
FORMALLY VERIFYING HUMAN-AUTOMATION INTERACTION WITH
SPECIFICATION PROPERTIES GENERATED FROM TASK ANALYTIC MODELS

M. L. Bolton(1), N. Jimenez(2), M. M. van Paassen(3), and M. Trujillo(4)

(1)Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 2039 Engineering
Research Facility, 842 W. Taylor Street, Chicago, Illinois 60607, USA, Email: MBolton@UIC.edu

(2)IXION Industry and Aerospace, Calle de Julián Camarillo 21B, 28037 Madrid, Spain, Email: NJimenez@IXION.es
(3)Aerospace Engineering, Delft University of Technology, Postbus 5, 2600 AA Delft, The Netherlands,

Email: M.M.vanPaassen@TUDelft.nl
(4)European Space Research and Technology Centre, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk,

The Netherlands, Email: Maite.Trujillo@ESA.int

ABSTRACT

Human-automation interaction (HAI) is a major contrib-
utor to failures in aerospace systems, often due to unex-
pected interactions between system components. Formal
verification is a method of analysis that exhaustively ex-
amines all of the interaction in a formal system model
to determine if it adheres to desirable specification prop-
erties. Task analytic models can be included in formal
system models to allow HAI to be evaluated with formal
verification. However, previous work required analysts to
manually formulate specification properties they wished
to check. A practice which can result in unexpected,
dangerous HAI conditions not being checked. This pa-
per presents a method for generating specification prop-
erties from task models to allow analysts to automatically
check for HAI problems they may not have anticipated.
The paper describes the design and implementation of the
method. An example (a pilot performing a before landing
checklist) is presented to illustrate its utility.

1. INTRODUCTION

Human behavior is a major contributor to failures in
aerospace systems. It has been a factor in more than 50%
of commercial aviation accidents [15], 70% of general
aviation accidents [16], and many failures in space oper-
ations [18]. These problems arise as a result of complex
interactions between system components (human opera-
tors, device automation, and conditions in the operational
environment) [23]. Human behavior can be particularly
problematic because the concurrency between it and the
system automation can result in unanticipated human-
automation interaction (HAI) [26].

While a number of advances have been made to address
this issue [26], analysts can still miss problems because
most analysis approaches are incapable of evaluating all
of the possible HAIs. However, formal verification tech-
niques, and particularly model checking, offer means of
performing such robust analyses.

1.1. Formal Verification and Model Checking

Formal verification comes from the field called formal
methods. Formal methods are mathematically robust lan-
guages, techniques, and tools for the modeling, specifica-
tion, and verification of systems [28]. Formal modeling is

concerned with mathematically describing the behavior
of a target system, specifications assert desirable prop-
erties about the system, and verification mathematically
proves whether or not the model adheres to the speci-
fication. This work uses model checking, a computer
software tool capable of automatically performing formal
verification [10]. In model checking, system behavior is
typically modeled as a finite state transition system: a
collection of variables and guarded transitions between
variable values (states). Temporal logics [13] are usually
used to express specification properties using a combina-
tion of model variables, binary logic operators, and tem-
poral operators. A model checker performs formal verifi-
cation by exhaustively searching a system’s statespace to
determine if the specification holds. If there is a state in
the model that violates the specification, a counterexam-
ple is produced which represents a counterproof: a listing
of a path of incremental model state transitions that led up
to the violation.

1.2. Formal Verification and HAI

Formal verification is typically used in the analysis of
computer hardware and software [10, 28]. However, it
has also been used to evaluate HAI (see [8] for a review).
The method presented here is concerned with formal ver-
ification work that uses task analytic models. Task ana-
lytic behavior models are a common tool of human fac-
tors engineers. They are produced as part of a cognitive
task analysis [17, 25] and describe the behaviors human
operators use to achieve goals with a system. The mean-
ing of these models can be represented computationally,
enabling them to be included in a formal system model
containing a formal description of the other relevant sys-
tem behaviors. Formal verification is then used to eval-
uate the impact of the modeled behavior (which can be
normative or erroneous) on system safety [1–4, 6, 7, 9,
14, 21, 22]. This is a powerful approach because it ex-
plicitly models the human behavior, and thus the HAI;
gives analysts a clear indication of what the human opera-
tor was doing in discovered problems (counterexamples);
and uses models of human behavior commonly employed
by human factors and systems engineers [7].

