
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014 561

Automatically Generating Specification Properties
From Task Models for the Formal Verification

of Human–Automation Interaction
Matthew L. Bolton, Member, IEEE, Noelia Jiménez, Marinus M. van Paassen, Member, IEEE, and Maite Trujillo

Abstract—Human–automation interaction (HAI) is often a con-
tributor to failures in complex systems. This is frequently due to
system interactions that were not anticipated by designers and an-
alysts. Model checking is a method of formal verification analysis
that automatically proves whether or not a formal system model
adheres to desirable specification properties. Task analytic mod-
els can be included in formal system models to allow HAI to be
evaluated with model checking. However, previous work in this
area has required analysts to manually formulate the properties to
check. Such a practice can be prone to analyst error and oversight
which can result in unexpected dangerous HAI conditions not be-
ing discovered. To address this, this paper presents a method for
automatically generating specification properties from task models
that enables analysts to use formal verification to check for system
HAI problems they may not have anticipated. This paper describes
the design and implementation of the method. An example (a pilot
performing a before landing checklist) is presented to illustrate its
utility. Limitations of this approach and future research directions
are discussed.

Index Terms—Formal methods, human–automation interaction
(HAI), model checking, system safety, task analysis.

I. INTRODUCTION

HUMAN behavior is a significant contributor to failures
in complex systems that depend on human–automation

interaction (HAI) [1], [2] for their safe operation. For example,
it is a factor in more than 50% of commercial aviation accidents
[3], 70% of general aviation accidents [4], many failures in space
operations [5], a number of medical error [6], and breakdowns in
process control [7]. However, these problems are not necessarily

Manuscript received September 3, 2013; revised April 17, 2014; accepted
May 26, 2014. Date of publication June 25, 2014; date of current version
September 12, 2014. This work was supported by ITT AO-6967—Verification
Models for Advanced Human–Automation Interaction in Safety Critical Flight
Operations from the European Space Agency. The majority of this work was
conducted while the first author was an Assistant Professor of industrial engi-
neering with the University of Illinois at Chicago. This paper was recommended
by Associate Editor M. Dorneich.

M. L. Bolton is with the Department of Industrial and Systems Engineer-
ing, State University of New York at Buffalo, Amherst, NY 14260-2050 USA
(e-mail: mbolton@buffalo.edu).

N. Jiménez is with IXION Industry and Aerospace, 28037 Madrid, Spain
(e-mail: njimenez@ixion.es).

M. M. van Paassen is with the Faculty of Aerospace Engineering,
Delft University of Technology, 2629 HS Delft, The Netherlands (e-mail:
m.m.vanpaassen@tudelft.nl).

M. Trujillo is with the European Space Research and Technology Centre,
2201 AZ , Noordwijk, The Netherlands (e-mail: maite.trujillo@esa.int).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/THMS.2014.2329476

the fault of the human operators. Rather, they arise as a result
of complex interactions between system components (human
operators, device automation, and conditions in the operational
environment) not anticipated by designers [8]. HAI is particu-
larly prone to these issues because of the inherent concurrency
between the human operator and the system automation he or
she interacts with.

While advances have been made to address these problems
[1], [2], failures can still occur because most analyses are
incapable of evaluating all of the different conditions under
which the supported HAIs occur. However, formal verification
techniques, and particularly model checking, offer means of
performing such exhaustive analyses.

A. Formal Verification and Model Checking

Formal verification comes from the field of formal methods.
Formal methods are mathematically robust techniques and tools
for the modeling, specification, and verification of systems [9].
Modeling is concerned with mathematically describing the be-
havior of a target system, specification properties assert desir-
able qualities about the system, and verification mathematically
proves if the model adheres to the specification. This study uses
model checking, a software tool that automatically performs for-
mal verification [10]. In model checking, system behavior is typ-
ically modeled as a finite state transition system: a collection of
variables and transitions between variable values (states). Spec-
ification properties assert desirable attributes about the system
usually using model variables and temporal logic [10]. A model
checker performs formal verification by exhaustively searching
a system’s state space to determine if the specification proper-
ties hold. If they do, the model checker returns a confirmation.
However, if there is a state or sequence of states in the model
that violates a property, a counterexample is produced. A coun-
terexample represents a counterproof, which shows exactly how
the property was violated. This is typically represented as a se-
quence of model states, where each state constitutes the full set
of model variables and their values at that state, that incremen-
tally lead up to the violation. This can then be examined by an
analyst to understand why the failure occurred.

B. Formal Verification and Human–Automation Interaction

Formal verification is typically used in the analysis of com-
puter hardware and software [9], [10]. However, it has also been
used to evaluate HAI (see [12] for a review).

2168-2291 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



562 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

Fig. 1. Formal verification method supported by EOFM. Continuous lines indicate parts of process previously supported by EOFM [11]. Dotted lines represent
the novel specification property generation process.

The method presented here is concerned with formal verifica-
tion work that uses task analytic models. Task analytic behavior
models are a common tool of human factors engineers. They
are produced as part of a (cognitive) task analysis [13], [14] and
describe the behaviors human operators use to achieve goals
with a system. Task analytic models can be produced at dif-
ferent stages of system development, either to represent how
people actually interact with a system or how people are ex-
pected to interact with a system being developed. They can be
used in system engineering in a number of different capacities
including human-automation interface creation [15], training
development [16], usability analyses [17], [18], and the creation
of real-time monitoring systems [19].

Task analytic models can be represented computationally.
This allows them to be included in a formal system model
containing a formal description of the other relevant system
behaviors. Formal verification can then be used to evaluate
the impact of both modeled normative and erroneous behav-
ior as well as generated erroneous behavior on system perfor-
mance and safety. Researchers either represent normative task
models manually in formal notations as part of a larger model
[20]–[22] or translate native task model notations into a formal-
ism in which other system elements are represented [23]–[29].
Further, researchers have explored how erroneous behavior can
be incorporated into the task models so that their impact on sys-
tem safety and performance can be evaluated with formal verifi-
cation. Erroneous behaviors can either be manually incorporated
into task models using patterns [24], [30]–[33] or automati-
cally generated using different theories of erroneous behaviors
[34]–[36].

Given the well-established validity of task analysis and the
wide use of the task analytic behavior models they produce, the
formal verification techniques that utilize task analytic models
are very powerful. They allow analysts to verify that a system’s
HAI will support safe operation under both normative and er-
roneous conditions. Further, verification results give analysts a
clear indication of what the human operator was doing in discov-
ered problems (visible in the form of counterexamples produced
by the analysis tools).

These methods focus on the verification of analyst-created
specification properties. Such properties are used to assert de-
sirable system conditions (such as safety properties or perfor-

mance requirements) using the model variables, usually using a
temporal logic [37].

There are limitations to this approach. First, temporal logics
can be difficult to learn and interpret [38]. This can result in an-
alysts incorrectly formulating properties. Second, this approach
requires that analysts anticipate potentially unsafe conditions
and assert their absence as specification properties. Therefore,
if analysts fail to anticipate potentially unsafe conditions or
problems with HAI, formal verification will give them no in-
sights into those potential failures. Finally, these analyses focus
on verifying safety properties, the violation of which could re-
sult from the system’s HAI. This means that analysts are using
formal verification to look for failures that could be caused by
problems with the HAI (among other things) instead of looking
for potential HAI sources of failures. Thus, there is a real need
for methods that will allow analysts to automatically generate
properties that will allow them to check for HAI problems they
may or may not have anticipated.

C. Objectives

In the work presented here, we discuss a method that ful-
fils this need. Specifically, we extend an existing method [11]
that supports the formal verification of HAI-dependent systems,
which include task analytic behavior models, to automatically
generate specification properties. Given the formal structure in-
herent in hierarchical task analytic models, our method focuses
on generating specification properties from the task analytic
models themselves (see Fig. 1). While there are many types of
HAI properties one might want to check, this study focuses on
generating properties that will allow analysts to guarantee that
the procedural behavior contained in the task model is compat-
ible with the system. Specifically, this study exploits the fact
that formal methods allow task analytic behavior models to be
treated as a concurrent process executing with other part of a
larger system and thus uses concepts from concurrency as the
basis for the generated properties.

The remainder of this paper describes how the method was
realized. We first describe the enhanced operator function model
(EOFM), the task analytic modeling formalism used in this
work, and the formal verification analysis method it supports.
Linear temporal logic (LTL), i.e., the logic used for representing



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 563

Fig. 2. Example of a task structure from an instantiated EOFM (there can
be multiple task structure in a given EOFM) represented in EOFM’s visual
notation. In this task, an activity (Activity) with a precondition and completion
condition decomposes into two subactivities using the ordered (ord) decompo-
sition operator. SubActivity1 has both a precondition and completion condition
and decomposes into a single action (Action1). SubActivity2 has a repeat condi-
tion and also decomposes into a single action (Action2).

generated specification properties, is also described. We then
show how concepts from computation can be used with EOFM
to generate specification properties capable of finding problems
with HAI. We present a simple application of a pilot performing
the before landing checklist of an aircraft to demonstrate the use
of our approach. Finally, we discuss our results and avenues of
future research.

