
Validating Human-device Interfaces with Model Checking and Temporal Logic
Properties Automatically Generated from Task Analytic Models

Matthew L. Bolton
San José State University Research Foundation

NASA Ames Research Center
Moffett Field, CA 94035

matthew.l.bolton@nasa.gov

Keywords:
Formal methods, model checking, task analysis, temporal logic, validation, human-automation interaction

ABSTRACT: When evaluating designs of human-device interfaces for safety critical systems, it is very important that
they be valid: support the goal-directed tasks they were designed to facilitate. Model checking is a type of formal analysis
that is used to mathematically prove whether or not a model of a system does or does not satisfy a set of specification
properties, usually written in a temporal logic. In the analysis of human-automation interaction, model checkers have
been used to formally verify that human-device interface models are valid with respect to goal-directed tasks encoded
in temporal logic properties. All of the previous work in this area has required that analysts manually specify these
properties. Given the semantics of temporal logic and the complexity of task analytic behavior models, this can be very
difficult. This paper describes a method that allows temporal logic properties to be automatically generated from task
analytic models created early in the system design process. This allows analysts to use model checkers to validate that
modeled human-device interfaces will allow human operators to successfully perform the necessary tasks with the system.
The use of the method is illustrated with a patient controlled analgesia pump programming example. The method is
discussed and avenues for future work are described.

1. Introduction

Human-device interfaces (HDIs) for safety critical systems
must support the human work they were intended to en-
able, otherwise they may not allow the system to be oper-
ated safely. Because of this, HDIs should be validated in
order to determine whether they allow human operators to
perform the necessary tasks. While traditional human fac-
tors techniques provide means of accomplishing this, they
are limited in that they are not exhaustive and thus there are
conditions they might miss. Analysis techniques found in
formal methods, particularly formal verification via model
checking, can help address this problem.

1.1 Formal methods and model checking

Formal methods are a set of languages and techniques
for the modeling, specification and verification of systems
(Wing, 1990). Model checking is an automated approach
used to verify that a formal model of a system (usually of
computer software or hardware) satisfies a set of desired
properties (a specification) (Clarke, Grumberg, & Peled,
1999). A formal model describes a system as a set of
variables and transitions between variable values (states).
Specification properties are typically represented in a tem-
poral logic (see Emerson, 1990) where the variables that
describe the formal system model are used to construct

propositions. Verification is the process of proving that
the system meets the properties in the specification. Model
checking performs this process automatically by exhaus-
tively searching a system’s state space in order to determine
if these criteria hold. If there is a violation, an execution
trace is produced (a counterexample or witness). This de-
picts a model state (a valuation of the model’s variables)
corresponding to a specification violation along with a list
of the incremental model states that led up to it.

Model checking has traditionally been used to find prob-
lems in computer hardware and software applications
(Clarke et al., 1999). However, some researchers have
used model checking to investigate issues related to human-
automation interaction (HAI) (see Bolton, 2010 for a sur-
vey). Such techniques have an advantage over traditional
HAI analysis methods in that they allow analysts to con-
sider all of the possible conditions in a model in order to
find any that may be problematic. Of particular relevance
to this paper is the research concerned with model checking
human-device interfaces (HDIs).

1.2 Model checking human-device interfaces

In using model checking to evaluate HDIs, analysts must
first formally model their target HDI with any relevant un-
derlying system or automation behavior. There are a num-

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

130

ber of different tools for doing this (see Bolton, 2010), but
all follow in the tradition of Parnas (1969) in that they rep-
resent HDIs as finite state transition systems.

With a formal model of a HDI, analysts can formulate de-
sirable properties using a temporal logic and check that the
model of the HDI adheres to them using a model checker
(Abowd, Wang, & Monk, 1995; Campos & Harrison, 1997,
2008; Paternò, 1997). Campos and Harrison (1997) iden-
tified four related categories of properties that could be ex-
pressed in temporal logic and thus formally verified for
HDI models: (a) reachability: assertions about the abil-
ity of the interface to eventually reach a particular state;
(b) visibility: assertions that visual feedback will eventu-
ally result from an action; and (c) reliability: assertions
that describe properties that support safe HAI; and (d) task-
related: assertions related to the ability of a human opera-
tor to achieve a particular goal. Analysts can use a model
checker to verify that the system exhibits desired usabil-
ity properties (reachability, visibility, or reliability), or they
can validate that the system allows the human to accom-
plish goals derived from task analytic models (task related).

