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Pilot noncompliance with checklists has been associated with aviation accidents.
This noncompliance can be influenced by complex interactions among the check-
list, pilot behavior, aircraft automation, device interfaces, and policy, all within
the dynamic flight environment. We present a method that uses model checking
to evaluate checklist-guided pilot behavior while considering these interactions.
We illustrate our approach with a case study of a pilot performing the “Before
Landing” checklist. We use our method to explore how different design interven-
tions could impact the safe arming and deployment of spoilers. Results and future
research are discussed.

To support flight operations, Federal Aviation Regulations require that airlines
supply checklists (step-by-step instructions for carrying out or verifying informa-
tion). However, noncompliance with checklists continues to be associated with
aviation accidents (Degani & Wiener, 1991; Graeber & Moodi, 1998; Lautman
& Gallimore, 1987; National Transportation Safety Board [NTSB], 1994). Such
noncompliance can be influenced by a number of factors. With respect to checklist
design, for example, ordering (Burian, 2004; Degani & Wiener, 1993), wording
(Burian, 2004; Degani & Wiener, 1993), and level of detail (Burian, 2004) can
impact compliance. Limitations on pilot performance such as working memory
and attention can also affect compliance (Burian, Barshi, & Dismukes, 2005; de
Brito, 2002). The design of aircraft systems and displays can also play a role.
For example, avionics might not provide enough information for pilots to keep
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track of the underlying automation’s modes (Sarter & Woods, 1995). Alerting
systems could produce multiple concurrent alarms and might not clearly indicate
what procedure is appropriate (Bass, Ernst-Fortin, Small, & Hogans, 2004; Burian
et al., 2005). In addition, the dynamics of the aircraft systems might not support
the timing of checklist items during procedure execution (Degani, 2004).

Many methods have been employed to evaluate checklists, including ques-
tionnaires and structured interviews (de Brito, 2002; Degani & Wiener, 1991),
part-task simulation studies (de Brito, 2002; Landry & Jacko, 2006), in-flight
observations (Degani & Wiener, 1993), and reviews of accident reports (Degani
& Wiener, 1991, 1993). To assist in the creation of checklists, design guidelines
have been compiled (Burian, 2004; Degani & Wiener, 1997) and generation algo-
rithms have been developed (Degani, Heymann, & Shafto, 1999). All of these
efforts have provided valuable insights into how to improve the use of flight
deck checklists. By considering all of the possible modeled interactions, this arti-
cle suggests that formal methods, and specifically formal verification techniques,
offer additional opportunities to support checklist development and evaluation.

Formal methods are a set of well-defined mathematical languages and tech-
niques for the modeling, specification, and verification of systems (Wing, 1990).
Systems are modeled using mathematically based languages, specifications are
formulated to describe desirable system properties, and a verification process
mathematically proves whether or not the model satisfies the specification. Model
checking is a highly automated approach used to verify that a formal model of a
system satisfies a set of desired properties (a specification; Clarke, Grumberg, &
Peled, 1999). A formal model describes a system as a set of variables and transi-
tions between variable states. Specification properties are usually represented in
a temporal logic (see Emerson, 1990) using the formal system model variables
to construct propositions. Verification is performed automatically by exhaustively
searching a system’s state space to determine if these propositions hold. If there
is a violation, an execution trace called a counterexample is produced. This
counterexample depicts a model state (the value of the model’s variables) cor-
responding to a specification violation along with a list of the incremental model
states leading up to the violation.

To use formal verification in the development and evaluation of checklists
in a comprehensive analysis, one must consider the contribution of not only
pilot behavior, but also aircraft system design, displays and controls, and the
operational environment. We have developed tools and methods for modeling
task behavior, human mission goals, human–device interfaces, device automa-
tion, and environmental conditions together in a formal framework (Bolton &
Bass, 2009, 2010a; Bolton, Siminiceanu, & Bass, 2011). In this work, we show
that this framework can be used to evaluate checklist-guided pilot behavior while
also considering interactions with the aircraft, the design of its systems, and the
operational environment.
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INSTRUMENT APPROACH

An instrument approach procedure involves navigating the aircraft to the run-
way with the aid of two independent subsystems, one providing lateral guidance
(localizer) and the other vertical guidance (glide slope). The vertical position of
the aircraft relative to the glideslope is displayed with a moving diamond on the
glideslope indicator (Figure 1). When the aircraft is within range of the instrument
landing system, and nearing the glideslope, the diamond will become “alive,”
moving toward the center of the display. The diamond will first pass through the
“two dot” and then the “one dot” positions. When the aircraft is on the glideslope,
the diamond is at the capture position.

To land safely, the pilot performs the Before Landing checklist. Herein this
means the following (Figure 2): (a) the ignition must be set to override, (b)
the landing gear must be down, (c) the spoilers should be armed, (d) the flaps

Glideslope

IndicatorOne Dot Position

Two Dot Position

Diamond

Capture

One Dot Position

Two Dot Position

FIGURE 1 A simplified representation of an aircraft artificial horizon display with a
glideslope indicator on the right.