II. MODEL CHECKING HUMAN–AUTOMATION INTERACTION

WITH THE ENHANCED OPERATOR FUNCTION MODEL

EOFM [29] is an XML-based human task modeling language,
derived from the operator function model (OFM) [39], specif-
ically designed to allow task analytic human behavior to be
evaluated with formal methods. EOFMs are hierarchical repre-
sentations of goal driven activities that decompose into lower
level activities, and finally, atomic actions. A decomposition
operator specifies the temporal relationships between, and the
cardinality of the decomposed activities or actions (when they
can execute relative to each other and how many can execute).
In the application presented here, only the ord operator (which
asserts that activities or action must execute in a specific order)
is used.

EOFMs express strategic knowledge explicitly as conditions
on activities. Conditions can specify what must be true before an
activity can execute (preconditions), when it can repeat (repeat
conditions), and what must be true when it completes execution
(completion conditions).

EOFMs can be represented visually as tree-like graphs [40]
(see Fig. 2). Actions are rectangles and activities are rounded
rectangles. An activity’s decomposition is presented as an arrow,

labeled with the decomposition operator, that points to a large
rounded rectangle containing the decomposed activities or ac-
tions. Conditions (strategic knowledge) on activities are repre-
sented as shapes or arrows (annotated with the condition’s logic)
connected to the activity that they constrain. The form, position,
and color of the shape are determined by the type of condition.
A precondition is a yellow downward-pointing triangle; a com-
pletion condition is a magenta upward-pointing triangle; and a
repeat condition is an arrow recursively pointing to the top of
the activity.

EOFM has formal semantics that specify how an instanti-
ated EOFM model executes (see Fig. 3). Each activity or action
has one of three execution states: waiting to execute (Ready),
executing (Executing), and done (Done). An activity or action
transitions between each of these states based on its current state;
its start condition (StartCondition—when it can start executing
based on the state of its immediate parent, its parent’s decom-
position operator, and the execution state of its siblings); its end
condition (EndCondition—when it can stop executing based on
the state of its immediate children in the hierarchy and its de-
composition operators); its reset condition (Reset—when it can
revert to Ready based on the execution state of its parents); and,
for an activity, the activity’s strategic knowledge (the Precondi-
tion, RepeatCondition, and CompletionCondition). See [29] for
more details.

EOFM supports formal verification as follows. Analyst-
created EOFM task models are automatically translated [29]
into the language of the Symbolic Analysis Laboratory (SAL)
[41] using the EOFM formal semantics.1 The transitions asso-
ciated with activity or action execution states are represented
as guarded, asynchronous transitions in a single module. The
translated EOFM is then integrated into a larger system model
(created manually in the model checker’s formalism) using
asynchronous composition. A defined architecture allows for
a distinction to be made between the human task, mission
goals, human–automation interface, automation, and environ-
ment [11], [28] in the formal model. A coordination handshake
protocol is also employed that uses interleaving to support par-
allelism between modeled components (see [29] and [42] for
more information about the translator). Formal verifications of
manually created specification properties are performed on this
complete system model using SAL’s Symbolic Model Checker
(SAL-SMC). Any produced counterexamples can be evaluated
using EOFM’s counter example visualizer [40].

The visualizer uses EOFM’s visual notation to help analysts
determine why a counterexample was produced. Each step from
a counterexample is rendered on a separate page of a document.
Each page represents the EOFM task structure executing in that
step. The color of the activities and actions in the task indi-
cate their execution state. Activities or actions whose execution
state has changed since the previous step are highlighted. Ad-
ditionally, before generating the visualization, analysts are able
to categorize model variables (not associated with representing
the human operator task) into categories based on EOFM’s for-

1Note that the details of the EOFM to SAL translator are beyond the scope
of this paper. Please see [29] and [42] for more information on this subject.



564 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

Fig. 3. Formal semantics of an EOFM activity’s (a) and action’s (b) execution state presented as finite state transition systems [29]. States are circles. Transitions
are arrows between states labeled with Boolean expressions. An Arrow starting with a dot points to the initial state.

TABLE I
LTL OPERATORS

Operator Usage Interpretation

Global G ψ ψ will always be true.
NeXt X ψ ψ is true in all of the next states.
Future F ψ ψ is eventually true in a future state.
Until φ U ψ φ will be true until ψ is true.

Note. φ and ψ are propositions about either a state or path
(a valid temporally ordered sequence of states) in the model
that evaluate to true or false.

mal modeling architecture: environment, automation, human–
automation interface, human mission, and other. Then, on each
page of the generated visualization, each variable is displayed
with its value under its corresponding category. Variables whose
values changed from the previous step are highlighted. See [40]
for more information.

III. LINEAR TEMPORAL LOGIC SPECIFICATION

Because the formal verification method supported by EOFM
(see Fig. 1) uses SAL’s symbolic model checker, specification
properties must be asserted using LTL. LTL uses propositional
variables, Boolean logic operators (∧,∨,¬,⇒,⇔,=, �=, <,>,
etc.), and temporal operators (see Table I) to assert properties
about all paths through a model [10].

Because LTL can only be used to specify properties about all
paths through a model, it cannot be used to positively assert the
existence of a desirable system condition that may not exist on all
paths (it cannot assert that something is true in at least one path
through a model). Thus, to conduct an existence proof with a
model checker that uses LTL specifications, a negative assertion
must be used. Let φ represent a temporal logic proposition that
we want to prove exists in a system. Using LTL, we can use the
specification

G¬(φ) (1)

to assert that φ should never be true in all paths through the
model. If we use a model checker to check (1) against a sys-
tem model, it will return true if φ is never satisfied. However,
if φ does exist, the model checker will return a counterexam-
ple illustrating how φ was realized. This trick will be used in
specification property generation, where both positive (where
the specification asserts the existence of the desirable property)
and negative (where the specification asserts the absence of the
desirable property) specifications will be used.

IV. SPECIFICATION GENERATION

The computational nature of the EOFM allows one to reason
about the execution of task behavior as it interacts with other sys-
tem elements. Thus, this work focuses on concepts from com-
putational concurrency and uses them to check for properties
important for safe HAI design. In computational concurrency,
analysts are concerned with a number of different problems
[43]. We focus on two: reachability and the prevention of block-
ing. Reachability is concerned with ensuring that all parts of a
concurrent system can be reached. It is important because all
elements of a system should be relevant at some time during
its execution. If they are not, there is likely something wrong
with the implementation or the design of the system. A lack
of blocking is also crucial because blocking states prevent a
system from making progress towards its goals. Blocking con-
ditions can include deadlock (where a system becomes stuck due
to concurrent elements waiting on each other), livelock (where
the system becomes stuck in a loop), or starvation (where a pro-
cess is not able to acquire the resources it needs to satisfy its
goals) [44].

These concepts are relevant to a system’s HAI because an
analyst can use them to reason about how a task model should
be executed (performed) in relation to the other concurrent ele-
ments of a system. Reachability is of concern because every part
of a human operator’s task should be relevant in some situation
during a system’s operation. If not, there may be behaviors in
the task model that are never relevant and thus never executed.
This could indicate a problem with the task analysis, which



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 565

could have far reaching design, training, and analysis implica-
tions given the importance of task analyses. It could also reveal a
problem with the HAI that prevents desired task behaviors from
being performed when they are supposed to. Such conditions
are potentially dangerous because if the task model is used in
the design of human training, such training would be deficient.

The absence of blocking from task models is also important
for safe HAI [45]. From a task perspective, blocking can mani-
fest in two general ways: either a task or tasks are blocked from
completing (the task cannot be completed as described in the
task model) or all human tasks are prevented from ever execut-
ing. Both blocking conditions are potentially problematic for
HAI. If a task is not always able to be completed as specified, or
the human operator finds him or herself in a situation for which
they have no task knowledge, the human operator will have to
go off task to fulfill his or her goals. Because such behavior is
divergent, it is erroneous [46]. Further, if the divergent human
behavior was not factored into system training or design, this
could lead to unexpected or dangerous system operating condi-
tions. Additionally, the presence of states that block the human
from ever doing anything could represent unanticipated or un-
expected system conditions that could produce mode confusion
and/or automation surprise, which can be dangerous [47].

Thus, we want to ensure all of the following to guarantee that
task models will never have problems executing:

1) Every part of a task should executable in some situation.
2) Tasks should always be able to finish executing.
3) There should never be a situation where no tasks can ever

execute.
Ensuring all three of these should guarantee that there are no

procedural issues with a system’s HAI: every part of a task can
be performed in its intended context; if a task is being performed,
the human operator will always accomplish his or her goals; and
the human will always be able to eventually interact with and
achieve goals with the system.

EOFM’s semantics (see Fig. 3) enable specification properties
to assert qualities about the execution state of task models [48].
Thus, we can use computational concepts to automatically gen-
erate LTL specifications that assert all three of the above items
and thus allow them to be checked formally.