These methods tends to focus on the verification of
analyst-created properties that assert qualities critical to

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013



a system’s safe operation. There are limitations to for-
mulating specification properties in this manner. Firstly,
temporal logics can be difficult to learn and interpret.
This can result in analysts incorrectly formulating prop-
erties. Secondly, this approach requires that analyst an-
ticipate potentially unsafe conditions and formulate them
as specification properties. Therefore, if an analyst does
not anticipate a potentially unsafe condition or problems
with HAI, formal verification will give them no insights
into those potential failures. Finally, these analyses fo-
cus on verifying safety properties, the violation of which
could result from the systems HAI. In this respect, an-
alysts are using formal verification to look for specific
failure conditions that may be associated with HAI rather
than the HAI problems themselves.

1.3. Objectives

In the work presented here, we discuss a method that ad-
dresses these limitations. Specifically, we extend an ex-
isting method [3], which supports the formal verification
of HAI using task behavior models, to automatically gen-
erate specification properties. We would ideally be able
to generate properties related to all elements of a system.
However, most of the elements of a formal system model
are designed to reflect the specific behavior of the target
system and thus do not retain enough architectural sim-
ilarities between applications to make this a reasonable
goal. However, given the nature of hierarchical task an-
alytic models, the task models used in these analyses do
follow a regular structure and execution pattern. Thus,
our method focuses on generating specification proper-
ties from the task analytic models themselves (Fig. 1).
The property generation process uses the above insight
that issues with HAI are problems of concurrency, where
generated properties are designed to systematically check
for incompatibilities between the concurrent execution of
the human task and the other elements of the system.
Because task models are represented computationally in
formal verification analyses, we can use concepts from
computation to reason about their execution in a human-
automation interactive system. A model checker can be
used to verify the generated properties against the system
model to potentially find HAI problems.

The remainder of this document describes how the
method (Fig. 1) was realized. We first describe the En-
hanced Operator Function Model (EOFM), the task ana-
lytic modeling formalism used in this work, and the for-
mal verification analysis method it supports. Linear tem-
poral logic (LTL), the logic used for representing gen-
erated specification prosperities, is also described. We
then show how concepts from computation can be used
with EOFM to generate specification properties capable
of finding problems with HAI. We present a simple appli-
cation of a pilot performing the before landing checklist
of an aircraft to demonstrate the use of our approach. Fi-
nally, we discuss our results and explore avenues of future
research.

2. MODEL CHECKING HAI WITH EOFM

The Enhanced Operator Function Model (EOFM) [9] is
an XML-based human task modeling language, derived
from the Operator Function Model (OFM) [20], specifi-
cally designed to allow task analytic human behavior to
be evaluated with formal methods. EOFMs are largely
hierarchical and partially heterarchical representations of
goal driven activities that decompose into lower level ac-
tivities, and finally, atomic actions. A decomposition op-
erator specifies the temporal relationships between and
the cardinality of the decomposed activities or actions
(when they can execute relative to each other and how
many can execute). In the application presented here,
only the ord operator (which asserts that activities or ac-
tion must execute in a specific order) is used.

EOFMs express strategic knowledge explicitly as con-
ditions on activities. Conditions can specify what must
be true before an activity can execute (preconditions),
when it can repeat execution (repeat conditions), and
what is true when it completes execution (completion
conditions).

EOFMs can be represented visually as tree-like graphs
[5] (see an example in Fig. 3). Actions are rectangles and
activities are rounded rectangles. An activity’s decompo-
sition is presented as an arrow, labeled with the decom-
position operator, that points to a large rounded rectangle

Normative

Human Task 

Behavior Model

System 

Information

Manual 

Modeling

Specification 

Generation

Task Model to 

Formal Model 

Translator

Model 

Checker

Verification

Report

Formal 

System Model

System 

Specification

Visualizer

Counterexample 

Visualization

Figure 1. The formal verification method supported by EOFM. Continuous lines indicate parts of process previously
supported by EOFM [3]. Dotted lines represent the novel specification property generation process.

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013



containing the decomposed activities or actions. Condi-
tions (strategic knowledge) on activities are represented
as shapes or arrows (annotated with the logic) connected
to the activity that they constrain. The form, position,
and color of the shape are determined by the type of con-
dition. A precondition is a yellow, downward-pointing
triangle; a completion condition is a magenta, upward-
pointing triangle; and a repeat condition is an arrow re-
cursively pointing to the top of the activity.

EOFM has formal semantics which specify how an in-
stantiated EOFM model executes (Fig. 2). Each activity
or action has one of three execution states: waiting to ex-
ecute (Ready), executing (Executing), and done (Done).
An activity or action transitions between each of these
states based on its current state; its start condition (Start-
Condition – when it can start executing based on the state
of its immediate parent, its parent’s decomposition oper-
ator, and the execution state of its siblings); its end con-
dition (EndCondition – when it can stop executing based
on the state of its immediate children in the hierarchy and
its decomposition operators); its reset condition (Reset –
when it can revert to Ready based on the execution state
of its parents); and, for an activity, the activity’s strate-
gic knowledge (the Precondition, RepeatCondition, and
CompletionCondition). See [9] for more details.