Ignition.…………..………….…..Override

Landing Gear.……..Down,Three Green

Spoilers…………………………….Armed

Flaps…………….Extended, 40 Degrees

Annunciator Panel……………..Checked

BEFORE LANDING

FIGURE 2 The Before Landing checklist.
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should be extended to the appropriate flap setting (40◦ in this case), and (e) the
annunciator panel should be checked.

The ignition should be set to override so that there will be enough ignition
power to restart the engine should it quit. The ignition is controlled by a switch
and a light illuminates when the switch is set to override.

Once the glideslope indicator diamond is alive, the pilot can deploy the landing
gear. Pulling the landing gear lever opens the landing gear doors and deploys the
gear. In a well-functioning aircraft, the doors can take approximately 10 sec to
completely open. As such, the landing gear will fully deploy before the landing
gear doors are completely open. Three lights on the flight deck (one for each of
the landing gear) illuminate when the landing gear is fully deployed. Another light
illuminates when the landing gear doors begin to open, and remains on until they
are completely open.

The pilot progressively extends the flaps to reduce the aircraft’s stalling speed
and allow for safe flying at slower speeds. Extending flaps also increases drag,
which helps to slow the aircraft. In general, when the aircraft is between the one
dot and capture positions, the pilot has slowed to a speed where the flaps should be
set to 25◦. When the aircraft has reached the capture position, the pilot should set
the flaps to 40◦. Pilots can also progressively set the flaps to intermediate degrees
before or in between these two settings. The position of the flaps is indicated by a
gauge on the flight deck.

The annunciator panel is checked to ensure that the rudder is unrestricted so
that it can be used to help control aircraft yaw during landing.

Spoilers are retractable plates on the wings that, when deployed, slow the air-
craft and decrease lift. A pilot can arm the spoilers for automatic deployment using
a lever. Alternatively, a pilot can manually deploy the spoilers after touchdown.
If spoilers are not used, the aircraft can overrun the runway (see, e.g., American
Airlines Flight 1420; NTSB, 2001). If spoilers are deployed too early, the air-
craft loses lift and could have a hard landing. A pilot who forgets to arm the
spoilers might attempt to deploy them manually, but do so prematurely (as with
Air Canada Flight 621; Flight Safety Foundation, 1974a). Premature deployment
can also occur due to mechanical issues. Arming the spoilers before the land-
ing gear has been lowered or the landing gear doors have fully opened can result
in automatic premature deployment (Degani, 2004). Further, if the landing gear
configuration interferes with spoiler arming, and pilots move on to subsequent
checklist items, they might forget to return to the arming step (Degani, 2004).

OBJECTIVES

Problems related to spoiler deployment could involve the Before Landing check-
list, pilot behavior, the flight deck avionics interfaces, and the automation,
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all interacting in a dynamically changing environment. Variations in pilot behav-
ior (what actions are performed and when) and automation behavior (the timing
of automation controlled procedures) have been associated with spoiler-related
failures. Herein, we use our formal modeling framework and formal verification
with model checking to explore these issues. We first discuss our methods. This
includes a description of our framework, the associated models, and the specifi-
cations to be verified. We then describe two phases of analysis. In the first, we
manipulate human task behavior and mission goals to explore how they affect
safe spoiler deployment. We then explore how modified models of the device
automation, human–device interface, human mission, and human task behavior
could eliminate the discovered problems. In the second analysis phase, the device
automation is manipulated to investigate how landing gear deployment timing can
impact the safe deployment of spoilers. As with the first set of analyses, we per-
form additional evaluations to explore potential solutions to discovered problems.
We conclude with a discussion of our results and areas of future research.

METHODS

A Method for Model Checking Checklist-Guided Pilot Behavior

To analyze the performance of checklist-guided pilot behavior formally, one could
write model checking code for each checklist to be tested. The code could then
be integrated with formal models of the rest of the system (the mission, human–
device interface, device automation, and environment; Figure 3; see Bolton &
Bass, 2010a). Coupled with the safety specification (the system qualities to be

Formal System Model

Environment

Model

Human

Mission Model

Human Task

Model
Device

Automation Model

Human-device

Interface Model

FIGURE 3 A formal modeling framework. An arrow from a submodel represents output
variables and to a model, inputs variables.
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verified), the analyst could then determine if the modeled system violated the
specification using model checking. To ease the burden of representing checklists
in model checking code, we have developed a task analytic modeling language
called Enhanced Operator Function Model (EOFM; Bolton et al., 2011). When
checklists are represented using EOFM, our tools automatically translate repre-
sented checklists into model checking code (Bolton et al., 2011). In this way, an
analyst can define checklists with different steps, ordering of steps, and so on, and
can more easily formally verify them.