A. Item 1: Coverage

Item 1 can be addressed using the computational concept of
coverage. A coverage criterion represents the extent to which
elements of a computational structure are reachable [43]. In
this work, we wanted to be able to check that every part of a
task model’s execution was reachable. For this, we utilized both
state coverage and decision coverage. State coverage asserts
that every state in a finite state machine should be reachable
while decision coverage says that every transition in a finite
state machine must be able to occur. Both state and decision
coverage apply to EOFM task models through the execution
state of its activities and actions (see Fig. 3). Thus, to ensure
state coverage, the execution state of every activity and action
must be reachable. For decision coverage to be satisfied, every
transition between the execution states of every activity and

action must be able to occur. We can generate properties that
will check for state and decision coverage by reasoning about
the execution state of activities and actions using EOFM formal
semantics (see Fig. 3).

To ensure that state coverage is satisfied, properties are
generated to check that every activity and action in a task
model is capable of reaching each of the three execution states
(see Fig. 3). Because every activity and action automatically
starts in the Ready state, there is no need to check that it is
reachable. However, we must generate properties to specify that
Executing and Done are reachable. Because these will be reach-
ability properties, they must be asserted with the pattern from
(1). To check that every activity and action in a task model can
execute, we generate a property (called act executability) of the
form shown in (2) (see Table II) for each activity or action in
the task structure. To check that every activity or action can
reach the Done state (a property we call act completability), we
generate a property of the form in (3) (see Table II) for each
activity and action. Since both act executability and act com-
pletability are negatively asserted, if the Executing and Done
states are reachable, (2) and (3) will produce counterexamples
when checked. If Executing and/or Done are not reachable, the
model checker will return true.

To check for decision coverage, properties are generated to
verify that every transition between activity and action execution
states can occur. There are five possible transitions between ac-
tivity execution states (there are three for actions; Fig. 3), and a
specification property is generated to check that each is possible
using a negative assertion. Thus, if a counterexample is gener-
ated when the property is checked, then the associated transition
is possible. The ability of an action or activity to transition from
Ready to Executing (a property called act startability) is asserted
using (4). The ability of an activity to transition from Ready to
Done was checked with the act skippability property (5). Act re-
peatability, the ability of an activity to transition from Executing
to Executing via a repeat condition was asserted with (6). The
ability of an activity or action to reset (transition from Done to
Ready) was called act resetability and asserted with (7). Finally,
the ability of an activity or action to transition from Executing
to Done, was asserted using act finishability (8).

Note that act skippability (5) and act repeatability (6) are
only relevant for activities because actions lack the associated
transitions in their formal semantics (see Fig. 3). Further, act
skippability is only applicable for an activity if it has a comple-
tion condition because one is required for the Ready to Done
transition. Similarly, act repeatability is only appropriate when
an activity has a repeat condition.

B. Item 2: Starvation

While knowing that all parts of a task can execute is useful,
we also need to ensure that, once a task is executing, it will
always finish (item 2). Computationally, this means that we
never want task model starvation: a blocking condition where
something is unable to gain the necessary resources to finish
[44]. To check that a task will never starve, we generate a prop-
erty called act inevitable completability (9) (see Table II) for



566 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

TABLE II
TASK MODEL SPECIFICATION PROPERTY PATTERNS FOR MODEL CHECKING SYSTEM HAI

Name: Act Executability
Description: A given activity or action should be able to execute.
Formulation: G¬(Act = Executing) (2)
Interpretation of Confirmation: × There are no conditions where Act can ever execute.
Interpretation of Counterexample: � There are conditions where Act can execute.

Name: Act Completability
Description: A given activity or action should be able to be done.
Formulation: G¬(Act = Done) (3)
Interpretation of Confirmation: × There are no conditions where Act can ever be done.
Interpretation of Counterexample: � There are conditions where Act can be done.

Name: Act Startability
Description: A given activity or action should be able to transition from Ready to Executing.
Formulation: G¬(Act = Ready ∧ X(Act = Executing)) (4)
Interpretation of Confirmation: × There are no conditions where Act will transition from Ready to Executing.
Interpretation of Counterexample: � There are conditions where Act can transition from Ready to Executing.

Name: Act Skippability
Description: A given activity or action should be able to transition from Ready to Done if it has a completion condition.
Formulation: G¬(Act = Ready ∧ X(Act = Done)) (5)
Interpretation of Confirmation: × There are no conditions where Act will transition from Ready to Done.
Interpretation of Counterexample: � There are conditions where Act can transition from Ready to Done.

Name: Act Repeatability
Description: A given activity or action should be able to transition from Executing to Executing if it has a repeat condition.
Formulation: G¬((Act = Executing ∧EndCondition) ∧ X(Act = Executing ∧ ¬EndCondition)) (6)
Interpretation of Confirmation: × There are no conditions where Act will repeat.
Interpretation of Counterexample: � There are conditions where Act can repeat.

Name: Act Resetability
Description: A given activity or action should be able to transition from Done to Ready if it has a completion condition.
Formulation: G¬(Act = Done ∧ X(Act = Ready)) (7)
Interpretation of Confirmation: × There are no conditions where Act will transition from Done to Ready.
Interpretation of Counterexample: � There are conditions where Act can transition from Done to Ready.

Name: Act Finishability
Description: A given activity or action should be able to transition from Executing to Done if it has a completion condition.
Formulation: G¬(Act = Executing ∧ X(Act = Done)) (8)
Interpretation of Confirmation: × There are no conditions where Act will transition from Executing to Done.
Interpretation of Counterexample: � There are conditions where Act can transition from Executing to Done.

Name: Act Inevitable Completability
Description: Every activity or action that is executing must eventually finish.
Formulation: G ((Act = Executing) ⇒ F(Act �= Executing)) (9)
Interpretation of Confirmation: � Act can always finish executing.
Interpretation of Counterexample: × There is a least one condition where Act can never finish executing.

Property Name: Task Liveness
Description: There should never be a situation where no activity can ever execute.
Formulation: G¬(F(G(

∧ ∀RootActivities
Act∈RootActivities Act �= Executing))) (10)

Interpretation of Confirmation: � There is never be a situation where no activity can ever execute.
Interpretation of Counterexamples: × There is a situation where no activity can ever execute.

Note. Equation numbers in the table continue from the equation numbers in the text. Act represents the execution state of a given activity or action. RootActivities

represents the set of all top level activities. A � and × indicate if the associated verification outcome is desirable or undesirable respectively.

each activity and action. This asserts that, when the act is ex-
ecuting, it must eventually finish. Because act inevitable com-
pletability is asserted positively, a model checker will return true
if it is satisfied. Otherwise, a counterexample will illustrate how
a state or cycle was reached from which the associated act could
not stop executing.

C. Item 3: Liveness

Inevitable completability properties will allow an analyst to
check that a system is not blocking a task from completing.
However, it will not allow analysts to discover if the human op-
erator is prevented from ever interacting with the system (from

ever performing a task). Thus, we also want to check that the
system itself never blocks the human operator from perform-
ing any tasks (item 3). From a computational perspective, this
means we want to ensure liveness: that something desirable will
always eventually happen [10]. Put another way, we want to
ensure that there are no blocking states where tasks cannot exe-
cute. To check this, we again create properties that reason about
the execution state of EOFM activities. This generated prop-
erty, which we call task liveness, takes the form shown in (10)
(see Table II). This asserts that it should never be true that the
model will reach a future state where all of the root activities in
an EOFM (the topmost activities of each task structure) never ex-
ecute. Task liveness is asserted positively. Thus, a model checker



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 567

will return a confirmation if it is satisfied. Otherwise, a coun-
terexample should show how a violating livelock or deadlock
state was reached.

D. Accounting for Uninteresting States

In checking act inevitable completability and task liveness, it
is conceivable that the model checker will identify states where
either is violated in ways uninteresting to analysts. For example,
a model may have an “end state” at or after which the properties
are not be important. To accommodate this, the analyst will
need to check modified forms of these properties. To do this, an
analyst can manually reformulate (9) or (10) as

ψ ⇒

⎛

⎝
∀Φ∧

φ∈Φ

¬φ

⎞

⎠ (11)

where ψ is the original specification, and Φ is the set of expres-
sions representing states an analyst wishes to exclude.

E. Implementation

The EOFM to SAL translator was modified to automatically
generate all of the properties from Table II for use in model
checking with SAL.

F. Property Relationships and Interpreting Verification Results

If all of the generated properties produce the expected verifi-
cation results, the relationships between the properties are such
that the system’s HAI is guaranteed to be well designed for the
procedural behavior contained in the EOFM. Specifically, the
properties collectively ensure that: every part of a task is rele-
vant and doable in some situation (2)–(8); once a task is being
performed, its goals will always be accomplished (9); and the
human operator will always be able to eventually interact with
the system (10).