EOFM supports formal verification using the process
shown in Fig. 1. Analyst-created EOFM task models
can be automatically translated [9] into the language of
the Symbolic Analysis Laboratory (SAL) [11] using the
EOFM formal semantics. The translated EOFM can then
be integrated into a larger system model (also created
manually) using a defined architecture and coordination
protocol [4, 9]. Formal verifications of manually created
specification properties are performed on this complete
system model using SAL’s Symbolic Model Checker
(SAL-SMC). Any produced counterexamples can be vi-
sualized and evaluated using EOFM’s visual notation [5].

3. LTL SPECIFICATION

Because the formal verification method supported by
EOFM (Fig. 1) uses SAL’s symbolic model checker,
specification properties must be asserted using linear
temporal logic (LTL). LTL uses propositional variables,
Boolean logic operators (∧,∨,¬,⇒,⇔,=, 6=,<,>, etc.),
and temporal operators (Tab. 1) to assert properties about
all paths through a model [13].

Because LTL can only be used to specify properties about
all paths through a model, it cannot be used to positively
assert the existence of a desirable system condition that
may not exist on all paths. Thus, to conduct an existence
proof with a model checker that uses LTL specifications,
a negative assertion must be specified. Let φ represent a
temporal logic proposition that we want to prove exists in
a system. Using LTL, we can use the specification

G¬( φ) (1)

to assert that φ should never be true in all paths through
the model. If we use a model checker to check Eq. 1

Reset

StartCondition 

˄ Precondition

˄ ¬ CompletionCondition

StartCondition 

˄ CompletionCondition

EndCondition 

˄ CompletionCondition

EndCondition ˄ RepeatCondition ˄¬CompletionCondition 

Executing Done

Ready

Figure 2. Formal semantics of an EOFM activity’s and
action’s execution state presented as finite state transition
systems [9]. States are represented as circles. Transitions
appear as arrows between states that are labeled with
Boolean expressions. Arrows starting with a dot point to
initial states. For actions, the Precondition, RepeatCon-
dition, CompletionCondition, and Ready to Done and Ex-
ecuting to Executing transitions are not used.

against a system model, it will return true if φ is never
satisfied. However, if φ does exist, the model checker
will return a counterexample illustrating how φ was re-
alized. This trick will be used in specification property
generation, where both positive (where the specification
asserts the existence of the desirable property) and neg-
ative (where the specification asserts the absence of the
desirable property) specifications will be used.

4. SPECIFICATION GENERATION

There are a number of properties that a system with well
designed HAI will require from its human operator’s ex-
pected behavior (his or her task). For the purpose of this
work, we consider all of the following:

1. Every element of the task should be applicable at some
time in the use of the system. If not true, then the
task either contains superfluous behaviors or there is
a problem with the HAI that prevents all or part of a
task from ever becoming relevant.

2. Every task that a human operator attempts should al-
ways be finishable. If not true, the task is incapable of
always achieving its goals implying problems with the
task or deficiencies in other elements of the system.

3. There should never be a situation where the human
operator can never perform any task. If not true, there
are system states for which human task behavior has
not been defined. This could indicate an incomplete
description of human task behavior or an unexpected
system state.

Because the method supported by EOFM (Fig. 1) treats
human task behavior as a computational structure (using
the EOFM formal semantics, Fig. 2), task analytic mod-
els can be reasoned about computationally. Luckily, all
three of the above items we want to ensure map to con-
cepts from computation and can be expressed using linear
temporal logic specifications.

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013



Table 1. Linear temporal logic operators.
Operator Usage Interpretation

Global G ψ ψ will always be true.
NeXt X ψ ψ is true in all of the next states.
Future F ψ ψ is eventually true in future state.
Until φ U ψ φ will be true until ψ is true.

Note. φ and ψ are propositions about either a state or path in
the model that can evaluate to either true or false, where a path
is a valid temporally ordered sequence of states.

4.1. Item 1: Coverage

Item 1 refers to the computational concept of coverage.
A coverage criterion represents the extent to which ele-
ments of a computational structure are reachable [24]. In
this work, we are concerned with state coverage. State
coverage asserts that every state in a finite state machine
is reachable. State coverage applies to EOFM task mod-
els through the execution state of its activities and actions
(Fig. 2). Thus, to ensure state coverage, the execution
state of every activity and action must be reachable.

