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Abstract When evaluating designs of human-device interfaces for safety critical sys-
tems, it is very important that they support the goal-directed tasks they were designed
to facilitate. This paper describes a novel method that generates task-related temporal
logic properties from task analytic models created early in the system design pro-
cess. This allows analysts to use model checking (a means of performing exhaustive
mathematical proofs) to automatically validate that formal models of human-device
interfaces will let human operators successfully perform the necessary tasks with the
system. This paper also presents an algorithm that uses the method to diagnose why
a particular task is not valid for a given design. The application of both the method
and algorithm are illustrated with a patient-controlled analgesia pump programming
example. The method and algorithm are discussed and avenues for future work are
described.

Keywords Formal methods · Model checking · Task analysis · Temporal logic ·
Validation · Human-automation interaction

1 Introduction

Human-device interfaces (HDIs) for safety critical systems must support the human
work they were intended to enable, otherwise they may not allow the system to be op-
erated safely. Because of this, HDIs should be validated to determine whether they al-
low human operators to perform the necessary tasks. While traditional human factors
techniques provide means of accomplishing this, they are limited in that they are not
exhaustive and thus there are conditions they might miss. Analysis techniques found
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in formal methods, particularly formal verification via model checking, can help ad-
dress this problem. This paper present a new method that utilizes formal methods,
task analytic models, and model checking to allow analysts to automatically vali-
date that HDIs allow human operators to fulfill the task goals they were intended
to support. The paper also describes an algorithm capable of enabling the analyst to
diagnose validation failures discovered during the methods initial application.

1.1 Formal methods and model checking

Formal methods are a set of languages and techniques for the modeling, specification,
and verification of systems (Wing 1990). Model checking is an automated approach
used to verify that a formal model of a system (usually of computer software or
hardware) satisfies a set of desired properties (a specification) (Clarke et al. 1999).
A formal model describes a system as a set of variables and transitions between vari-
able values (states). Specification properties are typically represented in a temporal
logic (see Emerson 1990) where the variables that describe the formal system model
are used to construct propositions. Verification is the process of proving that the sys-
tem meets the properties in the specification. Model checking performs this process
automatically by exhaustively searching a system’s state space to determine if these
criteria hold. If no violation is discovered, the model checker reports that the model
verifies to true. If there is a violation, an execution trace is produced (a counterexam-
ple). This depicts a model state (a valuation of the model’s variables) corresponding
to a specification violation along with a list of the incremental model states that led
up to it. Conversely, a model checker can also be used to perform an existence proof,
where the model’s entire state space is searched to find a condition where a speci-
fication holds. If such a path is discovered, the model checker returns an execution
trace (termed a witness) which illustrates a path through the model under which the
specification property holds.

Model checking has traditionally been used to evaluate computer hardware and
software (Clarke et al. 1999). However, some researchers have used model checking
to investigate issues related to human-automation interaction (HAI). Model checkers
have been used to investigate properties of human-device interfaces (HDIs) (Abowd
et al. 1995; Campos and Harrison 1997, 2008; Paternò 1997), look for potential mode
confusion and/or automation surprise (Joshi et al. 2003; Rushby 2002; Bredereke and
Lankenau 2005), and evaluate system properties and human performance with mod-
eled human task analytic behavior (Aït-Ameur and Baron 2006; Basnyat et al. 2007;
Bolton et al. 2011; Fields 2001; Paternò and Santoro 2001) and/or human cognitive
behavior (Cerone et al. 2005; Rukšenas et al. 2009; Basuki et al. 2009) (see Bolton
2010 for a survey). Such techniques have an advantage over traditional HAI analy-
sis methods in that they allow analysts to consider all of the possible conditions in
a model and thus find any that may be problematic. Of particular relevance to this
paper is the research concerned with model checking HDIs.

1.2 Model checking human-device interfaces

In using model checking to evaluate HDIs, analysts must first formally model their
target HDI with any relevant underlying system or automation behavior. There are
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a number of different tools for doing this (see Bolton 2010), but all follow in the
tradition of Parnas (1969) in that they represent HDIs as finite state transition systems.

With a formal model of a HDI, analysts can formulate desirable properties using
a temporal logic and check that the model of the HDI adheres to them using a model
checker (Abowd et al. 1995; Campos and Harrison 1997; Campos 2008; Paternò
1997). Campos and Harrison (1997) identified four categories of HDI properties that
could be expressed in temporal logic:

– reachability: assertions about the ability of the interface to eventually reach a par-
ticular state;

– visibility: assertions that visual feedback will eventually result from an action;
– reliability: assertions that describe properties that support safe HAI; and
– task-related: assertions related to the ability of a human operator to achieve a par-

ticular goal.

Analysts can use a model checker to verify that the system exhibits desired usability
properties (reachability, visibility, or reliability), or they can validate that the sys-
tem allows the human to accomplish goals derived from task analytic models (task
related).

Expressing properties in temporal logic can be difficult. For this reason, a number
of tools have been developed to assist analysts in developing, automatically generat-
ing, and/or automatically evaluating reachability, visibility, and reliability properties
(Loer 2006; Campos 2009; Feary 2007). Very simple task-related properties can be
expressed with the aid of temporal logic patterns (Abowd et al. 1995; Campos 2008;
Paternò 1997). However, this can easily become unmanageable as the complexity of
the human task behavior being expressed increases.