However, should properties be violated, the interrelationships
between properties may make result interpretations difficult.
Thus, the following describes how verification results can be
examined to identify the source of discovered problems.

1) Task Liveness: The verification results of a task liveness
property (10) is probably the easiest to interpret because there
will only be one such property for a given model and it is as-
serted positively. Thus, if task liveness is not satisfied, the model
checker will produce a counterexample. EOFM’s counterexam-
ple visualizer [40] can then be used to diagnose why the failure
occurred. Task liveness is different from act inevitable com-
pletability in that task liveness checks situations where tasks
cannot be performed, while act inevitable completability de-
tects situations where tasks cannot be finished. Task liveness
is also different from the coverage-based properties in that the
latter check that there is at least one situation where each part
of a task can execute. As such, even when the coverage-based
properties are satisfied, there could be system states where no
tasks can execute.

2) Act Inevitable Completability: Like task liveness, act
inevitable completability (9) is asserted positively. Thus,

violations will produce counterexamples that can be analyzed
using the visualizer [40]. Unlike task liveness, there are mul-
tiple act inevitable completability properties. Given the hierar-
chical nature of EOFM and the fact that inevitable completabil-
ity properties are generated for each activity and action, it is
possible that a single problem will result in multiple failures
of inevitable completability specifications. Given the nature of
EOFM’s formal semantics, the failure of a given action or activ-
ity to complete will inherently prevent the activity, from which
it is decomposed, from completing its execution. Thus, if multi-
ple failures occur in a given task structure, analysts should find
the failure (or failures) that occurs for the act that is the low-
est in the task’s hierarchy and focus their evaluation there. As
failures of inevitable completability are addressed, the model
can be iteratively reverified against all of the inevitable com-
pletability properties until all of the discovered problems have
been eliminated.

There are also two features of act inevitable completability
that analysts should consider when interpreting results. Firstly,
because these properties use the implication operator (⇒), they
can be vacuously true. This means that, for a given activity or
action Act, if Act = Executing is never true, Act’s inevitable
completability property will verify to true. Thus, it is critical that
analysts check Act’s act executability property to ensure that an
affirmative verification of Act’s inevitable completability prop-
erty is not caused by vacuity. Secondly, act completability can
be satisfied (produce the desired counterexample) without sat-
isfying act inevitable completability and, due to vacuous truth,
act inevitable completability can be satisfied without act com-
pletability being satisfied. Thus, it is important that analysts
check both.

3) Coverage-Based Properties: Because the coverage-
based properties (2)–(8) are asserted negatively, they will pro-
duce a confirmation from the model checker when they fail.
Thus, additional care must be taken in interpreting their ver-
ification results. The following sections discuss each of the
coverage-based property types and describe how the interrela-
tionships between them can be used to interpret model checker
outputs. In all cases, it is assumed that there are no problems
with a given act’s start, end, and reset conditions. This is because
these are implemented by the EOFM to SAL translator [29] and
have been validated to be working as intended [42].

a) Act executability: If an act executability property (2)
fails to return a counterexample, this can imply one of two
things. The act may never have a chance to execute because
another activity or action is preventing it from being reached.
Alternatively, if the act is an activity, its strategic knowledge
may be over constraining when it can execute. Thus, an analyst
should first look at the other checked properties to see if an
activity or action that must execute before the given act is either
incapable of executing or completing. Otherwise, the analyst
should check act startability.

b) Act completability: A failure of act completability (3)
(a failure to produce a counterexample) could occur because:
the act in question can never execute, it has a descendent that
is blocking its execution from completing, or its completion
condition is never satisfied. The first condition can be checked



568 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

by evaluating the act executability, the second by evaluating the
act executability and act completability of the act’s descendants,
and the third by evaluating act finishability.

c) Act startability: If act executability fails (does not pro-
duce a counterexample), act startability (4) will invariably fail
as well. If the analysis of the act executability indicates that the
failure lies with the given act, then a failure of act startability
will indicate that the precondition of the act is never satisfied
or that the completion condition is always satisfied when the
precondition is satisfied (see Fig. 3).

d) Act skippability: If an act is not skippable (5), the act’s
completion condition will never be satisfied when it is in the
Ready state. It will be at the analyst’s discretion to determine if
he or she cares that the act is not skippable.

e) Act repeatability: An unrepeatable act (6) is one in
which the repeat condition is never satisfied.

f) Act resetability: Act resetability (7) will be violated for
a given act when an activity it descends from fails to reset or
repeat. Thus, for diagnostics, an analyst should look for failures
of act resetability and act repeatability for activities the act
descends from. Note that a failure of a top level activity to
reset will never occur unless the analyst specifically modifies
the formal model to produce such behavior [42].

g) Act finishability: Act finishability (8) can fail based on
the execution of other acts the same way that act completability
can. However, if the failure has been isolated to the given act, a
failure of act finishability will indicate that the act’s completion
condition can never be satisfied.

V. APPLICATION

To illustrate how this method can be used to find problems in
an HAI-dependent aerospace system, we present an application:
a pilot attempting to perform the before landing checklist (a
slightly modified version of a model previously discussed in
[49]). In this application, a pilot is performing an instrument
approach where he or she is navigating the aircraft to the runway
using vertical guidance (the glide slope). The vertical position of
the aircraft relative to the glideslope is displayed with a moving
diamond on the glideslope indicator. When the aircraft is nearing
the glideslope, the diamond becomes “alive”, moving towards
the center of the display. The diamond will first pass through the
“two dot” and then the “one dot” positions. When the aircraft is
on the glideslope, the diamond is at the capture position.

To land safely, the pilot performs the before landing checklist
[50]: 1) the ignition must be set to override to allow for engine
restart should it quit; 2) the landing gear must be down; 3) the
spoilers should be armed; and 4) the flaps should be extended to
the appropriate flap setting (first 25◦ and then 40◦) to slow the
aircraft and prevent stalling.

Spoilers are retractable plates on the wings that, when de-
ployed, slow the aircraft and decrease lift. A pilot can arm the
spoilers for automatic deployment using a lever. If spoilers are
not used, the aircraft can overrun the runway [51]. If deployed
too early, the aircraft loses lift and could have a hard land-
ing [52]. Premature deployment can occur due to mechanical
issues. Arming the spoilers before the landing gear has been

lowered, before the landing gear doors have fully opened, or
during landing can result in automatic premature deployment
[50]. For these reasons, pilots wait to arm the spoilers until after
the landing gear has been deployed and the landing gear doors
have completely opened (in our example, this can take between
10 and 18 s due to variability in the condition of the hydraulic
system).2

A. Task Modeling

The task behavior for performing the before landing checklist
was instantiated as an EOFM (see Fig. 4). This task model as-
sumes the pilot can observe the value of all of the following: the
glideslope indicator (GSIndicator), the ignition indicator light
(whether or not the ignition has been overridden; IgnitionLight),
the angle of the aircraft’s flaps via the flaps gauge (FlapsGuage),
if the landing gear is down (ThreeGearLights), and if the landing
gear doors are opening (GearDoorLight).

If the ignition light is OFF, the pilot can override the igni-
tion (aOverrideIgnition) before the glideslope indicator is alive.
Once it is alive and the three gear lights are off, the pilot can then
deploy the landing gear (aDeployLandingGear). At a glideslope
indicator reading of one dot, the pilot can set the flaps to 25◦.
The spoilers can be armed (aSetSpoilers) if the spoiler indicator
and landing gear doors lights are off. At the capture position,
the flaps can be set to 40◦ (aSetFlaps40).

This model was converted into SAL’s input language using
the translator [29], and the properties form Table II were auto-
matically created using the newly added automatic specification
generation feature. While the original XML instantiation con-
tained 92 lines of XML markup, the translated version contained
184 lines of SAL code. This raw translated version was slightly
modified to ensure that the formal system model never reached
a deadlock state, erroneously reset when the model reached its
end state (when the aircraft was descending to the runway), or
could produce any undesired infinite loops.

The specification generation process produced 72 properties.
Sixty properties represented the different reachability proper-
ties associated with coverage (act executability, completability,
inevitable completability, startability, skippability, resetability,
and finishability) for each activity and action in the task model.
Eleven act inevitable completability properties were produced,
one for each activity and action. Finally, one property represent-
ing task liveness was created.

B. Modeling the Rest of the System

To complete the formal system model, formal representa-
tions were created for the system operational environment, the
aircraft’s automation, and its human–automation interface. Note
that these were created directly in the model checker’s formal
notation [41] and are, for the sake of readability, presented here
as finite state transition systems.

2Spacial constraints prevent a more thorough description of this application.
Additional information can be found in [49]. A full listing of the instantiated
EOFM and complete formal model with generated properties can be found at
http://fhsl.eng.buffalo.edu/resources/.



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 569

Fig. 4. Visualization of the EOFM task model for the before landing checklist [49].

Fig. 5. Position of the aircraft relative to the glideslope, where distance is
measured in seconds.