To ensure that state coverage is maintained, properties are
generated to check that every activity and action in a task
model is capable of reaching each of the three execution
states (Fig. 2). Because every activity and action au-
tomatically starts in the Ready state, there is no need to
check that it is reachable. However, we must generate
properties to specify that Executing and Done are reach-
able. Because these will be reachability properties, they
must be asserted with the pattern from Eq. 1. To check
that every activity and action in a task model can exe-
cute, we generate a property (called Act Executability) of
the form shown in Eq. 2 (Tab. 2) for each activity or
action in the task structure. To check that every activ-
ity or action can reach the Done state (a property we call
Act Completability), we generate a property of the form
in Eq. 3 (Tab. 2) for each activity or action in an in-
stantiated EOFM. Since both Act Executability and Act
Completability are negatively asserted, this means that if
the Executing and Done states are reachable, Eqs. 2 and
3 will produce counterexamples when checked. If Exe-
cuting and/or Done are not reachable, the model checker
will return true.

4.2. Item 2: Starvation

While knowing that a task can execute is useful, we also
need to ensure that it will always finish (item 2). Using
computation terminology, this means that we never want
our task models to suffer starvation: an inability to gain
the necessary resources to finish [27]. To check that a
task will never starve, we generate a property called Act
Inevitable Completability (Eq. 4; Tab. 2) for each activity
and action. This asserts that, when the act is executing,
it must eventually finish. Because Act Inevitable Com-
pletability is asserted positively, a model checker will
return true if it is satisfied. Otherwise, a counterexam-
ple will illustrate how a state or cycle was reached from
which the associated act could not stop executing.

4.3. Item 3: Liveness

Liveness describes a condition where something desir-
able will eventually occur [10]. For HAI-dependent sys-
tems, we want to ensure that there is never a situation
where the human operator can never perform a task (item
3). To check this, we generate a property of the form in
Eq. 5 called Task Liveness (Tab. 2). Task Liveness is
asserted positively. Thus, a model checker will return a
confirmation if it is satisfied. Otherwise, a counterexam-
ple will show how the violation occurred.

4.4. Accounting for Uninteresting States

In checking Act Inevitable Completability and Task Live-
ness, it is conceivable that there could be states in the
model where either is violated in ways that are not inter-
esting to analysts. For example, a model may have an
“end state” at or after which these properties would not
be important. To accommodate this, the analyst will need
to check modified forms of these properties. Thus, we
can reformulate Eqs. 4 or 5 as

ψ ⇒

(
∀Φ∧

φ∈Φ

¬φ

)
(6)

where ψ is the original specification (either Eq. 4 or 5),
Φ is the set of expressions representing states an analysts
wishes to exclude, and φ is a particular state excluding
expression. This can be interpreted as: if ψ is true, then
all of the expressions in Φ are false.

4.5. Implementation

The EOFM to SAL translator was modified to automati-
cally generate all of the properties from Tab. 2 for use in
model checking with SAL.

5. APPLICATION

To illustrate how this method can be used to find prob-
lems in a HAI-dependent aerospace system, we present
an application: a pilot attempting to perform the before
landing checklist (previously discussed in [6]). In this
application, a pilot is performing an instrument approach
where he or she is navigating the aircraft to the runway
using vertical guidance (the glide slope). The vertical
position of the aircraft relative to the glideslope is dis-
played with a moving diamond on the glideslope indica-
tor. When the aircraft is nearing the glideslope, the dia-
mond becomes “alive”, moving towards the center of the
display. The diamond will first pass through the “two dot”
and then the “one dot” positions. When the aircraft is on
the glideslope, the diamond is at the capture position.

To land safely, the pilot performs the before landing
checklist. Herein this means [12]: (a) the ignition must
be set to override to allow for engine restart should the
engine quit; (b) the landing gear must be down; (c) the
spoilers should be armed; and (d) the flaps should be ex-
tended to the appropriate flap setting (first 25◦ and then
40◦) to slow the aircraft and prevent stalling.

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013



Table 2. Task Model Specification Properties to Support Safe Human-automation Interaction
Name: Act Executability
Description: A given activity or action should be able to execute.
Formulation: G¬(Act = Executing) (2)
Interpretation of a Confirmation: × There are no conditions where Act can ever execute.
Interpretation of a Counterexample: X There are conditions where Act can execute.

Name: Act Completability
Description: A given activity or action should be able to be done.
Formulation: G¬(Act = Done) (3)
Interpretation of a Confirmation: × There are no conditions where Act can ever be done.
Interpretation of a Counterexample: X There are conditions where Act can be done.