Expressing properties in temporal logic can be difficult.
For this reason, a number of tools have been developed
to assist analysts in developing, automatically generating,
and/or automatically evaluating reachability, visibility, and
reliability properties (Loer & Harrison, 2006; Campos &
Harrison, 2009; Feary, 2007). Very simple task-related
properties can be expressed with the aid of temporal logic
patterns (Abowd et al., 1995; Campos & Harrison, 2008;
Paternò, 1997). However this can easily become unman-
ageable as the complexity of the human task behavior being
expressed increases.

1.3 Task analytic behavior models

Human factors engineers use task analytic methods to de-
scribe the normative human behaviors required to control
a system (Kirwan & Ainsworth, 1992). The resulting task
analytic models represent the mental and physical activi-
ties operators use to achieve the goals the system was de-
signed to support. A common formulation structures tasks
as a hierarchy, where goal-directed activities decompose
into other activities and potentially (at the lowest level)
atomic actions. In these models, strategic knowledge (con-
dition logic) controls when activities can execute and spec-
ifies what must be true when the activity completes. Modi-
fiers on decompositions and/or between activities or actions
control how many can execute and what the temporal rela-
tionship is between them.

Such models can be used at many different stages in the de-
sign and/or analysis of human-automation interactive sys-
tems. At latter stages of design or analysis, task models

may be very detailed, describing the specific sequences of
actions human operators can use to normatively achieve
goals with the system. However, at earlier stages of de-
sign/analysis, task analytic models may be much more
abstract and only describe the basic constraints on high-
level, goal-directed activities without representing atomic
actions. It is these higher-level task models that are rel-
evant to the formal verification of task-related properties
since they represent the hierarchy of goals the operator is
attempting to achieve and the basic temporal constraints on
their completion.

1.4 Objectives

Even at early stages of design, task analytic behavior mod-
els may contain multiple levels of decomposition and a
variety of temporal and cardinal restrictions between ac-
tivities within a task model hierarchy. Therefore, it may
be very difficult for human operators to manually translate
such task models into task-related temporal logic proper-
ties for use in HDI design validation. This paper intro-
duces a process for automatically generating task-related
temporal logic properties from task analytic behavior mod-
els. A model checker can then be used to automatically
check these properties against formal HDI models in order
to prove that a given HDI design is valid: that it supports
the behavior captured in the task analytic models. The pa-
per describes the infrastructure that was developed to im-
plement this. It then illustrates how this process can be
used to evaluate a HDI using a pain medication pump pro-
gramming application. The results of this work are then
discussed and directions for future work are explored.

2. Methods

The process shown in Figure 2.1 was developed to allow
analysts to automatically create task-related temporal logic
specifications from task analytic behavior models and val-
idate HDI designs using formal verification with model
checking.

Task Analytic

Behavior Model

Model

Checker

HDI

Design

Formal

HDI Model

Task Model to

Temporal Logic

Specification

Verification

ReportTemporal Logic

Specifications

HDI

Modeling

Figure 2.1. Process for automatically generating task-
related temporal logic specifications from task analytic be-
havior models and using them to validate HDIs using for-
mal verification with model checking.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

131

An analysts starts with a task analytic model (generated as
part of an early task analysis) and a target HDI design. The
analyst uses the HDI design to create a formal model. The
analyst runs the task analytic behavior model through an
automatic process which generates temporal logic proper-
ties. The analyst can then use a model checker to automat-
ically, formally, verify that the HDI model is valid: that it
will allow for the fulfillment of the goals the task models
are designed to support. This process produces a verifica-
tion report which, if the task model goals are supported,
will illustrate a paths through the model showing how the
goals are achieved (a witness).

The remainder of this section discusses how a version of
this process was implemented.

2.1 Enhanced operator function model

Human task behavior is modeled using the EOFM (En-
hanced Operator Function Model) (Bolton, Siminiceanu, &
Bass, n.d.). EOFM is well suited to this work because it
is hierarchical, represents strategic knowledge, supports a
number of different cardinal and temporal relationships be-
tween activities, has a formal semantics, and has a proven
track record for use in formal verification (see Bolton &
Bass, 2009, 2010a; Bolton et al., n.d.; Bolton & Bass,
2010b; Bolton, 2010).