1) Environment: The system’s operational environment was
represented abstractly as the relative distance (Position) of the
aircraft from the capture position on the glideslope (see Fig. 5).
The aircraft starts at a position where the glideslope diamond
is not alive. The aircraft proceeds to the capture position and
begins to descend on the glideslope, a process that will take
18 s. Thus, the relative position of the aircraft from the initial
position is discretized into integer values (0 to 18) where the
aircraft passes from one value to the next in 1 s. The model was
set to meet a dedicated end state when it starts to descend (at
position 18, the end state of the model).

2) Automation: The formal model of the device automation
(see Fig. 6) represented the functionality of the aircraft’s ig-
nition, landing gear, spoilers, and landing gear doors. In the
models the ignition starts out not in override, the landing gear
starts out undeployed, the spoilers unarmed, and the landing
gear doors closed. The state of these properties could change
in response to human actions received from the human–device
interface or other environmental or internal system conditions.
While most changes to pilot actions were effectively instanta-
neous (taking less than a second) landing gear doors would take
between 10 and 18 s to fully transition from closed to open after
landing gear deployment was initiated.

C. Human–Automation Interface

The formal model of the human–automation interface
(see Fig. 7) represented the state of the flightdeck controls and
indicator lights associated with arming the spoilers, the landing
gear doors, the landing gear, the flaps, the glideslope indica-
tor, and the ignition. The human-automation interface would
receive human actions (flipping the ignition switch, pulling the
landing gear lever, setting the flaps, and arming the spoilers) and
have them affect the behavior of the automation. As the state
of the automation and environmental variables changed, the in-
dicators associated with the ignition (IgnitionLight), spoilers
(SpoilerIndicator), landing gear doors (GearDoorLight), land-
ing gear (ThreeGearLights), flaps (FlapsGuage), and glideslope
indicator (GSIndicator) would update to reflect these changes.

D. Expected Results

All of the coverage-based properties were expected to pro-
duce the desired result (a counterexample) with two exceptions.
Because the task model was modified to avoid a reset, all of the
act resetability properties were expected to verify to true (indi-
cating that the all of the activities and actions would never reset).
Additionally, because the pilot was expected to perform all of
the activities and actions to ensure that the aircraft was ready
for landing, all of the act skippability properties were expected
to verify to true (indicating that none of the activities were skip-
pable). All of the act inevitable completability properties and
the task liveness property were expected to produce the desired
result (verify to true).

E. Formal Verification Results

Formal verification was performed on a PC workstation run-
ning Linux Mint 14 with a quad-core, 3.3-GHz Intel XEON
processors and 64 gigabytes of RAM. Using SAL’s symbolic



570 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

Fig. 6. State transition representation of the formal model of the system’s automation. (a) Landing gear. (b) Spoilers. (c) Flaps. (d) Landing gear doors, where
the number on the opening states indicates how long, in seconds, it takes for the landing gear to open. In the presented model, the doors can take between 10 and
18 s to open (note that the transition to Open takes 1 s to occur).

Fig. 7. State transition representation of the human–automation interface’s formal model. (a) Glideslope indicator. (b) Ignition switch. (c) Ignition light.
(d) Landing gear lever. (e) Three landing gear lights. (f) Gear doors light. (g) Flaps gauge. (h) Spoiler arming lever. (i) Spoiler indicator light.



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 571

model checker, it took 22.21 s of total execution time to verify
all 72 generated properties with 1535 listed as the maximum
number of visited states for a single verification.

For all but four of the generated properties, the expected ver-
ification results were obtained. Every coverage-based specifica-
tion property produced the expected result indicating that, for
all but act resetability and act skipability, every part of the task
model (see Fig. 4) and its associated transitions between execu-
tion states was reachable. However, three of the act inevitable
completability properties did not evaluate to true indicating that,
for aSetFlaps40, aSetSpoilers, and aPrepareForLanding), there
were states where they would never finish executing. Further,
the one task liveness property also produced a counterexample,
the undesired outcome.

Examining the counterexamples for the failures of act in-
evitable completability (using the EOFM counterexample vi-
sualization [40]) revealed a common problem. In all three, the
landing gear doors took between 16, 17, and 18 s to fully deploy.
This appeared to create a situation where the aircraft would start
descending (the end state for the model) having just performed
the action for setting the flaps to 40◦ (for the aSetFlaps40 prop-
erty) or arming the spoilers (for the aSetSpoilers property). For
the failure of aPrepareForLanding’s property, the aircraft started
descending before the pilot could arm the spoilers.

All three of these properties failed because the model reached
the end state before all the necessary activities could finish exe-
cuting. More importantly, all of these failures constitute serious
problems for the safe operation of the aircraft. In all of them,
the aircraft reaches the capture position without having the flaps
properly set. This could result in the aircraft going too fast as
it starts to descend [53]. The failure of aSetSpoilers’ property
illustrates a situation where spoilers are armed while the air-
craft is just starting to descend, a condition that could lead to
premature spoiler deployment [50]. Finally, the counterexam-
ple associated with aPrepareForLanding’s property revealed a
situation where the aircraft did not have its spoilers armed as it
started to descend. If unnoticed by the pilot, this could lead to
the aircraft overrunning the runway [51] or accidental premature
deployment [52].

F. Design Exploration

To test whether these failures were the result of the delay in
the opening of the landing gear doors, the delay was iteratively
reduced between multiple verification runs to see if there was
a minimum delay that would remove these failures from the
model. When the delay was 14 s or less, all three of these
properties returned the desirable verification outcomes.

Finally, an examination of the counterexample associated
with the failure of the task liveness specification revealed that
no tasks would ever execute once the aircraft reached the cap-
ture position. This is not surprising given that this constituted
the end state of the model. Thus, to ensure task liveness held in
all other states, we used the pattern shown in (11) to create the
specification

G¬(F(G(aPrepareForLanding �= Executing)))
⇒ ¬(AircraftPosition = EndPosition). (12)

When this was checked, it verified to true. This indicated that
the pilot would always be able to perform a task in all but the
artificial end state of the model.

VI. DISCUSSION

In the work presented here, we extended the formal verifica-
tion method supported by EOFM with a novel means of gener-
ating specification properties from task models (see Fig. 1). By
exploiting its computational representation of task models, the
method is capable of detecting if parts of task models are never
used, if there are situations where a task cannot be completed,
and if there are times where no tasks can ever be performed;
all properties indicative of problems with HAI. The automatic
nature of the method is also advantageous in that: 1) there is
no risk of specification properties being manually misformu-
lated; 2) analysts need not anticipate all of the HAI problems
associated with the generated properties to check for them; and
3) specification properties are represented in terms of the task
models and thus detect problems with the system’s HAI rather
than specific failures that can arise from the HAI.

The utility of the method was demonstrated with a realistic
example: a pilot performing a before landing checklist. In this
application, several problems with HAI were discovered and
the results of the analysis were used to investigate the source of
the failures. Impressively, the method discovered the problems
associated with the pilot not adjusting the aircraft’s flaps in time,
something not discovered in previous analyses [49].

It is important to note that the method is still compatible with
the traditional verification analyses supported by EOFM [11],
[28], [29], [34], [48], [49]. Thus, if an analyst has specific system
safety conditions that he or she wants to check, that option is
still available.

Despite its successes, the method does have some limitations,
listed below, that should be addressed in future work.

A. Additional Applications

Although simple, the application presented here illustrates
how our method could be used to find unanticipated problems
with HAI. However, the application does not cover all of the
different issues that can arise during HAI. Further, the primary
issue (the timing of the aircraft’s doors and its impact on spoil-
ers) was known a priori. Thus, different problems are likely to be
discovered when the method is applied to other realistic systems
with or without known HAI issues. Future work should explore
how the method can be applied to different human interactive
systems to develop a more comprehensive understanding of its
strengths and weaknesses.

B. Methodological Considerations

1) Use in Design and Analysis: Formal verification is not
widely used in the design and analysis of human-automation
interactive systems. This will limit the use of the presented
method in the immediate future. This lack of use is partially
due to the challenges associated with learning and interpreting
formal methods [38]. EOFM and the presented methods are



572 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

advantageous in this respect in that they allow human factors
analysts to create task models using notations they are familiar
with and automatically generate specification properties that
they can check. Further, the counterexample visualizer [40]
helps them interpret verification results using the human op-
erator’s task. However, the presented method still requires the
analyst to model all of the other system elements the human
interacts with in the model checker’s input language. This will
clearly limit its use. A number of researchers have investigated
how to create formal models of human–automation interfaces
that have been designed graphically or constructed with more
widely used design environments [26], [54]–[56], while others
have investigated how to create formalisms that are intuitive to
human factors engineers [57]–[60] to model interfaces. Future
work should investigate how these methods can be integrated
with EOFM and incorporated into more widely used model-
based engineering environments.