EOFM is an Extensible Markup Language (XML)-based human task modeling
language that can be used to define procedures (Bolton et al., 2011). EOFMs are
generally more expressive than procedures as they are hierarchical and heterar-
chical representations of goal-driven activities that decompose into lower level
activities, and finally, atomic actions (typically observable human actions but
cognitive and perceptual actions are also possible). In addition, EOFMs express
task knowledge not always listed in checklists. These are expressed as conditions
indicating when activities can be undertaken: what must be true before they can
execute (preconditions), when they can repeat (repeat conditions), and when they
have completed (completion conditions). Every activity can decompose into one
or more other activities or one or more actions. Many checklists do not specify the
relationship between steps in a procedure, but a decomposition operator in EOFM
can specify the temporal relationships between and the cardinality of the decom-
posed activities or actions (when they can execute relative to each other and how
many can execute).

EOFMs can be represented visually as a tree-like graph (Bolton & Bass,
2010c). Actions are rectangles and activities are rounded rectangles. An activity’s
decomposition is presented as an arrow, labeled with the decomposition operator,
that points to a large rounded rectangle containing the decomposed activities or
actions. Herein, two of the nine decomposition operators (Bolton et al., 2011) are
used:

● ord—All activities or actions in the decomposition must execute in the order
in which they appear.

● and_par—All of the activities or actions in the decomposition must execute,
where the execution of activities or actions can overlap.

Conditions on activities are represented as shapes or arrows (annotated with
the logic) connected to the activity that they constrain. The form, position, and
color of the shape are determined by the type of condition. A precondition
is a yellow, downward-pointing triangle; a completion condition is a magenta,
upward-pointing triangle; and a repeat condition (not used herein) is an arrow
recursively pointing to the top of the activity.
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EOFM has formal semantics that specify how an instantiated EOFM model
executes (Bolton et al., 2011). Specifically, each activity or action can have one
of three execution states: waiting to execute (Ready), executing (Executing), and
done (Done). An activity or action transitions between each of these states based
on its current state; the state of its immediate parent, its siblings (activities or
actions contained in the same decomposition), and its immediate children in the
hierarchy; and the decomposition operators that connect the activity to its parent
and its children. Instantiated EOFM task models can be automatically translated
(Bolton et al., 2011) into the language of the Symbolic Analysis Laboratory (SAL;
de Moura, Owre, & Shankar, 2003) using the language’s formal semantics. This
allows the task models to be integrated into a larger formal system model using
a defined architecture and coordination protocol (Bolton & Bass, 2010a; Bolton
et al., 2011). Formal verifications are performed on this complete system model
using SAL’s Symbolic Model Checker (SAL–SMC).

Formal Modeling Approach

For the case study presented here, we consulted the Before Landing checklist
(Figure 2), accident reports (Flight Safety Foundation, 1974a, 1974b; NTSB,
2001), and a related account (Degani, 2004).

A base formal system model including the operational environment, device
automation, human–device interface, and human (pilot) mission must be defined
for integration with the translated checklist (represented as a human task behavior
model). This base model is implemented in the language of SAL.

For our aircraft model, the SAL input file was configured with three modules
to represent the entire system (Figure 4): one representing the human task behav-
ior model (HumanTask), one representing the human operator’s mission goals
(Mission), and one (AIE) representing the other elements of the system model (the
device automation model, the human–device interface model, and the environ-
ment model). The three modules are ultimately composed together (using SAL’s
asynchronous composition operator ‘[]’; see de Moura et al., 2003) into the final
system model (System).

Each module is an input–output model defined by variables (input, output, or
local), and transition logic that determines how changes occur in local and out-
put variables. Our modules can generally be viewed as having three distinct parts:
variable declarations, where variables are defined in terms of their name, data
type, and whether they are input, output, or local; initialization, where output
and local variables are assigned their initial value; and transition logic (discussed
later).

There are very distinct interactions between the modules. They communi-
cate information to each other via the input–output relationships of their shared
variables. Mission goals are communicated from the Mission module to the
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FIGURE 4 General format of the base Symbolic Analysis Laboratory (SAL) input file used
for representing formal models in our example. The file starts with the definition of constants
and types. This is followed by the definition of four separate modules: Mission represents the
human operator’s mission goals; HumanTask represents the human task behavior the human
operator uses to interact with the system to fulfill the mission goals; AIE represents the behav-
ior of the automation, human–device interface, and environment; and System represents the
composition of all three of the other modules to form the larger system. The file ends with
a definition of the specification properties that will be checked against the model. The actual
SAL files can be found at http://www.fmhfe.com/IJAP2012
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HumanTask module; the HumanTask module communicates human actions (each
represented as a single Boolean variable that is true when the action is being
performed and false otherwise) to the AIE module; and the AIE module commu-
nicates environment and human–device interface information to the HumanTask
module.

To allow the HumanTask behavior module to have time to respond to changes
in the human–device interface and, conversely, to allow the AIE module to
respond to human actions, a coordination protocol controls when each mod-
ule is allowed to transition (Bolton & Bass, 2010a). This “handshake” protocol
allows the two modules to take turns transitioning between states according
to their internal transition logic. The module allowed to transition is deter-
mined by the values of two Boolean variables: Submitted, an output variable
from the HumanTask module; and Ready, an output variable from the AIE
module.