Name: Act Inevitable Completability
Description: Every activity or action that is executing must eventually finish.
Formulation: G((Act = Executing)⇒ F(Act 6= Executing)) (4)
Interpretation of a Confirmation: X Act can always finish executing.
Interpretation of a Counterexample: × There is a least one condition where Act can never finish executing.

Property Name: Task Liveness
Description: There should never be a situation where no activity can ever execute.

Formulation: G¬
(
F
(
G
(∧∀RootActivities

Act∈RootActivities Act 6= Executing
)))

(5)
Interpretation of Confirmation: X There is never be a situation where no activity can ever execute.
Interpretation of Counterexamples: × There is a situation where no activity can ever execute.

Note. Act represents the execution state of a given activity or action from an instantiated EOFM. RootActivities represents the set of all
top level activities. A X and × indicate if the associated verification outcome is desirable or undesirable respectively.

Spoilers are retractable plates on the wings that, when
deployed, slow the aircraft and decrease lift. A pilot can
arm the spoilers for automatic deployment using a lever.
If spoilers are not used, the aircraft can overrun the run-
way. If spoilers are deployed too early, the aircraft loses
lift and could have a hard landing. Premature deployment
can occur due to mechanical issues. Arming the spoilers
before the landing gear has been lowered, before the land-
ing gear doors have fully opened, or during landing can
result in automatic premature deployment [12]. For this
reasons, pilots wait to arm the spoilers until after landing
gear has been deployed and the landing gear doors have
completely opened (in our example, this can take between
10 and 18 seconds due to variability in the hydraulics).

5.1. Task Modeling

The task behavior for performing the before landing
checklist was instantiated as an EOFM (Fig. 3). This
task model assumes the pilot can observe the value of all
of the following: the glideslope indicator (GSIndicator),
the ignition indicator light (whether or not the ignition
has been overridden; IgnitionLight), the angle of the air-
craft’s flaps as indicated on the flaps gauge (FlapsGuage),
if the landing gear is down (ThreeGearLights), and if the
landing gear doors are opening (GearDoorLight).

This model was converted into SAL’s input language us-
ing the translator [9] with the newly added automatic
specification generation. The specification generation
process produced 34 properties: 33 properties represent-
ing Act Executability, Act Completability, and Act In-
evitable Completability for the 11 activities and actions

in the model; and one property representing Task Live-
ness for the entire EOFM instances.

5.2. Modeling the Rest of the System

To complete the formal system model, formal repre-
sentations were created for the system operational en-
vironment, the aircraft’s automation, and its human-
automation interface.1

The system’s operational environment was represented
abstractly as the relative distance (Position) of the aircraft
from the capture position on the glideslope. The aircraft
starts at a position where the glideslope diamond is not
alive. The aircraft proceeds to the capture position and
begins to descend on the glideslope, a process that will
take 18 seconds. Thus, the relative position of the aircraft
from the initial position is discretized into intervals (0 to
18) where the aircraft passes from one interval to the next
in one second. The model was set to meet a dedicated end
state when it starts to descend (at position 18).

The formal model of the device automation represented
the functionality of the aircraft’s ignition, landing gear,
spoilers, and landing gear doors. In the models the igni-
tion starts out not in override, the landing gear starts out
un-deployed, the spoilers unarmed, and the landing gear
doors closed. The state of these properties could change
in response to human actions received from the human-
device interface or other environmental or internal system

1Due to space considerations, full details of these models are not
reported. More information can be found in [6]. Full models can be
found at http://www.sys.uic.edu/resources/

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013

http://www.sys.uic.edu/resources/


aPrepare

ForLanding

GSIndicator ≤ Inactive

aOverride

Ignition

ord

FlipIgnition

Switch

aDeploy

LandingGear

ord

PullGear

Lever

aSet

Flaps25

ord

Set

Flaps25

aSet

Spoilers

ord

Arm

Spoiler

aSet

Flaps40

ord

Set

Flaps40

ord

GSIndicator ≤ Inactive

˄ IgnitionLight = Off

GSIndicator ≤ Alive 

˄ ThreeGearLights = Off

GSIndicator  ≤ OneDot 

˄ FlapsGauge ≠ 25

GearDoorLight = Off 

˄ SpoilerIndicator = Off

GSIndicator  ≤ Capture 

˄ FlapsGauge ≠ Flaps40

FlapsGauge ≥ 25ThreeGearLights = On SpoilerIndicator = On FlapsGauge = Flaps40IgnitionLight = On

Figure 3. Visualization of the EOFM task model for the before landing checklist.

conditions. While most changes to pilot actions were ef-
fectively instantaneous (taking less than a second) land-
ing gear doors would take between 10 and 18 seconds
to fully transition from closed to open after landing gear
deployment was initiated.