1.3 Task analytic behavior models

Analysts use task analytic behavior models such as OFM (Operator Function Model)
(Mitchell and Miller 1986), EOFM (Enhanced Operator Function Model) (Bolton et
al. 2011), Concur Task Trees (Paternò et al. 1997), User Action Notation (Hartson et
al. 1990), and GOMS (Goals, Operators, Methods and Selection rules) (Kieras 2003)
to describe the normative human behaviors required to control a system (Kirwan and
Ainsworth 1992). These models represent the mental and physical activities opera-
tors use to achieve the goals the system was designed to support. The most common
formulation structures tasks as a hierarchy, where goal-directed activities decompose
into other activities and potentially (at the lowest level) atomic actions. In these mod-
els, strategic knowledge (condition logic) controls when activities can execute and
specifies what must be true when an activity completes. Modifiers on decomposi-
tions and/or between activities or actions control how many activities can execute
and what the temporal relationship is between them.

Such models can be used at many different stages in the design and/or analy-
sis of human-automation interactive systems. At latter stages of design or analysis,
task models may be very detailed, describing the specific sequences of actions hu-
man operators can use to normatively achieve goals with the system. However, at
earlier stages of design/analysis, task analytic models may be much more abstract
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and only describe the basic constraints on high-level, goal-directed activities without
representing atomic actions. It is these higher-level task models that are relevant to
the formal verification of task-related properties since they represent the hierarchy of
goals the operator is attempting to achieve and the basic temporal constraints on their
completion.

1.4 Objectives

Even at early stages of the systems engineering process, task analytic behavior mod-
els may contain multiple levels of decomposition and a variety of temporal and cardi-
nal restrictions between activities within a task model hierarchy. Therefore, it may be
very difficult for an analyst to manually translate such task models into task-related
temporal logic properties for use in HDI design validation. This paper introduces
a process for automatically generating task-related temporal logic properties from
task analytic behavior models. A model checker can then be used to automatically
check these properties against formal HDI models to prove that a given HDI design
is valid: that it supports the behavior captured in the task analytic models. Further, an
algorithm is presented which shows how the method can be iteratively reapplied to
diagnose problems when the HDI is shown to not be valid for a task. The paper de-
scribes the infrastructure that was developed to implement the method and diagnostic
algorithm. It then illustrates how both the method and algorithm can be used to eval-
uate a HDI using a patient-controlled analgesia pump programming application. The
results of this work are then discussed and directions for future work are explored.

2 Methods

The process shown in Fig. 1 was developed to allow analysts to automatically create
task-related temporal logic specifications from task analytic behavior models and
validate HDI designs using formal verification with model checking.

An analyst starts with a task analytic model (generated as part of an early task
analysis) and a model of a HDI design. The analyst runs the task analytic behavior
model through an automatic process which generates temporal logic properties. The

Fig. 1 Process for automatically generating task-related temporal logic specifications from task analytic
behavior models and using them to validate HDIs using formal verification with model checking
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analyst can then use a model checker to automatically, formally, verify that the HDI
model is valid: that it will allow for the fulfillment of the goals the task models were
designed to support. This process produces a verification report which, if the task
model goals are supported, will illustrate a path through the model showing how the
goals are achieved (a witness).

The remainder of this section discusses how a version of this process was imple-
mented as well as an algorithm that allows it to be iteratively applied to diagnose
discovered validation failures.

2.1 Task analytic behavior modeling

Human task behavior is modeled using the EOFM (Bolton et al. 2011). EOFM is well
suited to this work because it is hierarchical, represents strategic knowledge, supports
a number of different cardinal and temporal relationships between activities, has a
formal semantics, and has a proven track record for use in formal verification (see
Bolton and Bass 2009, 2010a, 2010b; Bolton et al. 2011; Bolton 2010).

Tasks in EOFMs are hierarchical representations of goal-driven activities that de-
compose into lower level activities, and, finally, atomic actions. EOFMs express task
knowledge by explicitly specifying the conditions under which human operator activ-
ities can execute (preconditions) and what must be true when they finish (completion
conditions). Conditions are Boolean expressions written in terms of variables rep-
resenting information from human-device interfaces, the operational environment,
mission goals, other human operators, and/or any other external source. Any activity
can decompose into one or more activities or actions (sub-acts). A decomposition
operator specifies the temporal relationships between and the cardinality of the de-
composed sub-acts (when they can execute relative to each other and how many can
execute). EOFM supports all of the following decomposition operators:

– optor: zero or more of the sub-acts must execute in any order;
– or: one or more of the sub-acts must execute in any order;
– and: all of the sub-acts must execute in any order;
– ord: all sub-acts must execute in the order they appear; and
– xor: exactly one sub-act must execute.

EOFM syntax is implemented in XML (eXtensible Markup Language) which pre-
serves the hierarchal relationships between activity elements. It also has the added
advantage of making EOFM models easy to edit and automatically parse.

EOFMs can be represented visually as discrete, tree-like graphs (shown later in
Fig. 2) where activities are represented as rounded rectangles. An activity’s decom-
position is presented as an arrow, labeled with the decomposition operator, that points
to a large rounded rectangle containing the sub-acts. Conditions on activities are rep-
resented as shapes or arrows (annotated with the condition logic) connected to the
activity that they constrain. A precondition is a yellow, downward-pointing triangle;
and a completion condition is a magenta, upward-pointing triangle.

EOFM is primarily used to express the specific details of how a human operator
performs normative, goal directed behavior (Bolton et al. 2011). As such, it has fea-
tures which are more expressive than are needed for the high-level models required
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Table 1 Linear temporal logic operators

Name Usage Interpretation

Global G φ φ will always be true.

NeXt X φ φ will be true in the next state.

Future F φ φ will eventually be true in some future state.

Until ψ U φ ψ will be true until φ is true.