For the HumanTask module, the coordination logic is automatically generated
when an instantiated EOFM’s XML code is translated into SAL (Bolton et al.,
2011). However, the AIE half of the protocol must be implemented manually. The
remainder of this section describes the variables and transition logic of the formal
model.

Operational environment. The operational environment of an actual air-
craft includes many components such as the weather and air traffic. Herein, the
environment is modeled as the relative distance (Position) of the aircraft from
the capture position on the glideslope. The aircraft starts at a position where the
glideslope diamond is not alive. The aircraft proceeds up to the capture position
and begins to descend on the glideslope, a process that will take 18 sec. Thus,
the relative position of the aircraft from the initial position is discretized into
intervals (0–18) where the aircraft passes from one interval to the next in one
second (Figure 5). This means the aircraft speed and altitude are abstracted into
the position.

0 5 10 15 18

Glide Slope

Alive Two Dots One Dot Capture

FIGURE 5 The position of the aircraft relative to the glideslope.
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In the SAL input file, Position is represented as a local variable in the AIE mod-
ule. It is initialized to 0 and, under “Transition assignment for the environment
model” (Figure 4), a next state assignment advances the position: “Position’ =
Position + 1.” Further, an additional clause on the second guard in the AIE module
(“Position < 18”) limits what positions are considered.

Device automation. The formal model of the device automation (Figure 6)
represented the functionality of the aircraft’s landing gear, spoilers, and landing
gear doors. The ignition was not explicitly modeled in the device automation,
although it was modeled as part of the human–device interface.

The landing gear (Figure 6a) starts in the up position as it would before the pilot
performs the Before Landing checklist. When the pilot pulls the landing gear lever
(PullGearLever) the landing gear transitions (is deployed) to the down position.

As would happen in an actual approach, the landing gear doors (Figure 6b)
start in the closed position. When the pilot pulls the landing gear lever, the doors

Up

Down

PullGearLever

(a) LandingGear

Opening
Closed

Open

Opening3 Opening2 Opening1

Opening4 Opening5 Opening6

Opening9 Opening8 Opening7

(b) GearDoors 

Flaps0

Flaps25 Flaps40

SetFlaps25 SetFlaps40

SetFlaps40

SetFlaps25

(c) Flaps 

Unarmed

Armed

ArmSpoiler

(d) Spoilers

FIGURE 6 State transition representation of the system automation formal model.
(a) Landing gear. (b) Landing gear doors, where the number of Opening state transitions are
set to a constant (nine Opening states) and the total door opening time is 10 sec. (c) Flaps.
(d) Spoilers. In the Symbolic Analysis Laboratory (SAL) input file, each of these is represented
as a local variable. Each is initialized to the state (value) indicated by the arrow with a dot. Next
state assignments with condition logic are used under “Transition assignment for the automa-
tion model” in the AIE module to control transitions between states (values). For example,
the next state assignment for Flaps (c) would take the form: “Flaps’ = IF SetFlaps25 THEN
Flaps25 ELSIF SetFlaps40 THEN Flaps40 ELSE Flaps ENDIF.”
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begin to open. In the model it takes a constant amount of time (10 sec) for the
doors to completely open, where the amount of time corresponds to the number
of distance positions (Figure 5) the aircraft has passed (1 sec per interval).

The flaps (Figure 6c) start in the clean configuration (0◦), as would be the case
before the Before Landing checklist. Herein, the flaps can be set to 25◦ and 40◦.

The spoilers (Figure 6d) are unarmed, as they would be at the beginning of
an approach. They are armed when the pilot pulls the lever to arm the spoilers
(ArmSpoilers).

Human–device interface. The formal model of the human–device interface
(Figure 7) represents the state of the flight deck controls and indicator lights asso-
ciated with arming the spoilers, the landing gear doors, the landing gear, the flaps,
the glideslope indicator, and the ignition, all of which change state in response to
changes in the automation, the environment, and human actions.

The state of the glideslope indicator (Figure 7a) is dependent on the position
of the aircraft (Figure 5). Initially the glideslope indicator’s diamond is inactive.
At position 1 it becomes alive. It indicates “two dots” at position 6 and “one dot”
at position 11. At position 17, it indicates capture.

The state of the ignition is indicated by the ignition switch and an indicator
light. The ignition switch (Figure 7b) starts in the unflipped state. It transitions
when the pilot flips the switch. The ignition light (Figure 7c) is on when the switch
is flipped and off when it is un-flipped.

The state of the landing gear and landing gear doors are indicated by
the human–device interface’s gear lever (Figure 7d), three landing gear lights
(Figure 7e), and the gear doors light (Figure 7f). The gear lever starts in the
unpulled position. It becomes pulled when the pilot pulls the gear lever. The three
landing gear lights are off whenever the landing gear is up and on when it is down.
The gear doors light is dependent on the landing gear doors’ state. When the doors
are either open or closed, the light is off. Otherwise it is on.

The state of the flaps is indicated by the gauge the pilot uses to set the angle
of the flaps (Figure 7g). It reflects the state of the flaps as determined by the
automation.