2) Scalability: All analyses that use model checking suffer
from the state explosion problem [10], where the state space
of a model grows exponentially as the number of concurrent
elements are added to the system model. This can increase the
amount of time required to verify a model and, in the worst case,
result in a model too big to verify on a given computer. This
phenomenon has been observed with formal models utilizing
EOFM, where model state spaces grow exponentially with the
size of the task behavior contained in a given EOFM [34], [42].
Because the property generation method presented here does
not add to model complexity, it does not directly influence the
feasibility of the formal verification in terms of state space.
However, any reductions in the complexity of the state space
used to represent EOFMs would improve the applicability of
the method. Because our method relies on the verification of
multiple specification properties, for large models, this could
result in excessively long analysis times. Thus, future work
should investigate means for improving the scalability of the
method in terms of both state space size and verification time.

3) Results Interpretation: The counterexample visualizer
supported by EOFM [40] and the guidelines reported here (see
Section IV-F) can help analysts evaluate verification results.
However, because a large number of properties must be veri-
fied with our method, analysts may find it difficult to interpret
verification results for more complex applications. Future work
should investigate options for assisting analysts in results in-
terpretation: helping them understand the connections between
the different properties and helping them compare the analysis
results between properties based on these connections.

4) Model Checker Limitations: In preparing the application
for this paper, a number of problems with SAL were revealed.
Specifically, the verification of act inevitable completability and
task liveness properties could result in counterexamples illus-
trating artificial model loops (infinite state cycles where no
variable values changed) or failure to detect deadlock states
that violated the properties (SAL uses a separate checker for
finding deadlock states). To address these issues, the model
was formulated to both eliminate these uninteresting cycles and
allow the end state to recursively cycle, preventing end state
deadlock. Alternatively, we could have used deadlock checker

synergistically with the formal verification analyses, where we
would manually inspect each deadlock state to determine if it
violated task liveness or inevitable completability.

There may be several ways of addressing these problems.
SAL is open source so it may be possible to modify it and re-
move these restrictions. Tools capable of helping analysts create
models that do not have the noted issues could be developed.
A wrapper tool could also be created to help analysts evaluate
whether deadlock states (found using SAL’s deadlock checker)
could impact checked properties. Finally, the EOFM-supported
method could be adapted to work with model checking environ-
ments that don’t have these limits. Future work should explore
these options.

C. Property Generation Extensions

The method introduced in this paper has shown that it is
possible to automatically generate specification properties from
task models capable of checking a system’s HAI. However, there
are many other computational and HAI concepts that could be
generated to make the presented method more complete. This
possibility is explored below.

1) Other Specification Formalisms: Specification properties
in SAL’s symbolic model checker are formulated using LTL,
thus this was the logic used for property generation. However
other model checkers support different specification languages
that can offer different expressive power. For example, computa-
tion tree logic (CTL) is used by a number of model checkers and
allows properties too be positively asserted about the existence
of states. Such expressiveness would allow all of the coverage-
based properties to be asserted positively with CTL rather than
negatively as they are with LTL. Future work should explore
how different specification languages could be used to express
the properties generated here as well as enable the generation
of different properties.

2) Additional Computation Concepts: There are other cov-
erage criteria and computation concepts [43], [44] that could be
used to reason about the execution of task models in a larger
formal system model. For example, condition coverage asserts
that every subexpression in a Boolean assertion is both true and
false at some point in execution and parameter value coverage
asserts that all values of different runtime parameters be used.
Alternatively, computer scientists often look to eliminate race
conditions from concurrent system: where the desired outcome
depends on a particular temporal sequence of events that cannot
be guaranteed. Future work should identify which of these con-
cepts provide analysts with insights important to HAI and use
them to generate additional specifications from task models.

3) Accounting for Erroneous Human Behavior: Although
not discussed here, EOFM supports the ability to automatically
generate erroneous human behavior and include it in the formal
representation of the task analytic behavior model [34], [35]. It is
conceivable that specification properties could be used to prove
properties about the different generated erroneous behaviors.
Future work should investigate this.

4) Accounting for Human Cognition and Performance:
There are many cognitive factors that can influence HAI beyond



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 573

the procedural knowledge of task models. Work by Rukšėnas
et al. [61]–[64] have explored how different cognitive concepts
can be included in formal verification analyses. If these sophisti-
cated cognitive representations could be integrated into EOFM,
human attention, monitoring behavior, information processing,
decision making, workload, and/or other human performance
factors could to be considered in EOFM property generation
and formal verification analyses. Future work should investi-
gate such an extension.

5) Accounting for Interface and Automation States: The
method presented here generates properties designed to eval-
uate how well the task behavior contained in an EOFM supports
a system’s HAI. While these analyses can give analysts valuable
insights, they can miss issues related to the system’s automation
or human-automation interface. For example, the method will
give analysts no insights into the existence of interface states
that are unreachable by the human operator’s task or exhibit
poor usability properties.

Several researchers [65], [66] have developed different cover-
age criteria for human–computer and human–automation inter-
faces. These could be used to generate specification properties
for formal interface models for use in formal verification analy-
ses. By including such properties in formal verification analyses
along with the task-based specifications discussed here, analysts
should be able to gain additional insights into the HAI of their
system.

Further, a body of work has investigated different ways of
using formal methods to evaluate human-automation interface
designs without considering models of the human task behavior.
In these approaches, a formal model of a human-automation in-
terface is verified against specifications that represent desirable
usability properties (see [12]). Campos and Harrison [67] identi-
fied four related categories of properties that could be expressed
in temporal logic and thus formally verified, and multiple re-
searchers have defined property patterns within these categories
[55], [67]–[69]. Reachability properties assert qualities about
whether and when interface conditions can be attained [55],
[68], [69]. Visibility properties describe how feedback to hu-
man actions should manifest [69], [70]. Task-related properties
specify things that concern the completion of task goals and their
ability to be undone [68]–[70]. Reliability describes properties
that qualify safe and reliable performance including behavioral
consistency, the absence of deadlock, and the lack of hidden
mode changes [55], [68], [71], [72]. Tools have been developed
that allow these properties to be automatically generated from
interface models [55], [73]. Further, work by Campos et al.
[74] have explored how these types of properties can be used to
while reasoning about how information resource constraints on
human actions can impact system usability. Given that the anal-
ysis method discussed in this paper uses a human–automation
interface as part of its formal system model, it should be com-
patible with usability property generation methods and formal
verification analyses. Thus, future work should investigate how
these different approaches can be used synergistically to provide
even more complete HAI analyses.

6) Including Time and Other Continuous Quantities: The
application presented here was highly dependent on the timing

of different system events. However, the model represented time
using an integer counter. This is because the current version of
EOFM does not support the realistic representation of time as
a real numbered continuous quantity. This is largely due to the
limitations of model checking, where the majority of model
checkers (including SAL-SMC) can only evaluate systems with
a finite number of discrete states. This limits the types of analy-
ses that can be performed with the current version of the method.
Clearly, the application presented in this paper would be much
more realistic if time was modeled in higher fidelity. Luckily,
progress is being made in this area. For example, one of the
tools in SAL is its infinite bounded model checker [75], which
supports the modeling of real time using timed and time-out
automata [76]. Future work should investigate how time can be
incorporated into models utilizing EOFM. Such an extension
could also open up possibilities for generating and verifying
properties specifically related to the timing of task performance.

Other continuous quantities and dynamics can be challenging
to include in formal verification analyses as well. This is not only
because they are continuous, but because nonlinear arithmetic
of variables cannot generally be handled by model checkers.
Those that study hybrid system modeling and verification (see,
for example, [77]–[79]) have developed a number of abstraction
and verification approaches that can account for these types of
operations. However, EOFM does not currently support these.
Future work should investigate how hybrid system modeling
can be used synergistically with EOFM so that they can be con-
sidered in EOFM-supported specification property generation
and verification analyses.

REFERENCES

[1] T. B. Sheridan and R. Parasuraman, “Human-automation interaction,” Rev.
Human Factors Ergonomics, vol. 1, no. 1, pp. 89–129, 2005.

[2] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types
and levels of human interaction with automation,” IEEE Trans. Syst., Man
Cybern. A, Syst., Humans, vol. 30, no. 3, pp. 286–297, May 2000.

[3] R. Kebabjian. (2012). Accident statistics. [Online]. Available: http://www.
planecrashinfo.com/cause.htm

[4] D. J. Kenny, “22nd Joseph T. Nall report: General aviation accidents in
2010,” AOPA Air Safety Inst., Frederick, MD, USA, Tech. Rep., 2011.

[5] D. A. Maluf, Y. O. Gawdiak, and D. G. Bell, “On space exploration and
human error: A paper on reliability and safety,” in Proc. 38th Annu. Hawaii
Int. Conf. Syst. Sci., 2005, pp. 79–84.

[6] L. T. Kohn, J. Corrigan, and M. S. Donaldson, To Err is Human: Building
a Safer Health System. Washington, DC, USA: Natl. Acad. Press, 2000.