Note. φ and ψ are two propositions about either a model state or path (a temporally ordered sequence of
states) that can evaluate to true or false

for this work. This includes the ability for every activity to ultimately decompose into
atomic actions; support for parallel and sequential modalities for each of the decom-
position operators described above; and optional repeat conditions on each activity.
These features are not utilized in the work presented here.

2.2 HDI modeling and model checking

Formal modeling of HDIs was performed using the notation of the Symbolic Analysis
Laboratory (SAL) (De Moura et al. 2003). Formal verification was performed using
SAL’s symbolic model checker SAL-SMC (De Moura et al. 2003; Shankar 2000).

2.3 Temporal logic specification

There are a number of different temporal logics used to specify properties for model
checking analyses (Clarke et al. 1999; Emerson 1990). The temporal logic supported
by SAL-SMC is Linear Temporal Logic (LTL). Thus, LTL was used in this work.

LTL uses propositional variables, basic logic and Boolean operators (∧, ∨, ¬, ⇒,
⇔, =, �=, <, >, etc.), and temporal operators (Table 1) to assert properties about all
paths through a model. In the work presented here, only the G and F operators are
used in the construction of specifications.

2.4 Task model to temporal logic specification

Because LTL only allows specifications to reason about properties in all paths through
a model, LTL model checkers (like SAL-SMC) do not allow for existence proofs.
However, the equivalent of an existence proof can be obtained by having the gener-
ated property assert that the goals encompassed by the task model (t) will never hap-
pen (LTL pattern G¬(t)). When model checked against a HDI model, such a property
will produce a counterexample (the equivalent of a witness in an existence proof) if
the HDI model supports the task. If the task is not supported, the model checker will
indicate that the property is true. Thus, existence is proved if a witness is produced
and disproved if one is not.

Every task structure in an EOFM instantiation is composed entirely of activities.
Each activity in a task structure has at most three propositions that need to occur
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ordinally in the HDI: the precondition (x) should be true, then the conditions asso-
ciated with the execution of the activities children (sub-activities; y) should be true,
and then the completion condition (z) should be true. These temporally ordered re-
lationships can be represented in LTL using temporal logic patterns. For example,
x ∧ F(y) asserts that y eventually occurs after x. Similarly, y ∧ F(z) asserts that
z eventually occurs after y. These can be combined to assert that z eventually occurs
after y which eventually occurs after x by imbedding the second expression in the
first: x ∧ F(y ∧ F(z)). In this way, LTL can be used to express sequences of ordinal
conditions.

Any given activity can have sub-activities (which themselves have sub-activities)
all of which have their temporal relationships modified by a decomposition operator
which either specifies a specific order (ord) or directly corresponds to a relationship
expressible by a Boolean operator (optor, or, and, xor). Thus, the generated tempo-
ral logic property must enumerate all of the potential ordinal sequence of conditions
associated with activity decomposition based on the decomposition operators. To il-
lustrate this, assume that for y to be true, both y1 and y2 must have been true but in
no particular order (an and relationship). In this situation the LTL expression from
above becomes x ∧ F((y1 ∧ F(z)) ∧ (y2 ∧ F(z))).

Finally, if we want to use a model checker to generate a witness to illustrate how
the last property can be performed (if it is valid), we can place it in the G¬(t) pattern
from above: G¬(x ∧ F((y1 ∧ F(z)) ∧ (y2 ∧ F(z)))).

This information can be used to develop a mathematical function to generate LTL
properties from each root parent activity in an EOFM instance’s task structures.

Let an activity be defined as a tuple 〈α,ω, δ,Σ〉. α and ω are Boolean expressions
representing the activity’s precondition and completion condition respectively. δ rep-
resent the activities decomposition operator such that δ ∈ {optor,or,and, xor,ord, ε}
which are as defined above except for ε which represents no decomposition operator
(for an activity that does not decompose). Σ is an ordered set of the activity’s chil-
dren (sub-activities) such that for an integer m ≥ 0, Σ = (σ1, σ2, . . . , σm). For a given
activity a, let aα , aω, aδ , aΣ , and am represent the activity’s precondition, completion
condition, decomposition operator, ordered set of children, and number of children
respectively. Further, for an integer i, 1 ≤ i ≥ am, let aσi

represent σi from aΣ .
Thus for a given task structure with root parent a and LTL expression φ, the LTL

specification property can be generated by (1).

f(a) = G¬(
g(a, true)

)
(1)

where

g(a,φ) = aα ∧ F

⎛

⎜⎜⎜⎜⎜
⎝

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∨am

i=1(g(aσi
, aω ∧ F(φ))) if aδ = or

∧am

i=1(g(aσi
, aω ∧ F(φ))) if aδ = and

⊕am

i=1(g(aσi
, aω ∧ F(φ))) if aδ = xor

h(aσ1, aω ∧ F(φ)) if aδ = ord
aω ∧ F(φ) otherwise

⎞

⎟⎟⎟⎟⎟
⎠

(2)

and

h(aσi
, φ) =

{
g(aσi

,g(aσi+1, φ)) if i < am

g(aσi
, φ) if i = am

(3)
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Note that in (2),
⊕

is a one-hot detector—a special type of exclusive or operator
that is true only if exactly one of the am expressions is true.

This formulation was implemented as a Java program which would parse a file
containing an EOFM instantiation and generate (print out) an LTL specification for
each task structure it contained.

2.5 Problem diagnosis

For a given task model, the nature of the specification property generated by (1) is
such that HDI models checked against it (using the method in Fig. 1) will not generate
a witness if the HDI model does not support the task. While this will indicate that the
HDI is not valid for the given task, it does not provide any information about why this
is the case. However, the task model can be systematically modified and the analysis
method (Fig. 1) repeatedly applied to assist an analyst in such a diagnostic. In this
section we present an algorithm that an analyst can use to accomplish this.