The state of the spoilers (armed or unarmed) is indicated by the arming lever
(Figure 7h) and the spoiler indicator light (Figure 7i). The lever starts out in the
unpulled position and transitions to pulled when the pilot performs the action for
arming the spoilers. The indicator light is dependent on the state of the spoilers
from the automation. If the spoilers are armed then the light is on. Otherwise the
light is off.

Human mission. Airline policy might dictate whether or not pilots should
arm the spoilers or manually deploy them during landing. Pilots might also prefer
to use a particular spoiler option (see Flight Safety Foundation, 1974b). A pilot
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FIGURE 7 State transition representation of the formal model of the human device inter-
face. (a) Glideslope indicator. (b) Ignition switch. (c) Ignition light. (d) Landing gear lever.
(e) Three landing gear lights. (f) Gear doors light. (g) Flaps gauge. (h) Spoiler arming lever.
(i) Spoiler indicator light. In the Symbolic Analysis Laboratory (SAL) input file (Figure 4),
each of these is represented as an output variable. Each is initialized to the state (value) indi-
cated by the arrow with a dot. Next state assignments with condition logic are used under
“Transition assignment for the human-device interface model” in the AIE module to control
transitions between states (values).
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who prefers to manually deploy the spoilers will do so once the aircraft touches
down. This preference constitutes the mission model as a Boolean variable
PreferToArmSpoilers, which can be either true or false. In the SAL input file, this
is represented in the Mission module (Figure 4) where PreferToArmSpoilers is an
output variable that is initialized to be either true or false: “PreferToArmSpoilers
IN {TRUE, FALSE}.”

Human task behavior modeling. An EOFM was instantiated to rep-
resent the pilot task behavior for performing the Before Landing checklist
(Degani, 2004). An EOFM is instantiated as an XML file using the EOFM
notation (Bolton et al., 2011). In this particular model, a pilot human opera-
tor has access to input variables from the human–device interface (GSIndicator,
IgnitionLight, IgnitionSwitch, GearLever, GearDoorsLight, ThreeGearLights,
FlapsGauge, SpoilerLever, and SpoilerIndicator) and the human mission
(PreferToArmSpoilers). The pilot model generates human action outputs repre-
senting actions performed through the human–device interface: flipping the igni-
tion switch (FlipIgnitionSwitch), pulling the landing gear lever (PullGearLever),
setting the flaps to either 25◦ or 40◦ (SetFlaps25 and SetFlaps40, respectively),
and pulling the lever to arm the spoilers (ArmSpoilers).

The visualization of this model is shown in Figure 8. The pilot can override the
ignition (aOverrideIgnition) before the glideslope indicator diamond is alive if

aPrepare

ForLanding

GSIndicator ≤ Inactive

aOverride

Ignition

FlipIgnition

Switch

aDeploy

LandingGear

PullGear

Lever

aSet

Flaps25

Set

Flaps25

aSet

Spoilers

Arm

Spoiler

aSet

Flaps40

ordordordordord ord

Set

Flaps40

{ord,and_par}

GSIndicator ≤ Inactive

   IgnitionLight = Off
GSIndicator ≤ Alive

   ThreeGearLights = Off

GSIndicator ≤ OneDot

   FlapsGauge ≠ 25

PreferToArmSpoilers

   GearDoorLight = Off

   SpoilerIndicator = Off

GSIndicator ≤ Capture

   FlapsGauge ≠ Flaps40

FlapsGauge ≥ 25ThreeGearLights = On ¬ PreferToArmSpoilers

  SpoilerIndicator = On

FlapsGauge = Flaps40IgnitionLight = On

FIGURE 8 Visualization of the Enhanced Operator Function Model (EOFM) task model for
the Before Landing checklist. Note that the decomposition of aPrepareForLanding can have
either the ord or and_par decomposition. The actual EOFM files can be found at http://www.
fmhfe.com/IJAP2012 (color figure available online).
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the ignition light is off, thus fulfilling the first item on the Before Landing check-
list. For the second item on the checklist, the pilot can deploy the landing gear
(aDeployLandingGear) if the glideslope indicator is alive and the three landing
gear lights are off. When the glideslope indicator reads one dot, the pilot can set
the flaps to the intermediate 25◦. The pilot can arm the spoilers, the third item
on the Before Landing checklist, through the aSetSpoilers activity if he or she
prefers to arm the spoilers, and both the spoiler indicator and landing gear doors
lights are off. If the pilot does not prefer to arm the spoilers or the spoiler indi-
cator is on, the activity will complete without the pilot pulling the lever to arm
the spoilers (ArmSpoiler). Once the glideslope indicator reaches the capture posi-
tion, the pilot can set the flaps to 40◦ (aSetFlaps40), the fourth item on the Before
Landing checklist. Note that because the aircraft rudder and annunciator panel are
not included in the system model, the step for checking the annunciator panel is
not represented in the task model.