The formal model of the human-automation interface rep-
resented the state of the flightdeck controls and indica-
tor lights associated with arming the spoilers, the land-
ing gear doors, the landing gear, the flaps, the glideslope
indicator, and the ignition. The human-automation inter-
face would receive human actions (flipping the ignition
switch, pulling the landing gear lever, setting the flaps,
and arming the spoilers) and have them affect the be-
havior of the automation. As the state of the automa-
tion and environmental variables changed, the indica-
tors associated with the iginition (IgnitionLight), spoilers
(SpoilerIndicator), landing gear doors (GearDoorLight),
landing gear (ThreeGearLights), flaps (FlapsGuage), and
glideslope indicator (GSIndicator) would update to re-
flect these changes.

5.3. Formal Verification

Formal verification was performed on a PC laptop run-
ning Windows 7 and Cygwin 1.7 with an Intel i5-2467M
CPU and 4 gigabytes of RAM. Using SAL’s symbolic
model checker, it took 14.6 seconds of total execution
time to verify all 34 generated properties.

For all but four of the generated properties, the desir-
able verification results were obtained. Every Act Exe-
cutability and Act Completability property returned the
desired counterexample indicating that every part of the

task model (Fig. 3) was capable of being reached (state
coverage was achievable). However, three of the Act In-
evitable Completability properties did not evaluate to true
indicating that, for three acts in the task model (aSet-
Flaps40, aSetSpoilers, aPrepareForLanding), there were
states where they would never finish executing. Further,
the one Task Liveness property also produced a coun-
terexample, the undesired outcome.

Examining the counterexamples for the failures of Act In-
evitable Completability (using the EOFM counterexam-
ple visualization [5]) revealed a common problem. In all
three, the landing gear doors took between 16, 17, and 18
seconds to fully deploy. This appeared to create a situ-
ation where the aircraft would start descending (the end
state for the model) having just performed the action for
setting the flaps to 40◦ (for the aSetFlaps40 property) or
arming the spoilers (for the aSetSpoilers property). For
the failure of aPrepareForLanding’s property, the aircraft
started descending before the human operator could arm
the spoilers.

All three of these properties failed because the model
reached the end state of the model before all the neces-
sary activities could finish executing. More importantly,
all three of these failures could constitute serious prob-
lems for the safe operation of the aircraft. For all of them,
the aircraft reaches the capture position without having
the flaps properly set. This could result in the aircraft
going too fast as it starts to descend. The failure of aSet-
Spoilers’ property constitutes a situation where spoilers
are armed while the aircraft is just starting to descend,
a condition that could lead to premature spoiler deploy-
ment. Finally, the counterexample associated with aPre-
pareForLanding’s property revealed a situation where the

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013



aircraft did not have its spoilers armed as it started to de-
scend. If unnoticed by the pilot, this could lead to the
aircraft overrunning the runway.

To test whether these failures were the result of the de-
lay in the opening of the landing gear doors, the model
was iteratively modified across multiple verification runs
to see if there was a minimum delay that would remove
these failures from the model. This showed that when the
delay was 14 seconds or less, all three of these properties
returned the desirable verification outcome.

Finally, an examination of the counterexample associ-
ated with the failure of the Task Liveness specification re-
vealed that no tasks would ever execute once the aircraft
reached the capture position. This is not surprising given
that this constituted the end state of the model. Thus, to
ensure Task Liveness held in all other states, we used the
pattern shown in Eq. 6 to create the specification

G¬(F(G(aPrepareForLanding 6= Executing)))
⇒¬(Aircra f tPosition = EndPosition). (7)

When this was checked, it verified to true. This indicated
that the pilot would always be able to perform a task in
all but the end state of the model.

6. DISCUSSION

In the work presented here, we have extended the formal
verification method supported by EOFM (Fig. 1) with a
novel means of generating specification properties from
task models. By exploiting the computational representa-
tion of a task in a formal model, the method is capable of
detecting if parts of task models are never used, if parts of
them will never finish, and if there are situations where no
tasks can ever be performed; all properties indicative of
problems with HAI. The automatic nature of the method
is also advantageous in that: (a) there is no risk of specifi-
cation properties being manually misformulated; (b) an-
alysts need not anticipate all of the HAI problems asso-
ciated with the generated properties to check for them;
and (c) specification properties are represented in terms
of the task models meaning they detect problems with
the system’s HAI rather than just potentially problematic
automation conditions.