The LTL property produced by (1) is only dependent on the temporal relationships
between the preconditions and completion conditions contained in the task model’s
activities. As such, any problem associated with a failure to produce a witness will be
due to the inability of the HDI model to satisfy one or more of the conditions in the
context reinforced by the task structure. Thus, the Algorithm 1 effectively starts with
an empty task structure and systematically reconstructs it until it isolates a particular
configuration that cannot be satisfied by the HDI. The analyst can then examine the
modified structure to determine why the original task’s goals could not be validated.

Once a problem with the system is discovered using the algorithm,1 the analyst can
examine the last configuration of the modified task model to develop an understand-
ing of the relationships between the conditions associated with the problem. The HDI
model can then be modified to potentially address the unsatisfied conditions. Once the
analyst thinks he or she has corrected the problem, he or she should attempt to verify
the original specification (generated from the unmodified task structure). If that does
not work, the analyst will want to restart the algorithm to reassess the model.

It should be noted that the process of creating and modifying a′ throughout the
procedure can be easily accomplished by commenting out and/or re-including ele-
ments of the EOFM’s XML syntax. a′ can be created (Lines 2–6) by commenting out
a’s conditions and sub-activities. Conditions can be added to a′ by “un-commenting”
them in the markup. Similarly, sub-activities can be added in by removing the com-
menting from them.

3 Application

To illustrate how the method (Fig. 1) can be used to validate a HDI, a patient-
controlled analgesia (PCA) pump example is presented. A PCA pump is a medical
device that allows patients to exert some control over the delivery of pain medication

1The analyst can stop the algorithm at any time during its execution if he or she feels enough information
has been obtained.
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Algorithm 1 Diagnoses the failure of a task model to validate
Input: a task structure with root activity r and a HDI model where f(r), from (1), does not produce a

witness when verified against the HDI model with a model checker
Output: diagnostics, preceded by the diagnose command, about what particular condition in the task

structure that resulted in the validation failure
1: a ← r

2: a′ ← a new activity {Create a duplicate of a that has no sub-activities or conditions (lines 2–6)}
3: a′

α ← ε

4: a′
ω ← ε

5: a′
δ ← aδ

6: a′
Σ ← ∅

7: replace a with a′ in the task structure with root activity r

8: if aα �= ε then {Use the method to evaluate the precondition of a}
9: a′

α ← aα

10: check f(r) against the HDI model using the model checker
11: if a witness is not produced then
12: diagnose that the preconditions for a is never contextually satisfied by the HDI
13: stop execution
14: end if
15: end if
16: if aω �= ε then {Use the method to evaluate the completion condition of a}
17: a′

ω ← aω

18: check f(r) against the HDI model using the model checker
19: if a witness is not produced then
20: diagnose that the completion condition for a is never contextually satisfied by the HDI
21: stop execution
22: end if
23: end if
24: for i ← 1 to am do {Use the method to evaluate each of the sub-activities of a}
25: add aσi

to a′
Σ such that aσi

= a′
σi

26: check f(r) against the HDI model using the model checker
27: if a witness is not produced then {Use the algorithm to investigate aσi

}
28: diagnose that a condition somewhere in aσi

is never contextually satisfied by the HDI
29: a ← aσi

30: goto line 2
31: end if
32: end for

Note. The above algorithmic pseudo code was constructed using the notation described by Brito (2009).
Variable assignment is indicated with a ← where the value or variable to the right of the arrow is assigned
to the variable to the left of it. Comments are surrounded by { and }. ε is used to represent an empty
precondition and completion condition. Thus, for an activity a, aα = ε means that a has no precondition
and aω �= ε means that a has a completion condition. stop execution is used to indicate that the algorithm
has reached a stopping point

(using a button attached to the device) based on a prescription programmed into it
by a human operator. The presented analysis focuses on the HDI the human operator
uses to program prescriptions into the pump.

3.1 Task analytic behavior modeling

In this example, it is assumed that a task analysis was performed early in the design
process before an actual system has been developed.2 This revealed that the HDI for

2The task analysis findings presented here are theoretical and are used only for the purpose of illustrating
the method presented in this paper.
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programming the PCA pump needed to allow the human operator to program in three
types of prescriptions (encoded below as PrescribedType):

– One where the operator must specify the parameters associated with a treatment
condition in which a patient must self administer all medication (PrescribedType
= PCA);

– One where the operator must specify the parameters associated with a treatment
condition under which the patient may self administer medication in addition to a
continuous basal rate of medication that is delivered to the patient (PrescribedType
= BasalPCA); and

– One where the operator must specify the parameters associated with a treatment
condition in which only a continuous dosage is delivered at a steady rate (Pre-
scribedType = Continuous) and the patient exerts no control over the administra-
tion of medication.

The analysis found that for all prescription types, the operator was required to
enter the fluid volume (PrescribedFluidVolume) of the medication reserve being used
in the administration of treatment as the first parameter. It also revealed that in all
cases a bolus dose (PrescribedBolus), an initial supplementary dosage designed to
raise the level of medication in the bloodstream to an effective level, should be the
last parameter entered. All of the other parameters could be programmed into the
pump in any order in between these two. However, the parameters differ between
prescription types. A PCA prescription has a one hour limit (Prescribed1HourLimit)
on the volume of administered medication, a patient administrable medication dosage
(PrescribedPCADose), and a minimum delay between dosages (PrescribedDelay).
A BasalPCA prescription has all of the parameters of the former but also requires an
additional basal rate (PrescribedBasalRate). A Continuous prescription requires only
a one hour limit and a continuous medication delivery rate (PrescribedContinuous).