Pilots use the Before Landing checklist to guide them (Degani, 2004).
Although pilots generally follow checklist items in order, they can complete them
out of sequence. To model both of these conditions, two task models were cre-
ated: one where the pilot will always perform the task in order (enforced by an
ord decomposition for aPrepareForLanding) and one where he or she can perform
them in any order (an and_par decomposition for aPrepareForLanding).

The EOFM task model instances were translated into SAL code and incorpo-
rated into the larger formal system model. In its original XML form, the human
task behavior models were represented in 86 lines of code. The translated SAL
versions were represented in 155 lines of code.

Specification

We created specifications that asserted properties about the system that we want to
be true using linear temporal logic (LTL; Emerson, 1990). An LTL specification
property is represented using variables from the formal model, common logic
operators, and temporal operators. For the purposes of this article, we only use
the temporal operator G, which asserts that a condition must be true for all paths
through a model.

For safety related to spoiler arming, we use LTL to specify that if the air-
craft is landing (at position 18), the spoilers should be armed if that is the pilot’s
preference:

G

⎛
⎜⎝ (Position = 18)

⇒
(

(PreferToArmSpoilers ∧ Spoilers = Armed)

∨ (¬PreferToArmSpoilers ∧ Spoilers �= Armed)

)⎞⎟⎠ (1)
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For safety related to premature spoiler deployment, we use LTL to specify that
we never want it to be true that the spoilers are armed when the gear doors are in
the process of opening (not closed and not open):

G ¬
( Spoilers = Armed

∧ GearDoors �= Closed
∧ GearDoors �= Open

)
(2)

Specification properties are incorporated into the SAL input file under
Specification properties. Each specification is given a specific name and asserts
which module it is referring to. Both Equations 1 and 2 refer to the System mod-
ule. For the purpose of this example, Equation 2 is represented in the SAL input
file as: “prematurespoiler : THEOREM System -|G(NOT(Spoilers = Armed AND
GearDoors /= GearDoorsClosed AND GearDoors /= cGearDoorsOpen)).”

Apparatus

All verifications were completed using SAL–SMC 3.0, the SAL symbolic model
checker. Verifications were conducted on a workstation with a 3.0 gigahertz
dual-core Intel Xeon processor and 16 gigabytes of RAM running the Ubuntu
9.04 desktop.

SAL–SMC is a command-line program. Thus, to perform a model checking
analysis, an analyst must run SAL–SMC while pointing to the appropriate SAL
input file and specification property. For example, to check Equation 2 the analyst
would run the command “sal-smc aircraft prematurespoiler.” More information
on configuring and running SAL can be found in the tutorial by de Moura (2004).

Model checker output was redirected from the command line into files (see
Cooper, 2011). Standard output contained basic model checker output and ver-
ification statistics (including verification time and number of visited states) that
were stored in one file. The actual verification results either indicated that the
theorem was “proved” or listed a counterexample showing what states led to the
safety specification violation. This was redirected from standard error output to a
separate file. Any counterexamples that were produced were evaluated using our
visualizer (Bolton & Bass, 2010c).

ANALYSIS PHASE 1: EXPLORING DIFFERENT MISSIONS
AND CHECKLIST-GUIDED BEHAVIOR

In the first analysis phase, we evaluated how different pilot behavior for perform-
ing the Before Landing checklist would impact spoiler safety. This was accom-
plished by performing formal verifications for both Equation 1 and Equation 2
on two versions of the formal system model: one in which the pilot model
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incorporated the ord decomposition operator (activities normatively performed
in order) and one in which the and_par decomposition operator was used (activi-
ties to be performed in any order). The nature of the mission model allowed pilots
to prefer arming or not arming the spoiler for both human behavior models.

Verification Results

For the model employing the human task behavior with the ord decomposition
operator, both Equations 1 and 2 verified to true (239 visited states in 1.14 sec
and 239 visited states in 1.12 sec, respectively). For the system model using the
human task behavior with the and_par decomposition operator, Equation 1 veri-
fied to true (725 visited states in 1.18 sec). However, the verification of Equation 2
returned a counterexample after 0.58 sec. The counterexample revealed that the
pilot’s first action was to arm the spoilers. The pilot followed this by deploying
the aircraft landing gear, an action that resulted in the landing gear doors open-
ing. Thus a violation of Equation 2 occurred with the landing gear doors opening
while the spoilers were armed.

Exploring Potential Solutions

There are a number of different ways in which this problem could be addressed.
With respect to the automation, the spoiler system could be redesigned so that
the spoilers could be armed while the landing gear doors are opening without
risk of premature deployment, making Equation 2 irrelevant. However, such a
solution might require an expensive retrofit. Another possible solution would be to
implement a forcing function (Norman, 1988) to prevent the pilot from being able
to arm the spoilers before the landing gear doors are open. However, this solution
would also have associated expense and could artificially limit the procedures
pilots could use to mitigate emergencies.