[7] J. M. O’Hara, J. C. Higgins, W. S. Brown, R. Fink, J. Persensky, P. Lewis,
J. Kramer, A. Szabo, and M. A. Boggi, “Human factors considerations
with respect to emerging technology in nuclear power plants,” United
States Nuclear Regulatory Commission, Washington, DC, USA, Tech.
Rep. NUREG/CR-6947, 2008.

[8] J. Reason, Human Error. New York, NY, USA: Cambridge Univ. Press,
1990.

[9] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8–23, 1990.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[11] M. L. Bolton and E. J. Bass, “A method for the formal verification of
human interactive systems,” in Proc. 53rd Annu. Meet. Human Factors
Ergon. Soc., Santa Monica, CA, USA, 2009, pp. 764–768.

[12] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal verifica-
tion to evaluate human-automation interaction in safety critical systems,
a review.” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 43,
no. 3, pp. 488–503, 2013.



574 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 5, OCTOBER 2014

[13] B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. New York, NY,
USA: Taylor & Francis, 1992.

[14] J. M. Schraagen, S. F. Chipman, and V. L. Shalin, Cognitive Task Analysis.
Philadelphia, PA, USA: Lawrence Erlbaum Assoc., Inc., 2000.

[15] F. Paternò, “Model-based design of interactive applications,” Intelligence,
vol. 11, no. 4, pp. 26–38, 2000.

[16] R. W. Chu, C. M. Mitchell, and P. M. Jones, “Using the operator func-
tion model and OFMspert as the basis for an intelligent tutoring system:
Towards a tutor/aid paradigm for operators of supervisory control sys-
tems,” IEEE Trans. Syst., Man Cybern. A, Syst., Humans, vol. 25, no. 7,
pp. 1054–1075, Jul. 1995.

[17] A. Lecerof and F. Paternò, “Automatic support for usability evaluation,”
IEEE Trans. Softw. Eng., vol. 24, no. 10, pp. 863–888, Oct. 1998.

[18] B. E. John and D. E. Kieras, “Using GOMS for user interface design and
evaluation: Which technique?” ACM Trans. Comput.-Human Interact.,
vol. 3, no. 4, pp. 287–319, Dec. 1996.

[19] E. J. Bass, S. T. Ernst-Fortin, R. L. Small, and J. Hogans, “Architecture
and development environment of a knowledge-based monitor that facili-
tate incremental knowledge-base development,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 34, no. 4, pp. 441–449, Jul. 2004.

[20] S. Basnyat, P. Palanque, B. Schupp, and P. Wright, “Formal socio-technical
barrier modelling for safety-critical interactive systems design,” Safety
Sci., vol. 45, no. 5, pp. 545–565, 2007.

[21] S. Basnyat, P. A. Palanque, R. Bernhaupt, and E. Poupart, “Formal mod-
elling of incidents and accidents as a means for enriching training material
for satellite control operations,” presented at the Joint ESREL 2008 17th
SRA-Europe Conf., London, U.K., 2008.

[22] E. L. Gunter, A. Yasmeen, C. A. Gunter, and A. Nguyen, “Specifying
and analyzing workflows for automated identification and data capture,”
in Proc. 42nd Hawaii Int. Conf. Syst. Sci., Los Alatimos, CA, USA, 2009,
pp. 1–11.

[23] P. A. Palanque, R. Bastide, and V. Senges, “Validating interactive system
design through the verification of formal task and system models,” in Proc.
IFIP TC2/WG2.7 Working Conf. Eng. Human-Comput. Interact., London,
U.K., 1996, pp.189–212.

[24] R. E. Fields, “Analysis of erroneous actions in the design of critical sys-
tems,” Ph.D. dissertation, Dept. Comput. Sci., York Univ. , York, U.K.,
2001.

[25] Y. Aı̈t-Ameur, M. Baron, and P. Girard, “Formal validation of HCI user
tasks,” in Proc. Int. Conf. Softw. Eng. Res. Pract., Las Vegas, NV, USA,
2003, pp. 732–738.

[26] Y. Aı̈t-Ameur and M. Baron, “Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model,” Int. J.
Softw. Tools Technol. Transfer, vol. 8, no. 6, pp. 547–563, 2006.

[27] F. Paternò and C. Santoro, “Integrating model checking and HCI tools to
help designers verify user interface properties,” in Proc. 7th Int. Workshop
Design, Specification, Verification Interact. Syst., Berlin, Germany, 2001,
pp. 135–150.

[28] M. L. Bolton and E. J. Bass, “Formally verifying human-automation inter-
action as part of a system model: Limitations and tradeoffs,” Innovations
Syst. Softw. Eng.: NASA J., vol. 6, no. 3, pp. 219–231, 2010.

[29] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach to
model checking human-automation interaction using task-analytic mod-
els,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 5,
pp. 961–976, Sep. 2011.

[30] R. Bastide and S. Basnyat, “Error patterns: Systematic investigation of de-
viations in task models,” in Task Models and Diagrams for Users Interface
Design. Berlin, Germany: Springer, 2007, pp. 109–121.

[31] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal methods to
predict human error and system failures,” presented at the 2nd Int. Conf.
Appl. Human Factors Ergon., Las Vegas, NV, USA, 2008.

[32] M. L. Bolton and E. J. Bass, “Formal modeling of erroneous hu-
man behavior and its implications for model checking,” in Proc. Sixth
NASA Langley Formal Methods Workshop, Hampton, VA, USA, 2008,
pp. 62–64.

[33] F. Paternò and C. Santoro, “Preventing user errors by systematic analysis
of deviations from the system task model,” Int. J. Human-Comput. Studies,
vol. 56, no. 2, pp. 225–245, 2002.

[34] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using phenotypical
erroneous human behavior generation to evaluate human-automation in-
teraction using model checking,” Int. J. Human-Comput. Studies, vol. 70,
no. 11, pp. 888–906, 2012.

[35] M. L. Bolton and E. J. Bass, “Generating erroneous human behavior
from strategic knowledge in task models and evaluating its impact on
system safety with model checking,” IEEE Trans. Syst., Man Cybern. Syst.,
vol. 43, no. 6, pp. 1314–1327, Nov. 2013.

[36] M. L. Bolton and E. J. Bass, “Evaluating human-human communication
protocols with miscommunication generation and model checking,” in
Proc. Fifth NASA Formal Methods Symp. Moffett Field: NASA Ames Res.
Center, 2013, pp. 48–62.

[37] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science, J. van Leeuwen, A. R. Meyer, M. Nivat, M. Paterson,
and D. Perrin, Eds., Cambridge, MA, USA: MIT Press, 1990, ch. 16,
pp. 995–1072.

[38] C. Heitmeyer, “On the need for practical formal methods,” in Proc. 5th
Int. Symp. Formal Tech. Real-Time Fault-Tolerant Syst., 1998, pp. 18–26.

[39] C. M. Mitchell and R. A. Miller, “A discrete control model of operator
function: A methodology for information display design,” IEEE Trans.
Syst. Man Cybern. A, Syst. Humans, vol. SMCA-16, no. 3, pp. 343–357,
May. 1986.

[40] M. L. Bolton and E. J. Bass, “Using task analytic models to visualize
model checker counterexamples,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., 2010, pp. 2069–2074.

[41] L. De Moura, S. Owre, and N. Shankar, “The SAL language manual,”
Comput. Sci. Lab., SRI Int., Menlo Park, CA, USA, Tech. Rep. CSL-01-
01, 2003.

[42] M. L. Bolton, “Using task analytic behavior modeling, erroneous hu-
man behavior generation, and formal methods to evaluate the role
of human-automation interaction in system failure,” Ph.D. disserta-
tion, Dept. Syst. Inf. Eng., Univ. Virginia, Charlottesville, VA, USA,
2010.

[43] C. Sandler, T. Badgett, and T. M. Thomas, The Art of Software Testing.
New York, NY, USA: Wiley, 2004.

[44] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
New York, NY, USA: Wiley, 2009.

[45] A. Degani and M. Heymann, “Formal verification of human-automation
interaction,” Human Factors, vol. 44, no. 1, pp. 28–43, 2002.

[46] E. Hollnagel, “The phenotype of erroneous actions,” Int. J. Man-Mach.
Studies, vol. 39, no. 1, pp. 1–32, 1993.

[47] N. B. Sarter and D. D. Woods, “How in the world did we ever get into
that mode? Mode error and awareness in supervisory control,” Human
Factors, vol. 37, no. 1, pp. 5–19, 1995.

[48] M. L. Bolton, “Automatic validation and failure diagnosis of human-device
interfaces using task analytic models and model checking,” Comput. Math.
Organization Theory, vol. 19, pp. 288–312, 2013.

[49] M. L. Bolton and E. J. Bass, “Using model checking to explore checklist-
guided pilot behavior,” Int. J. Aviation Psychology, vol. 22, no. 4,
pp. 343–366, 2012.

[50] A. Degani, Taming HAL: Designing Interfaces Beyond 2001. New York,
NY, USA: Macmillan, 2004.