These restrictions were instantiated in an EOFM as three separate task models in
which the human operator’s goals (encoded into the preconditions and completion
conditions) were to ensure the values programmed into the device (FluidVolume, Bo-
lus, PCADose, 1HourLimit, Delay, BasalRate, and ContinuousRate) match those that
were prescribed (Fig. 2).

3.2 HDI design and formal modeling

At a later stage in the development process, a HDI design is created for the PCA pump
(Fig. 3).3 This design contains a dynamic LCD display and eight buttons. The human
operator uses the HDI to program a prescription. This involves the specification of
the type of prescription being entered and all prescription parameters. The “Start”
and “Stop” buttons start and stop the delivery of medication (stop must be pressed
twice) at certain times during programming. The “On-Off” button is used to turn
the device on (when pressed once) and off (when pressed twice). The LCD display is
used to select prescription options (such as prescription type) and specify prescription

3The presented device is based heavily on an actual PCA pump used in hospitals. Thus the presented HDI
does not necessarily reflect the design philosophies of the author.
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Fig. 2 EOFM task analytic behavior models for programming the three different prescriptions into a PCA
pump: (a) PCA, (b) BasalPCA, and (c) Continuous
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Fig. 3 HDI design for a PCA
pump

values. When the operator must choose between two or more options: the interface
message indicates what is being chosen and the initial or default option is displayed.
The up button is used to scroll through the available options.

When a numerical value is required (such as the volume of a PCA dose), the
value’s name is listed in the interface message and the value is presented with the
cursor under one of its digits. The programmer can move the position of the cursor by
pressing the left and right buttons. He or she can press the up button to scroll through
the different digit values available at that cursor position. The “Clear” button sets
the displayed value to zero. The enter button is used to confirm values and treatment
options.

This system was formally modeled in the language of SAL. However, for presen-
tation purposes, the model is represented here as state transition diagrams (Fig. 4).
The HDI model accepts a number of boolean input variables representing human
actions, each corresponding to a button press. All are named with a Press pre-
fix. Each is true when the associated action is being performed and false other-
wise. The HDI model is composed of variables representing the state of the inter-
face as indicated by the LCD (InterfaceState; Fig. 4(a)), the type of prescription
selected (Type; Fig. 4(b)), and the different prescription values in the pump (Flu-
idVolume, PCADose, Delay, 1HourLimit, Bolus, BasalRate, and ContinuousRate;
all of which adhere to the behavior in Fig. 4(c)). Note that to ensure that the HDI
model is computationally tractable, all of the prescription values were modeled ab-
stractly. A value initializes to Incorrect. When the human operator attempts to change
the value by pressing the up button, the value can stay Incorrect or become Cor-
rect. Whenever a value is Correct, it will become Incorrect if the human opera-
tor presses up. The value always becomes Incorrect when the “Clear” button is
pressed.

In addition to the system behavior, the formal model describes all of the pos-
sible types of prescriptions. Thus there is a PrescribedType which can assume
each of the following values: PCA, BasalPCA, and Continuous. If Prescribed-
Type = PCA: PrescribedFluidVolume, PrescribedPCADose, PrescribedDelay, Pre-
scribed1HourLimit, and PrescribedBolus are all values that are abstractly modeled as
being Correct. If PrescribedType = BasalPCA: PrescribedFluidVolume, Prescribed-
PCADose, PrescribedDelay, Prescribed1HourLimit, PrescribedBolus, and Basal-
Rate are all Correct. If PrescribedType = Continuous: PrescribedFluidVolume, Pre-
scribed1HourLimit, PrescribedBolus, and ContinuousRate are all Correct.
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Fig. 4 State transition model representation of the formal model of the PCA pump HDI. Rounded rect-
angles and boxes with dotted lines represent states. Arrows indicate guarded transitions between states.
Transitions are labeled with transition logic. Note that variables in transition logic with the Press prefix
indicate that a human has pressed a button on the HDI. (a) The state of LCD display. (b) The state of the
type of prescription selected in the pump. (c) The behavior used to model the state of prescription value X,
where X can be any values associated with a prescription

Finally, the system model is completed with a model that can issue (making true)
any possible human action (button press) at any given time: PressOnOff, PressLeft,
PressUp, PressRight, PressClear, PressEnter, PressStart, and PressStop.

3.3 LTL property generation and formal verification

Using the process described above, the instantiated EOFM tasks from Fig. 2(a), (b),
and (c) were converted into linear temporal logic properties (4), (5), and (6) respec-
tively.
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G¬

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

PrescribedMode = PCA

∧F

⎛
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⎝
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⎝

(
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∧
(
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)

∧
(
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)
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⎟⎟
⎠
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G¬

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

PrescribedType = BasalPCA

∧F

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

FluidVolume = PrescribedFluidVolume

∧F

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

(
1HourLimit = Prescribed1HourLimit
∧F (Bolus = PrescribedBolus)

)

∧
(
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∧
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)

⎞
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⎠
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⎞
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⎝

PrescribedType = Continuous
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⎛
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⎝
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∧F

⎛

⎜⎜
⎝

(
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)

∧
(
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)

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

(6)

Analyses were performed using SAL-SMC running on Cygwin on a laptop com-
puter with a 2.5 GHz Intel Core 2 Duo processor and 4 gigabytes of RAM.4 When
checked against the formal system model of the HDI design, the properties (4) and
(5) produced the expected counterexamples/witnesses illustrating how the associated
tasks (Figs. 2(a) and (b)) could successfully be performed. However, (6) did not re-
turn a counterexample, indicating that the task in Fig. 2(c) could not be completed as
specified. Thus, the HDI design is valid for the tasks described in Figs. 2(a) and (b).
However, it is not for the task in Fig. 2(c). The entire model checking process took
32 seconds (for all three properties combined). The model had a reported 53,248,244
states.