Another solution could change the pilot’s mission through policy changes,
where pilots would only be allowed to deploy spoilers manually. This modifi-
cation eliminates the violation without introducing a new one: Equations 1 and
2 verified to true in just over 1 sec having visited 118 states for the ord model
and in 204 states for the and_par model. However, this might also not be a desir-
able solution, as it could lead to an increase in pilots manually deploying spoilers
prematurely, a problem known to occur with manual spoiler deployment (Degani,
2004; Flight Safety Foundation, 1974a, 1974b).

An additional option is to alter the pilot’s task through additional policy or
training (Basnyat, Palanque, Bernhaupt, & Poupart, 2008). In this situation, the
and_par task model could be made irrelevant if pilots always performed the
Before Landing checklist activities in order. Training could also address the
criteria pilots use for arming the spoilers. For example, if the precondition has the



MODEL CHECKING CHECKLIST-GUIDED BEHAVIOR 359

additional constraint that the three landing gear lights must be on before a pilot
arms the spoilers, the discovered violation is eliminated without adding any addi-
tional violations: Equation 1 and Equation 2 both verified to true in just over 1 sec
having visited 239 states for the ord model and 431 states for the and_par model.

ANALYSIS PHASE 2: EXPLORING VARIATIONS IN THE BEHAVIOR
OF THE AUTOMATION

There can be anomalous conditions in device automation or the environment that
can impact system performance and thus contribute to checklist noncompliance.
In this second analysis phase, we explored variations in the behavior of auto-
mated systems with respect to their impact on system safety properties. Herein,
we are concerned with how the time delays associated with aging hydraulic sys-
tems might influence the pilot’s ability to perform the Before Landing checklist.
We assume that the aging hydraulic systems for opening the landing gear doors
can delay the door opening process by up to 7 sec beyond the nominal 10 sec.
We can exploit the modularization of our architecture to replace the previous
device automation model with one in which the landing gear opening can take
between 0 and 7 additional sec (in 1-sec increments), making the range of poten-
tial landing gear opening times between 10 and 17. The formal system model
incorporated the normative task behavior models with the ord decomposition and
the and_par decomposition, both using the corrected precondition discussed at
the end of the previous section.

Verification Results

When Equation 2 was checked with the and_par decomposition operator model,
it verified in 1.23 sec having visited 1,931 states. However, when Equation 1 was
checked with the same model, a counterexample was returned after 1.43 sec:

1. Initially, the pilot (preferring to arm the spoilers) correctly flipped the
ignition switch to override the ignition.

2. At position 1, the pilot correctly initiated landing gear deployment and the
opening of the gear doors, which would take 16 sec to open.

3. At position 11, having reached the one dot glideslope position, the pilot
correctly set the flaps to 25◦.

4. At position 17, the landing gear doors light turned off because the doors
finished opening and, because glideslope was captured, the pilot correctly
set the flaps to 40◦.

5. The aircraft proceeded to position 18 with the landing gear doors light
turned off and without the spoilers being armed.
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When Equation 2 was checked with the ord decomposition operator model, it
verified in 1.18 sec having visited 1,403 states. However, Equation 1 returned a
counterexample after 1.45 sec:

1. Same as before.
2. Same as before except it would take 17 sec for the gear doors to open.
3. Same as before.
4. The pilot then waited to arm the spoilers because the landing gear doors

were still opening and thus the landing gear doors light was on.
5. The aircraft proceeded to position 18 when the landing gear doors light

finally turned off. However, the spoilers were not armed.

Exploring Potential Solutions

This example illustrates how anomalous or degraded behavior in device automa-
tion can impact the pilot’s ability to effectively perform procedures, as delays in
the hydraulic systems prevented the pilot from performing the activities necessary
for preparing the aircraft for landing.

There are a number of ways to address this. As previously mentioned, the air-
craft could be modified to allow spoilers to be armed while the aircraft landing
gear doors are opening without the risk of premature deployment. This would
allow spoilers to be armed much earlier in the process, and thus there would be
less risk of this process being impacted by time delays.

Alternatively, airlines could require that pilots manually deploy the spoilers.
When the mission model was updated to reflect this change, Equation 1 verified
to true for both the and_par (1,002 visited states in 0.82 sec) and ord (676 visited
states in 0.81 sec) formal system models. However, as was previously noted, this
might increase the risk of premature manual spoiler deployment during actual
landing.

Another solution could be to establish a maintenance policy on the aircraft
to ensure that the landing gear door hydraulics open within a given time. For
example, if maintenance can ensure that landing gear doors can open in under
15 sec, Equation 1 verifies to true for both the and_par (1,439 visited states in
1.39 sec) and ord (1,021 visited states in 1.35 sec) formal system models.

DISCUSSION

The modern flight deck is very complex due to the interactions among the
pilot, airline policies, regulations, human–device interfaces, and automation in
a dynamic environment. Thus, even though pilot checklist noncompliance is often
cited as a cause of failures in this environment, failures often result from the
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interaction of these elements. We have presented an instrument landing approach
application to illustrate how analyses offered by model checking can be used
to evaluate the safety of flight deck checklists while considering these interac-
tions. We exploited the flexibility of our formal modeling architectural framework
(Figure 3) to explore how different human task behavior and device automa-
tion models could contribute to safety concerns and to investigate potential
interventions.