[51] NTSB, “Runway overrun during landing, American Airlines flight 1420,
McDonnell Douglas MD-82, N215AA, Little Rock, Arkansas, June 1,
1999,” Natl. Transp. Safety Board, Washington, DC, USA, Tech. Rep.
NTSB/AAR-01/02, 2001.

[52] Aviation Safety Network and Flight Safety Foundation. (2014). “Accident
description: Air Canada flight 621,” Flight Safety Foundation, Available:
http://aviation-safety.net/database/record.php?id=19700705-0

[53] NTSB, “Crash during approach to landing Empire Airlines flight
8284, Avions de Transport Régional Aerospatiale Alenia ATR 42-
320, N902FX Lubbock, Texas, January 27, 2009,” Natl. Transp.
Safety Board, Washington, DC, USA, Tech. Rep. NTSB/AAR-11/02,
2011.

[54] R. Bastide, D. Navarre, and P. Palanque, “A tool-supported design frame-
work for safety critical interactive systems,” Interacting Comput., vol. 15,
no. 3, pp. 309–328, 2003.

[55] J. C. Campos and M. D. Harrison, “Interaction engineering using the ivy
tool,” in Proc. 1st ACM SIGCHI Symp. Eng. Interactive Comput. Syst.,
2009, pp. 35–44.

[56] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser, “Analyzing interaction
orderings with model checking,” in Proc. 19th IEEE Int. Conf. Automated
Softw. Eng., 2004, pp.154–163.

[57] M. Feary, “Automatic detection of interaction vulnerabilities in an ex-
ecutable specification,” in Proc. 7th Int. Conf. Eng. Psychol. Cognitive
Ergonomics, 2007, pp. 487–496.

[58] L. Sherry and M. Feary, “Improving the aircraft cockpit user-interface:
Using rule-based expert system models,” PC AI, vol. 15, no. 6, pp. 21–25,
2001.

[59] A. Degani, A. Gellatly, and M. Heymann, “HMI aspects of automotive
climate control systems,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2011, pp.1795–1800.

[60] F. Paterno, “A theory of user-interaction objects,” J. Visual Languages
Comput., vol. 5, no. 3, pp. 227–249, 1994.



BOLTON et al.: AUTOMATICALLY GENERATING SPECIFICATION PROPERTIES FROM TASK MODELS 575

[61] P. Curzon, R. Rukšėnas, and A. Blandford, “An approach to formal
verification of human-computer interaction,” Formal Aspects Comput.,
vol. 19, no. 4, pp. 513–550, 2007.

[62] R. Rukšėnas, P. Curzon, J. Back, and A. Blandford, “Formal modelling of
cognitive interpretation,” in Proc. 13th Int. Workshop Design, Specifica-
tion, Verification Interactive Syst., 2007, pp. 123–136.

[63] R. Runšėkas, J. Back, P. Curzon, and A. Blandford, “Formal modelling of
salience and cognitive load,” in Proc. 2nd Int. Workshop Formal Methods
Interactive Syst., 2008, pp. 57–75.

[64] R. Rukšenas, J. Back, P. Curzon, and A. Blandford, “Verification-guided
modelling of salience and cognitive load,” Formal Aspects Comput.,
vol. 21, no. 6, pp. 541–569, 2009.

[65] H. Reza, S. Endapally, and E. Grant, “A model-based approach for testing
GUI using hierarchical predicate transition nets,” in Proc. Fourth Int. Conf.
Inf. Technol., 2007, pp. 366–370.

[66] L. Duan, A. Hofer, and H. Hussmann, “Model-based testing of infotain-
ment systems on the basis of a graphical human-machine interface,” in
Proc. 2nd Int. Conf. Advances Syst. Testing Validation Lifecycle, 2010,
pp. 5–9.

[67] J. C. Campos and M. Harrison, “Formally verifying interactive systems: A
review,” in Proc. Fouth Int. Eurographics Workshop Design, Specification,
Verification Interactive Syst., 1997, pp. 109–124.

[68] G. D. Abowd, H. Wang, and A. F. Monk, “A formal technique for auto-
mated dialogue development,” in Proc. 1st Conf. Designing Interactive
Syst., 1995, pp. 219–226.

[69] F. Paternò, “Formal reasoning about dialogue properties with automatic
support,” Interacting Comput., vol. 9, no. 2, pp. 173–196, 1997.

[70] J. C. Campos and M. D. Harrison, “Systematic analysis of control panel
interfaces using formal tools,” in Proc. 15th Int. Workshop Design, Verifi-
cation Specification Interactive Syst., 2008, pp. 72–85.

[71] A. Joshi, S. P. Miller, and M. P. Heimdahl, “Mode confusion analysis of
a flight guidance system using formal methods,” in Proc. 22nd Digital
Avionics Syst. Conf., Oct. 2003, pp. 2.D.1-1–2.D.1-12.

[72] N. G. Leveson, L. D. Pinnel, S. D. Sandys, S. K, and J. D. Reese, “Ana-
lyzing software specifications for mode confusion potential,” presented at
the Workshop Human Error Syst. Develop., Glasgow, U.K., 1997.

[73] K. Loer and M. D. Harrison, “An integrated framework for the analysis of
dependable interactive systems (IFADIS): Its tool support and evaluation,”
Automated Softw. Eng., vol. 13, no. 4, pp. 469–496, 2006.

[74] J. C. Campos, G. Doherty, and M. D. Harrison, “Analysing interactive de-
vices based on information resource constraints,” Int. J. Human-Comput.
Studies, vol. 72, no. 3, pp. 284–297, 2014.

[75] L. Moura, S. Owre, H. Rue, J. Rushby, N. Shankar, M. Sorea, and A.
Tiwari, “SAL 2,” in Computer Aided Verification (ser. Lecture Notes in
Computer Science). Berlin, Germany: Springer, 2004, vol. 3114, pp. 496–
500.

[76] B. Dutertre and M. Sorea, “Timed systems in SAL,” SRI Int., Menlo Park,
CA, USA, Tech. Rep. SRI-SDL-04-03, 2004.

[77] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid
verification of an interface for an automatic landing,” in Proc. 41st IEEE
Conf. Decision Control, 2002, pp. 1607–1613.

[78] M. Oishi, I. Hwang, and C. Tomlin, “Immediate observability of discrete
event systems with application to user-interface design,” in Proc. 42nd
IEEE Conf. Decision Control, 2003, pp. 2665–2672.

[79] E. J. Bass, K. M. Feigh, E. Gunter, and J. Rushby, “Formal modeling and
analysis for interactive hybrid systems,” presented at the 4th Int. Workshop
Formal Methods Interactive Syst. Potsdam, Germany, 2011.

Matthew L. Bolton (S’05–M’10) received the M.S.
and Ph.D. degrees in systems engineering from the
University of Virginia, Charlottesville, VA, USA, in
2006 and 2010, respectively.

He is currently an Assistant Professor with the
Department of Industrial and Systems Engineering,
State University of New York at Buffalo, Amherst,
NY, USA. His research focuses on the development
of tools and techniques that use human performance
modeling and formal methods to analyze, design, and
evaluate safety-critical systems.

Noelia Jiménez received the M.S. degree in physics
sciences from Complutense University, Madrid,
Spain, in 1994.

She currently works at IXION Industry and
Aerospace, Madrid, in the Ground Segment area de-
voted to M&C systems, Virtual Control Centers, and
Collaborative Systems. She is a Project Manager of
IXION M&C systems for European Space Agency
and works as an expert consultant on M&C archi-
tectures and HMI for R&D projects for the develop-
ment of ground control centers for autonomous vehi-

cles, combining support for 3-D visualization and new HMI-multimodal inter-
faces. She is the Manager of the internal Advanced User Interfaces Laboratory,
IXION.

Marinus M. van Paassen (M’08) received
the M.Sc. and Ph.D. degrees from the Delft
University of Technology, Delft, The Netherlands, in
1988 and 1994, respectively, for studies on the neu-
romuscular system of pilot arms in manual control.

He is an Associate Professor in aerospace en-
gineering with the Delft University of Technology,
working on human–machine interaction and aircraft
simulation. His work on human–machine interaction
ranges from studies of perceptual processes and hu-
man manual control to complex cognitive systems. In

the latter field, he applies Cognitive Systems Engineering analysis (Abstraction
Hierarchy, Multilevel Flow Modeling) and Ecological Interface Design to the
work domain of vehicle control.

Maite Trujillo received the M.Sc. degree in decision
modeling and information systems and the Ph.D. de-
gree in electronic and computer engineering from
Brunel University, London, U.K, and the M.B.A. de-
gree in international management from the Raj Soin
College of Business, Dayton, OH, USA. She also
holds Professional Certificates in Strategic Decision
and Risk Management from Stanford University, Palo
Alto, CA, USA, and Aviation Safety and Accident
Investigation from Embry-Riddle Aeronautical Uni-
versity, Daytona Beach, FL, USA.

She manages the independent verification compliance of space debris miti-
gation and re-entry requirements for ESA projects and leads the human rating
of future crewed transportation systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