3.4 Problem diagnosis

Algorithm 1 was applied to diagnose the discovered failure:

– The process was started with r = ProgramContinuous.
– At line 1, a was set to r making a = ProgramContinuous.

4Machine specifications are reported because they influence reported verification time statistics.
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– In lines 2–6, a′ was set to a new activity (referred to as ProgramContinuous′ hence-
forth) that was a copy of ProgramContinuous without its precondition, completion
condition, or sub-activities.

– At line 7, ProgramContinuous was replaced in r by ProgramContinuous′.
– Because (at line 8) ProgramContinuous had a precondition, ProgramContinuous′

was given the precondition of ProgramContinuous at line 9, creating the task struc-
ture shown in Fig. 5(a).

– At line 10, f(r) was computed using (1) to produce (7) that was checked against
the HDI model, producing a witness.5

G¬ (
PrescribedType = Continuous

)
(7)

– Because (at line 11) a witness had been produced and because (at line 16) Pro-
gramContinuous did not have a completion condition, execution moved to line 24
where i was set to 1.

– At line 25, aσ1 (activity SetFluidVolume) was added to the sub-activities of Pro-
gramContinuous′ creating the task structure in Fig. 5(b).

– At line 26, f(r) was computed using (1) to produce (8) which was checked against
the HDI model, producing a witness.

G¬
(

PrescribedType = Continuous
∧F (FluidVolume = PrescribedFluidVolume)

)
(8)

– Because (at line 27) a witness had been produced, execution moved to line 24
where i was set to 2.

– At line 25, aσ2 (activity DoOtherContinuous) was added to the sub-activities of
ProgramContinuous′ creating the task structure in Fig. 5(c).

– At line 26, f(r) was computed using (1) to produce (9) which was checked against
the HDI, but no witness was produced.

G¬

⎛

⎜
⎜
⎝

PrescribedType = Continuous

∧F

⎛

⎝
FluidVolume = PrescribedFluidVolume

∧F

(
1HourLimit = Prescribed1HourLimit
∧ContinuousRate = PrescribedContinuous

)
⎞

⎠

⎞

⎟
⎟
⎠ (9)

– Because (at line 27) a witness was not produced, the algorithm indicated (at line
28) that there was a problem with ProgramContinuous.

– At line 29, a was set to DoOtherContinuous.
– At line 30, the algorithm jumped to line 2.
– In lines 2–6, a′ was set to a new activity (referred to as DoOtherContinuous′ hence-

forth) that was a copy of DoOtherContinuous without its precondition, completion
condition, or sub-activities.

– At line 7, DoOtherContinuous was replaced in r by DoOtherContinuous′.
– Because (at line 8) DoOtherContinuous had no precondition and (at line 16) no

completion condition, execution moved to line 24 where i was set to 1.
– At line 25, aσ1 (activity SetLimit) was added to the sub-activities of ProgramCon-

tinuous′ creating the task structure in Fig. 5(d).

5All model checking verifications discussed in this list were performed in 24 seconds or less.
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Fig. 5 Visualizations of the task models iteratively generated ((a)–(f)) by the diagnosis algorithm (1)
when it was used to evaluate the task model from Fig. 2(c)

– At line 26, f(r) was computed using (1) to produce (10) which was checked against
the HDI model, producing a witness.

G¬
⎛

⎝
PrescribedType = Continuous

∧F

(
FluidVolume = PrescribedFluidVolume
∧F (1HourLimit = Prescribed1HourLimit)

)
⎞

⎠ (10)

– Because (at line 27) a witness was produced, execution moved to line 24 where i

was set to 2.
– At line 25, aσ2 (activity SetContinuous) was added to the sub-activities of DoOther-

Continuous′ creating the task structure in Fig. 5(e).
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– At line 26, f(r) was computed using (1) to produce (11) which was checked against
the HDI model, but no witness was produced.

G¬

⎛

⎜
⎜
⎝

PrescribedType = Continuous

∧F

⎛

⎝
FluidVolume = PrescribedFluidVolume

∧F

(
1HourLimit = Prescribed1HourLimit
∧ContinuousRate = PrescribedContinuous

)
⎞

⎠

⎞

⎟
⎟
⎠ (11)

– Because (at line 27) a witness was not produced, the algorithm indicated (at line
28) that there was a problem with SetContinuous.

– At line 29, a was set to SetContinuous.
– At line 30, the algorithm jumped to line 2.
– In lines 2–6, a′ was set to a new activity (referred to as SetContinuous′ henceforth)

that was a copy of SetContinuous without its precondition, completion condition,
or sub-activities.

– At line 7, SetContinuous was replaced in r by SetContinuous′.
– Because (at line 8) SetContinuous had no precondition but (at line 16) did have a

completion condition, execution moved to line 17.
– At line 17, SetContinuous′ was given the completion condition of SetContinuous

creating the task structure shown in Fig. 5(f).
– At line 18, f(r) was computed using (1) to produce (12) which was checked against

the HDI model, but no witness was produced.

G¬

⎛

⎜⎜
⎝

PrescribedType = Continuous

∧F

⎛

⎝
FluidVolume = PrescribedFluidVolume

∧F

(
1HourLimit = Prescribed1HourLimit
∧ContinuousRate = PrescribedContinuous

)
⎞

⎠

⎞

⎟⎟
⎠ (12)

– Because (at line 19) a witness was not produced, the algorithm indicated (at line
20) that the completion condition on SetContinuous would never be contextually
satisfied by the HDI.