Our approach has a unique utility in that it will consider all possible inter-
actions that are supported by the model. However, this is not to say that this
method will replace other methods for evaluating flight deck checklists: simula-
tions scale better than model checking analyses and offer the ability to model and
measure quantities that might not be easily discretized (Hu, 2008); surveys, inter-
views, observations, and other forms of human subject testing (de Brito, 2002;
Degani & Wiener, 1991, 1993; Landry & Jacko, 2006) allow for the collection of
data that is currently not possible with formal methods; accident report investiga-
tions (Degani & Wiener, 1991, 1993) give designers and analysts data with face
validity; improved training (Burian & Barshi, 2003) helps ensure that pilots will
properly follow checklists; and improved design elements (fonts, wording, etc.)
constructed around consistent design and corporate philosophies (Burian, 2004;
Degani & Wiener, 1997) help create more usable checklists. Thus, the method
discussed here is not a replacement for any of these other techniques, but rather a
complementary analysis that allows the interactions between system elements to
be considered more exhaustively than they would be otherwise. Despite its utility,
there are still extensions of our method suitable for future investigation.

Higher Fidelity Applications

The presented application showed how problems with flight deck checklists could
be discovered with our method. The model was kept simple and was used to find
known problems with spoilers related to the Before Landing checklist. However,
the real power of this method would reside in its ability to find previously
unknown problems. Thus, future work should go toward using this method to
investigate new flight deck procedure designs using higher fidelity models.

Erroneous Human Behavior

Phase 1 analyses demonstrated how the impact of variations in human task behav-
ior might affect system safety and showed how different solutions could also be
evaluated. Whereas the task model with the and_par decomposition could be
viewed as noncompliant behavior, other forms of noncompliant erroneous human
behavior are often associated with system failures (Hollnagel, 1993; Jones, 1999;
Reason, 1990; Sarter & Alexander, 2000; Shappell & Wiegmann, 1997).
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Several researchers have shown that it is possible to manually incorpo-
rate patterns of erroneous human behavior into task analytic behavior models
(Bastide & Basnyat, 2007; Fields, 2001; Paternò & Santoro, 2002). These
techniques should be capable of being supported by our method. Future
work should investigate if this is indeed the case and determine whether
these techniques would be appropriate for evaluating checklist noncompli-
ance. Further, we have investigated ways of automatically generating erroneous
human behavior within previously normative task analytic behavior models
(Bolton & Bass, 2010b, 2011). Future work should investigate whether our
method is capable of supporting multiple erroneous human behavior generation
methods, and when each is appropriate when evaluating noncompliance with
checklists.

Degraded Performance of the Automation and the Environment

The second phase of analyses demonstrated how degraded performance (land-
ing gear deployment time) of the automation could impact system safety. This
analysis was based on a known issue (Degani, 2004). There are, of course, many
additional ways in which degraded performance of the automation could impact
the performance of an approach procedure. Future work should investigate how
such factors could be included.

In our aircraft instrument approach procedure, the environment model was par-
ticularly simple. Although it is theoretically possible to do so, no variation in the
environment model was considered in the analyses. In reality, there are a num-
ber of environment conditions that could impact the instrument-landing approach
procedure such as weather, visibility conditions, and the relative locations of other
aircraft. Future work should investigate how these could be incorporated into
the formal model of the environment so that their impact could be evaluated.
Further, disciplines such as error injection (Voas, 1997), reliability engineering
(Department of Defense, 1987), and resilience engineering (Hollnagel, Woods,
& Leveson, 2006) offer theories about how errors, degraded performance, and
uncertainty can be modeled as part of automation and environment behavior
in complex systems. Future work should investigate how theories and practices
from these fields could potentially be used to extend our method so that it could
systematically incorporate degraded or erroneous automation and environmental
behavior.

Multiple Human Operators

To date, limited multioperator systems have been evaluated using our approach
(Bass et al., 2011). This is a distinct limitation as modern, complex systems
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have multiple human operators that interact with them. In fact, an instrument
landing approach in a commercial aircraft would be performed by a pilot team.
Multioperator systems would require extensions to the architectural framework
(Figure 3) to address the following:

1. Multioperator systems could have human–device interfaces that are
shared across human operators.

2. Device automation might be associated with each human–device inter-
face, remotely located, or both.

3. Human operators could have the ability to communicate directly or
through the human–device interface.

Future work should investigate how our architecture should be extended to
accommodate these and other issues related to modeling systems with multiple
human operators.

Comparison of Analysis Results

In a more complex example, the analyst might have many more specifications he
or she would want to verify against each design variation. In such a circumstance,
it is likely that the analyst would want to compare the results of different analyses
to diagnose similar problems that exist between designs, and to compare and con-
trast the performance of the designs. We have developed a visualization tool that
helps to interpret counterexamples (Bolton & Bass, 2010c), but such evaluations
would require counterexample visualization enhancements. Future work should
investigate tools and analyses that might be incorporated to facilitate these sorts
of comparative assessments.
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