EOFM extends the Operator Function Model (OFM)
(Mitchell & Miller, 1986). EOFMs are hierarchical and
heterarchical representations of goal-driven activities that
decompose into lower level activities, and, finally, atomic
actions. EOFMs express task knowledge by explicitly
specifying the conditions under which human operator ac-
tivities can execute (preconditions) and what must be true
when they finish (completion conditions). Any activity can
decompose into one or more activities or actions (sub-acts).
A decomposition operator specifies the temporal relation-
ships between and the cardinality of the decomposed sub-
acts (when they can execute relative to each other and how
many can execute). EOFM supports all of the following
decomposition operators: (a) optor (zero or more of the
sub-acts must execute in any order); (b) or (one or more of
the sub-acts must execute in any order); (c) and (all of the
sub-acts must execute in any order); (d) ord (all sub-acts
must execute in the order they appear); and (e) xor (exactly
one sub-act must execute).

EOFMs can be represented visually as discrete, tree-like
graphs (see Figure 3.1) where activities are represented as
rounded rectangles. An activity’s decomposition is pre-
sented as an arrow, labeled with the decomposition oper-
ator, that points to a large rounded rectangle containing the
sub-acts. Conditions on activities are represented as shapes
or arrows (annotated with the condition logic) connected to

the activity that they constrain. A precondition is a yellow,
downward-pointing triangle; and a completion condition is
a magenta, upward-pointing triangle.

EOFM is primarily used to express the specific details of
how a human operator performs normative, goal directed
behavior (Bolton et al., n.d.). As such, it has features which
are more expressive than are needed for the high-level mod-
els required for this work. This includes the requirement
that every activity ultimately decompose into atomic ac-
tions; support for parallel and sequential modalities for
each of the decomposition operators described above; and
optional repeat conditions on each activity. These features
are not utilized in the work presented here.

2.2 Symbolic analysis laboratory

Formal modeling of HDIs was performed using the
notation of the Symbolic Analysis Laboratory (SAL)
(De Moura, Owre, & Shankar, 2003). Formal verification
was performed using SAL’s symbolic model checker SAL-
SMC (De Moura et al., 2003; Shankar, 2000).

2.3 Linear temporal logic

There are a number of different temporal logics used to
specify properties for model checking analyses (Clarke et
al., 1999; Emerson, 1990). The temporal logic supported
by SAL-SMC is Linear Temporal Logic (LTL). Thus, LTL
was used in this work.

LTL uses propositional variables, basic logic and Boolean
operators (∧,∨,¬,⇒,⇔,=, 6=, <,>, etc.), and temporal
operators (Table 2.1) to assert properties about all paths
through a model.

Table 2.1. Linear Temporal Logic Operators

Name Usage Interpretation

Global G φ φ will always be true.
NeXt X φ φ will be true in the next state.
Future F φ φ will eventually be true in some fu-

ture state.
Until ψ U φ ψ will be true until φ is true.

Note. φ and ψ are two propositions about either a model
state or path (a temporally ordered sequence of states) that
can evaluate to true or false.

2.4 Generating LTL specifications from EOFM

Because LTL only allows specifications to reason about
properties in all paths through a model, the generated prop-
erty must assert that the goals encompassed by the task

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

132

model (t) will never happen (LTL pattern G¬(t)) in or-
der to generate a counterexample/witness if the HDI model
supports the task. If the task is not supported, the model
checker will indicate that the property is true.

Every task structure in an EOFM instantiation is composed
entirely of activities. Each activity in a task structure has at
most three propositions that need to occur ordinally in the
HDI: the precondition (x) should be true, then the condi-
tions associated with the execution of the activities children
(sub-activities; y) should be true, and then the completion
condition (z) should be true. These temporally ordered re-
lationships can be represented in LTL using temporal logic
patterns. For example, x ∧ F(y) asserts that y eventually
occurs after x. Similarly, y ∧ F(z) asserts that z even-
tually occurs after y. These can be combined in order to
assert that z eventually occurs after y which eventually oc-
curs after x by imbedding the second expression in the first:
x ∧ F(y ∧ F(z)). In this way, LTL can be used to express
sequences of ordinal conditions.

Any given activity can have sub-activities (which them-
selves have sub-activities) all of which have their tem-
poral relationships modified by a decomposition operator
which either specifies a specific order (ord) or directly cor-
responds to a relationship expressible by a Boolean oper-
ator (optor, or, and, xor). Thus, the generated temporal
logic property must enumerate all of the potential ordinal
sequence of conditions associated with activity decompo-
sition based on the decomposition operators. To illustrate
this, assume that in order for y to be true, both y1 and y2

must have been true but in no particular order (an and rela-
tionship). In this situation the LTL expression from above
becomes x ∧ F((y1 ∧ F(z)) ∧ (y2 ∧ F(z))).