– At line 21, execution of the algorithm stopped.

By examining the last modified task structure produced by the algorithm (Fig. 5(f))
and its corresponding temporal logic specification (12), we can see that when the
human operator is attempting to program a continuous prescription, the HDI never
allows the human operator to program both a one hour limit and a continuous rate
after entering a fluid volume.

3.5 Redesign

The HDI model was examined to determine why the discovered problem was oc-
curring. This revealed that (in Fig. 4(a)) when the human operator is attempting to
program in a Continuous prescription type, that the interface does not allow him or
her to set a one hour limit, something required for a continuous prescription accord-
ing to the task in Fig. 2(c). Thus, the HDI can be redesigned so that after the human
operator sets the continuous rate, he or she sets the one hour limit, and then enters the
bolus.

Making this change in the formal model results in (4), (5), and (6) producing the
expected witnesses after 14 seconds of model checking.
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4 Discussion and conclusions

Given how important it is for HDIs of safety critical systems to enable the tasks the
system was designed to support, the work presented here represents a significant con-
tribution in that it helps automate the process of validating HDI designs. This work
has shown that it is possible to generate temporal logic properties from task analytic
models created early in the system design process. These can then be used to validate
that formal models of HDI designs support the associated tasks using the process
from Fig. 1. Further, the work has shown that this method can be used iteratively
while modifying the original task behavior model as part of an algorithm to diag-
nose discovered validation failures. An implementation of this process was presented
that uses SAL and EOFM. Both the method and diagnostic algorithm were illustrated
with a PCA pump programming HDI example that showed how shortcomings in a
design could be discovered using these approaches.

This process has a distinct advantage over previous work where properties had to
be created manually from scratch or through the application of temporal logic patterns
(Abowd et al. 1995; Campos 2008; Paternò 1997). Despite this, there are several
limitations of the presented method which future work should address. Additionally,
for the method to be useful for designers, it should be adapted to the emerging human
system integration design methods. Both of these are discussed below.

4.1 Method improvements

4.1.1 Automating the diagnostic algorithm

As presented here, the diagnostic algorithm must be performed manually. However,
it is possible that it could be completely automated. Future work will investigate this
possibility.

4.1.2 Task model condition logic

EOFM requires that strategic knowledge in preconditions and completion conditions
be specified using variables in Boolean expressions (Bolton et al. 2011). While this
allows for precise definition of the conditions which indicate when tasks can be per-
formed and what goals they achieve, it is unlikely that these variables will be defined
the same in the early design process (when the task analytic models are created) as
they will be in HDI design models. Thus, in actual practice, analysts will need to
redefine task model preconditions and completion conditions so that they accurately
reflect the variable names present in any HDI models they wish to evaluate. Such a
process may be time consuming and prone to analyst error. Future work should inves-
tigate how design tools can be used to integrate task analytic model and HDI design
development to avoid such problems.

4.1.3 Other task-related properties

The task-related properties generated in this work fall into a subcategory of HDI
specification properties called weak task completeness (Abowd et al. 1995; Paternò



Automatic validation and failure diagnosis of human-device interfaces

1997). Such specifications assert that there is at least one action sequence from initial
interface states that will eventually achieve a specific task’s goals. However, there are
other task-related specification properties. Strong task completeness asserts that, for
any given possible sequences of actions from a specific initial interface state, there
is a set of additional actions that will eventually achieve task goals (Abowd et al.
1995). Task connectedness properties assert that from any interface state, there is at
least one action sequence that will achieve task goals (Abowd et al. 1995). Finally,
undo/reversibility specification properties assert that the effects of a specific action
or task can eventually be undone with at least one sequence of actions (Abowd et al.
1995; Campos 2008; Paternò 1997). These other task-related properties can provide
additional useful insights into how a HDI supports task goals. Future work should
determine if the method presented here could be adapted to generate them.

4.1.4 Additional diagnostics and task exploration

The diagnostic algorithm introduced here allows an analyst to isolate a set of condi-
tions associated with a HDI model’s failure to validate. However, an analyst may wish
to perform additional diagnostics to better understand a problem. For example, if a
problem is isolated to the sub-activities of an activity that contains an and decompo-
sition, it may not be clear which of the sub-activities are causing the problem. In such
a situation, the analyst may wish to consider every possible subset of sub-activities to
determine which combination is associated with the problem being evaluated. Future
work should investigate what types of additional diagnostic analyses would be most
useful to analysts.

The method presented here is only capable of producing a single path (counterex-
ample/witness) through a HDI model, illustrating one way a given task can be ac-
complished. However, an analyst may want to determine when a specific execution
of the task (satisfaction of task goals) can occur. In such a situation, an analyst may
be able to modify the task structure to reflect the behavior of interest. Future work
should investigate how this might be done systematically, possibly through the use of
automated test case generation methods (Hamon et al. 2005).

4.1.5 Scalability

The model presented in the paper was relatively simple. However, the method will
likely not scale well to more complex applications. This is because all model check-
ing analyses (not just those that make use of SAL) are impacted by the state explosion
problem: as the complexity of the modeled system increases, the memory and time
required to store the combinatorially expanding state space can easily exceed the
available resources. An example of this problem that directly relates to the applica-
tion presented here is discussed by Bolton and Bass (2010a).