The utility of the method was demonstrated with a real-
istic example: a pilot performing a before landing check-
list. In this application, several problems with HAI were
discovered and the results of the analysis were used to
investigate the source of the failures. Impressively, the
method discovered the problems associated with the pi-
lot no adjusting the aircraft’s flaps in time, something not
discovered in previous analyses using this model [6].

It is important to note that the method is still compati-
ble with the traditional verification analyses supported by
EOFM [2–4, 6, 7, 9]. Thus, if an analyst has specific sys-
tem safety conditions that he or she wants to check, that
option is still available.

Despite its successes, the method does have some limita-
tions that should be addressed in future work.

6.1. Scalability

All analyses that use model checking suffer from the state
explosion problem [10], where the statespace of a model
grows exponentially as the number of concurrent ele-
ments are added to the system model. This can increase
the amount of time required to verify a model and, in the
worst case, result in a model to big to verify on a given
computer. Because our method relies on the verification
of multiple specification properties, for large models, this
could result in excessively long analysis times. Future
work should investigate the scalability of the method and
explore how additional methods can be used to manage
formal model complexity [19].

6.2. Interpreting Results

The counterexample visualizer supported by EOFM [5]
can help analysts evaluate single counterexamples. How-
ever, because a large number of properties must be veri-
fied with our method, analyst may find it difficult to inter-
pret verification results. Future work should investigate
options for assisting analysts in results interpretation.

6.3. Model Checker Limitations

In preparing the application for this paper, a number of
problems with SAL were revealed. Specifically, the ver-
ification of Act Inevitable Completability and Task Live-
ness prosperities could result in counterexamples illus-
trating artificial model loops (infinite state cycles where
no variable values changed) or failure to detect deadlock
states that violated the properties (SAL uses a separate
checker for finding deadlock states). To address these is-
sues, the model was formulated to both eliminate these
uninteresting cycles and allow the end state to recursively
cycle, preventing end state deadlock.

There may be several ways of addressing these problems.
SAL is open source so it may be possible to modify it
to remove these issues. Tools capable of helping ana-
lysts create models that do not have the noted limitations
could be developed. Finally, other model checkers will
likely not have these problems and the EOFM-supported
method could be adapted to work with these. Future work
should explore these options.

6.4. Method Extensions

There are other coverage criteria and computation con-
cepts [24] that could be used to reason about the execu-
tion of task models. Future work should identify which of
these are capable of providing analysts with insights im-
portant to HAI and use them to generate additional spec-
ification properties.

ACKNOWLEDGEMENT

This work was supported by Verification Models for Ad-
vanced Human-Automation Interaction in Safety Critical
Flight Operations from the European Space Agency.

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013



REFERENCES

1. Aı̈t-Ameur, Y., Baron, M., and Girard, P. (2003). For-
mal validation of HCI user tasks. In Proceedings of
the International Conference on Software Engineer-
ing Research and Practice, pages 732–738, Las Ve-
gas. CSREA Press.

2. Bolton, M. L. (ND). Automatic validation and fail-
ure diagnosis of human-device interfaces using task
analytic models and model checking. Computa-
tional and Mathematical Organization Theory. DOI
10.1007/s10588-012-9138-6.

3. Bolton, M. L. and Bass, E. J. (2009). A method for
the formal verification of human interactive systems.
In Proceedings of the 53rd Annual Meeting of the
Human Factors and Ergonomics Society, pages 764–
768, Santa Monica. HFES.

4. Bolton, M. L. and Bass, E. J. (2010a). Formally veri-
fying human-automation interaction as part of a sys-
tem model: Limitations and tradeoffs. Innovations
in Systems and Software Engineering: A NASA Jour-
nal, 6(3):219–231.

5. Bolton, M. L. and Bass, E. J. (2010b). Using task an-
alytic models to visualize model checker counterex-
amples. In Proceedings of the 2010 IEEE Interna-
tional Conference on Systems, Man, and Cybernet-
ics, pages 2069–2074, Piscataway. IEEE.

6. Bolton, M. L. and Bass, E. J. (2012). Using model
checking to explore checklist-guided pilot behav-
ior. International Journal of Aviation Psychology,
22(4):343–366.

7. Bolton, M. L., Bass, E. J., and Siminiceanu, R. I.
(2012). Using phenotypical erroneous human behav-
ior generation to evaluate human-automation interac-
tion using model checking. International Journal of
Human-Computer Studies, 70(11):888–906.

8. Bolton, M. L., Bass, E. J., and Siminiceanu, R. I.
(2013). Using formal verification to evaluate human-
automation interaction in safety critical systems, a
review. IEEE Transactions on Systems, Man and Cy-
bernetics: Systems, 43(3):488–503.

