366

15. Bolton ML, Bass EJ (2013) Generating erroneous human behav-
ior from strategic knowledge in task models and evaluating its
impact on system safety with model checking. IEEE Trans Syst
Man Cybern Syst 43(6):1314–1327

16. Bolton ML, Siminiceanu RI, Bass EJ (2011) A systematic approach
to model checking human–automation interaction using task-
analytic models. IEEE Trans Syst Man Cybern Part A 41(5):961–
976

17. Bolton ML, Bass EJ, Siminiceanu RI (2012) Using phenotyp-
ical erroneous human behavior generation to evaluate human–
automation interaction using model checking. Int J Hum Comput
Stud 70(11):888–906

18. Bolton ML, Bass EJ, Siminiceanu RI (2013) Using formal verifi-
cation to evaluate human–automation interaction in safety critical
systems, a review. IEEE Trans Syst Man Cybern Syst 43(3):488–
503

19. Bolton ML, Jimenez N, van Paassen MM, Trujillo M (2014) Auto-
matically generating specification properties from task models for
the formal verification of human–automation interaction. IEEE
Trans Hum Mach Syst 44(5):561–575

20. Campos JC (2003) Using task knowledge to guide interactor
specifications analysis. In: Proceedings of the 10th international
workshop on interactive systems. Design, specification, and veri-
fication. Springer, Berlin, pp 171–186

21. Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT
Press, Cambridge

22. De Moura L, Owre S, Shankar N (2003) The SAL language manual.
Technical report CSL-01-01, Computer Science Laboratory, SRI
International, Menlo Park

23. Degani A (2004) Taming HAL: designing interfaces beyond 2001.
Macmillan, New York

24. Degani A, Heymann M (2002) Formal verification of human–
automation interaction. Hum Factors 44(1):28–43

25. Degani A, Kirlik A (1995) Modes in human–automation interac-
tion: initial observations about a modeling approach. In: Proceed-

ings of the IEEE international conference on systems, man and
cybernetics, vol 4. IEEE, Piscataway, pp 3443–3450

26. Degani A, Heymann M, Shafto M (1999a) Formal aspects of proce-
dures: the problem of sequential correctness. In: Proceedings of the
43rd annual meeting of the human factors and ergonomics society.
HFES, Santa Monica, pp 1113–1117

27. Degani A, Shafto M, Kirlik A (1999b) Modes in human–machine
systems: review, classification, and application. Int J Aviat Psychol
9(2):125–138

28. Degani A, Gellatly A, Heymann M (2011) HMI aspects of auto-
motive climate control systems. In: Proceeding of the IEEE
international conference on systems, man, and cybernetics. IEEE,
Piscataway, pp 1795–1800

29. Emerson EA (1990) Temporal and modal logic. In: van Leeuwen
J, Meyer AR, Nivat M, Paterson M, Perrin D (eds) Handbook of
theoretical computer science, chapter 16. MIT Press, Cambridge,
pp 995–1072

30. Fields RE (2001) Analysis of erroneous actions in the design of
critical systems. PhD thesis, University of York, York

31. Gunter EL, Yasmeen A, Gunter CA, Nguyen A (2009) Specify-
ing and analyzing workflows for automated identification and data
capture. In: Proceedings of the 42nd Hawaii international confer-
ence on system sciences. IEEE Computer Society, Los Alatimos,
pp 1–11

32. Harel D (1987) Statecharts: a visual formalism for complex sys-
tems. Sci Comput Program 8(3):231–274

33. Hartson HR, Siochi AC, Hix D (1990) The UAN: a user-oriented
representation for direct manipulation interface designs. ACM
Trans Inf Syst 8(3):181–203

34. Heymann M, Degani A (2007) Formal analysis and automatic
generation of user interfaces: approach, methodology, and an algo-
rithm. Hum Factors 49(2):311–330

35. Heymann M, Degani A, Barshi I (2007) Generating procedures
and recovery sequences: a formal approach. In: Proceedings of
the 14th international symposium on aviation psychology. Wright
State University, Dayton

36. John BE (2009) CogTool user guide. Carnegie Mellon University,
Pittsburgh

37. Kirwan B, Ainsworth LK (1992) A guide to task analysis. Taylor
and Francis, London

38. Leveson NG, Turner CS (1993) An investigation of the therac-25
accidents. Computer 26(7):18–41

39. Li M, Molinaro K, Bolton ML (2015) Learning formal human–
machine interface designs from task analytic models. In: Proceed-
ings of the HFES annual meeting. HFES, Santa Monica (in press)

40. Mitchell CM, Miller RA (1986) A discrete control model of oper-
ator function: a methodology for information display design. IEEE
Trans Syst Man Cybern Part A Syst Hum 16(3):343–357

41. Palanque PA, Bastide R, Senges V (1996) Validating interactive
system design through the verification of formal task and system
models. In: Proceedings of the IFIP TC2/WG2.7 working confer-
ence on engineering for human–computer interaction. Chapman
and Hall, London, pp 189–212

42. Paternò F, Santoro C (2001) Integrating model checking and HCI
tools to help designers verify user interface properties. In: Proceed-
ings of the 7th international workshop on the design, specification,
and verification of interactive systems. Springer, Berlin, pp 135–
150

43. Paternò F, Mancini C, Meniconi S (1997) Concurtasktrees: a dia-
grammatic notation for specifying task models. In: Proceedings of
the IFIP TC13 international conference on human–computer inter-
action. Chapman and Hall, London, pp 362–369

44. Paternò F, Santoro C, Tahmassebi S (1998) Formal model for coop-
erative tasks: concepts and an application for en-route air traffic
control. In: Proceedings of the 5th international conference on

123

Improving the scalability of formal human–automation interaction verification...

the design, specification, and verification of interactive systems.
Springer, Vienna, pp 71–86

45. Rushby J (2014) The versatile synchronous observer. In: Iida S,
Meseguer J, Ogata K (eds) Specification, algebra, and software:
essays dedicated to Kokichi Futatsugi. Springer, Berlin, pp 110–
128

46. Wing JM (1990) A specifier’s introduction to formal methods.
Computer 23(9):8, 10–22, 24

123