In practice, the state explosion problem can be addressed in a number of different
ways. Firstly, symbolic model checking (which is used in this work) allows the state
space of the formal system model to be transformed into a much more efficient rep-
resentation before model checking is started (Burch 1992). Abstraction techniques,
where system details that are not relevant to the analysis goals are abstracted away
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in the system model, can also be used. In this work, all numerical values were repre-
sented abstractly to keep the model tractable. However, there are a number of different
abstraction techniques that can be employed. An overview of these was documented
by Mansouri-Samani et al. (2007). Other more automated techniques allow select
portions of the state space to be searched without compromising the accuracy of the
verification. These can include partial order reduction (Holzmann and Peled 1994)
and symmetry (Clarke et al. 1996), which reduces the model state space by exploiting
redundancies in the formal model; compositional verification (Cobleigh et al. 2003),
which divides specification properties into properties about composable parts of the
larger system such that, if each part of the system verifies to true separately, the entire
system will satisfy the undivided specifications; and counterexample-guided abstrac-
tion refinement (Clarke et al. 2003), where an abstraction of the system model is
automatically created and intelligently de-abstracted over multiple model checking
runs until a genuine problem is discovered or the specification property is proven
true.

While these techniques do not solve the state explosion problem, they do allow
for useful analyses to be performed. Future advances in formal methods and model
checking technology will only improve this situation.

4.2 Support for human systems integration

In a report for the National Academies, Pew and Mavor (2007) make a number of
recommendations for how to improve human systems integration (HSI) in the systems
engineering and development process. Among their policy recommendations is the
suggestion that large organizations with system acquisition programs should establish
methods to verify and validate HSI requirements. The report also emphasizes the
need to include human design considerations early and throughout the system design
process. This point is also advocated by Booher and Minninger (2003), who list the
use of human-centered design (where human factors considerations are included is
systems specifications and iteratively evaluated over the system life cycle) as the
second most important factor in the success of HSI programs.

The method presented here requires that task analyses be conducted early in the
design process to establish requirements on human task behavior. Further, formal ver-
ification is used to validated that designs satisfy these requirements in later iterations
of design. Thus, the presented method fits nicely within the recommendations of Pew
and Mavor (2007) and Booher and Minninger (2003). However, for the method to be
used in such a context, it will need to be made to be compatible with other design
and analysis infrastructures. The discussion below explores how the method could be
integrated with other HSI design tools and practices.

4.2.1 Human-device interface design and modeling

The presented method requires the analyst to create a formal model of the HDI design
he or she wishes to validate, something that is not standard practice in HSI work and is
likely unfamiliar to most HDI designers and analysts. This problem could be rectified
through the use of HDI design tools such as ADEPT (Feary 2007) and Dwyer et al.’s
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formalization of HDIs defined in Visual Basic and Java Swing (Dwyer et al. 1997,
2004). Such tools are capable of creating formal models of HDIs without the human
operator needing to be an expert on formal modeling. Future work should investigate
how the method presented here might be made to work with these types of tools.
Future work should also investigate how formal models compatible with this method
might be generated from other HDI design tools currently used in HSI.

4.2.2 Task and cognitive models used at different stages of design and analysis

In the approach presented here, task analytic behavior models are used early in the
design process to represent the constraints between human operator goals. However,
task analytic behavior models can be used at different stages of HSI design or anal-
ysis. Models constructed before the design of a new HDI (like those used in this
work) can be used to inform design (Limbourg and Vanderdonckt 2003). Models
constructed for a given design will be much more detailed, often modeling atomic
human actions at the bottom of the goals hierarchy. These can be used to do all of
the following: construct intelligent tutoring systems (Chu 1995), evaluate usability
(Lecerof and Paternò 1998), or model human behavior in simulations (Göknur 2004).
They can also be paired with a cognitive architecture to perform human performance
analyses of HDI designs as has been done with the GOMS family of models (John
and Kieras 1996; Kieras 2003; Amant et al. 2005). Similarly, analyses that use cog-
nitive modeling often employ task knowledge. Such models have proven useful in
evaluating human performance with HDIs (see, for example, Ritter et al. 2006, 2007;
Mueller et al. 2011) and the human operators role in the failure of complex systems
(Byrne and Kirlik 2005).

Detailed models have also been used with model checking to evaluate system
safety properties (Bolton and Bass 2010a; Bolton et al. 2012, 2011; Palanque et
al. 1996; Aït-Ameur et al. 2003; Aït-Ameur and Baron 2006; Basnyat et al. 2007,
2008; Fields 2001; Cerone et al. 2005; Rukšenas et al. 2009; Basuki et al. 2009).
However, such analyses represent human behavior differently than is done in the pre-
sented method: cognitive and/or task behavior models are incorporated into the larger
formal model so that they can be evaluated as part of the system.

It should be possible for task models developed early in the design process to be
adapted into more detailed models for use in latter analyses.

Further, while the implementation of the method presented here is dependent on
EOFM, it should be adaptable to other task analytic behavior modeling techniques
more commonly associated with the analyses discussed above. Future work should
investigate this.

4.2.3 Team and organizational behavior

The method presented here assumes that the device being evaluated is for a single op-
erator. However, HSI projects may involve interactions and/or collaboration between
multiple human operators (operating independently or as part of an organization)
and multiple automated systems. While formal methods are very good at evaluating
concurrently executing automated systems and processes (Clarke et al. 1999; Wing
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1990), there have been few instances were formal methods have been used to evalu-
ate systems involving multiple human operators. Paternò et al. (1998) and Bass et al.
(2011) have investigated how human collaboration can be represented using unique
task structures in formal task analytic behavior models. Alternatively, Jonker et al.
(2007) have investigated how organizational protocols could be modeled and evalu-
ated in a formal context. Future work should determine how the method presented in
this paper could be adapted to exploit these advances.
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