9. Bolton, M. L., Siminiceanu, R. I., and Bass, E. J.
(2011). A systematic approach to model checking
human-automation interaction using task-analytic
models. IEEE Transactions on Systems, Man, and
Cybernetics, Part A, 41(5):961–976.

10. Clarke, E. M., Grumberg, O., and Peled, D. A.
(1999). Model checking. MIT Press, Cambridge.

11. De Moura, L., Owre, S., and Shankar, N. (2003). The
SAL language manual. Technical Report CSL-01-
01, Computer Science Laboratory, SRI International,
Menlo Park.

12. Degani, A. (2004). Taming HAL: Designing inter-
faces beyond 2001. Macmillan, New York.

13. Emerson, E. A. (1990). Temporal and modal logic. In
van Leeuwen, J., Meyer, A. R., Nivat, M., Paterson,

M., and Perrin, D., editors, Handbook of Theoreti-
cal Computer Science, chapter 16, pages 995–1072.
MIT Press, Cambridge.

14. Fields, R. E. (2001). Analysis of Erroneous Actions
in the Design of Critical Systems. PhD thesis, Uni-
versity of York, York.

15. Kebabjian, R. (2012). Accident statistics. http:
//www.planecrashinfo.com/cause.htm. Ac-
cessed 3/25/2013.

16. Kenny, D. J. (2011). 22nd joseph t. nall report: Gen-
eral aviation accidents in 2010. Technical report,
AOPA Air Safety Institute.

17. Kirwan, B. and Ainsworth, L. K. (1992). A Guide to
Task Analysis. Taylor and Francis, London.

18. Maluf, D. A., Gawdiak, Y. O., and Bell, D. G. (2005).
On space exploration and human error: A paper on
reliability and safety. In Proceedings of the 38th
Annual Hawaii International Conference on System
Sciences, pages 79–84, Piscataway. IEEE.

19. Mansouri-Samani, M., Pasareanu, C. S., Penix, J. J.,
Mehlitz, P. C., OMalley, O., Visser, W. C., Brat,
G. P., Markosian, L. Z., and Pressburger, T. T.
(2007). Program model checking: A practitioners
guide. Technical report, Intelligent Systems Divi-
sion, NASA Ames Research Center, Moffett Field.

20. Mitchell, C. M. and Miller, R. A. (1986). A discrete
control model of operator function: A methodology
for information display design. IEEE Transactions
on Systems Man Cybernetics Part A: Systems and
Humans, 16(3):343–357.

21. Palanque, P. A., Bastide, R., and Senges, V. (1996).
Validating interactive system design through the ver-
ification of formal task and system models. In Pro-
ceedings of the IFIP TC2/WG2.7 Working Confer-
ence on Engineering for Human-Computer Interac-
tion, pages 189–212, London. Chapman and Hall,
Ltd.

22. Paternò, F., Santoro, C., and Tahmassebi, S. (1998).
Formal model for cooperative tasks: Concepts and
an application for en-route air traffic control. In Pro-
ceedings of the 5th International Conference on the
Design, Specification, and Verification of Interactive
Systems, pages 71–86, Vienna. Springer.

23. Reason, J. (1990). Human Error. Cambridge Uni-
versity Press, New York.

24. Sandler, C., Badgett, T., and Thomas, T. M. (2004).
The Art of Software Testing. John Wiley & Sons.

25. Schraagen, J. M., Chipman, S. F., and Shalin, V. L.
(2000). Cognitive Task Analysis. Lawrence Erlbaum
Associates, Inc., Philadelphia.

26. Sheridan, T. B. and Parasuraman, R. (2005). Human-
automation interaction. Reviews of human factors
and ergonomics, 1(1):89–129.

27. Silberschatz, A., Galvin, P. B., and Gagne, G. (2009).
Operating system concepts. J. Wiley & Sons.

28. Wing, J. M. (1990). A specifier’s introduction to for-
mal methods. Computer, 23(9):8, 10–22, 24.

To Appear in the Proceedings of the Sixth IAASS Conference. Montreal: IAASS. 2013

http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm

	Introduction
	Formal Verification and Model Checking
	Formal Verification and HAI
	Objectives

	Model Checking HAI with EOFM
	LTL Specification
	Specification Generation
	Item 1: Coverage
	Item 2: Starvation
	Item 3: Liveness
	Accounting for Uninteresting States
	Implementation

	Application
	Task Modeling
	Modeling the Rest of the System
	Formal Verification

	Discussion
	Scalability
	Interpreting Results
	Model Checker Limitations
	Method Extensions