This information can be used to develop a mathematical
function to generate LTL properties from each root parent
activity in an EOFM instance’s task structures.

Let an activity be defined as a tuple 〈α, ω, δ,Σ〉. α and
ω are Boolean expressions representing the activity’s pre-
condition and completion condition respectively. δ repre-
sent the activities decomposition operator such that δ ∈
{optor, or, and, xor, ord} which are as defined above. Σ
is an ordered set of the activity’s children (sub-activities)
such that for an integer m ≥ 1, Σ = (σ1, σ2, ..., σm). For
a given activity a, let aα, aω , aδ , and aΣ represent the ac-
tivity’s precondition, completion condition, decomposition
operator, and ordered set of children respectively. Further,
for an integer i, 1 ≤ i ≥ m, let aσi

represent σi from aΣ.

Thus for a given task structure with root parent a and LTL
expression φ, the LTL specification property can be gener-
ated by

f(a) = G¬ (g(a, true))

where

g(a, φ) = aα ∧F

aω ∧ F(φ) if aδ = optor∨m
i=1 (g (aσi , aω ∧ F(φ))) if aδ = or∧m
i=1 (g (aσi , aω ∧ F(φ))) if aδ = and⊕m
i=1 (g (aσi , aω ∧ F(φ))) if aδ = xor

h(aσ1 , aω ∧ F(φ)) if aδ = ord

and

h(aσi , φ) =

{
g
(
aσi , g

(
aσi+1 , φ

))
if i < m

g (aσi , φ) i = m

Note that in g(a, φ),
⊕

is a one-hot detector – a special
type of exclusive or operator that is true only if exactly one
of the m expressions is true.

This formulation was implemented as a java program
which would parse a file containing an EOFM instantia-
tion and generate (print out) an LTL specification for each
task structure it contained.

3. Application

To illustrate how this method (Figure 2.1) can be used to
validate a HDI, an example is presented of a HDI for pro-
gramming prescriptions into a Patient Controlled Analgesia
(PCA) pump: a medical device that allows patients to con-
trol the delivery of pain medication based on a prescription
programmed into it by a human operator.

3.1 Task analytic behavior modeling

In this example, it is assumed that a task analysis was per-
formed early in the design process before an actual sys-
tem has been developed. This revealed that the HDI for
programming the PCA pump needed to allow the human
operator to program in three types of prescriptions: (a)
where the operator must specify only the parameters for
patient controlled dosages (PrescribedType = PCA), (b)
where the operator must specify parameters for patient con-
trolled dosages and a continuous basal rate (Prescribed-
Type = BasalPCA), and (c) where the operator must specify
only the parameters for a continuous rate (PrescribedType
= Continuous).

Further, the analysis found that in all cases the opera-
tor should enter the fluid volume (PrescribedFluidVolume)
of the medication reserve being used in the administra-
tion of treatment as the first parameter. It also revealed
that a bolus dose (PrescribedBolus) should be the last pa-
rameter entered in all cases. All of the other parameters
could be programmed into the pump in any order in be-
tween these two. However, the parameters differ between
prescription types. A PCA prescription has a one hour
limit (Prescribed1HourLimit) on the volume of adminis-
tered medication, a medication dosage (PrescribedPCA-
Dose), and a minimum delay between dosages (Prescribed-
Delay). A BasalPCA prescription has all of the param-

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

133

eters of the former but also requires an additional basal
rate (PrescribedBasalRate). A Continuous prescription re-
quires only a one hour limit and a continuous medication
delivery rate (PrescribedContinuous).

These restrictions were instantiated in an EOFM as three
separate task models (Figure 3.1).

3.2 HDI Design and Formal Modeling

At a later stage in the development process, a HDI design
is created for the PCA pump (Figure 3.2). This design con-
tains a dynamic LCD display and eight buttons. The human
operator uses the HDI to program a prescription. This in-
volves the specification of the type of prescription being
entered and all prescription parameters. The “Start” and
“Stop” buttons start and stop the delivery of medication
(stop must be pressed twice) at certain times during pro-
gramming. The “On-Off” button is used to turn the device
on (when pressed once) and off (when pressed twice). The
LCD display is used to select prescription options (such as
prescription type) and specify prescription values. When
the operator must choose between two or more options: the
interface message indicates what is being chosen and the
initial or default option is displayed. The up button is used
to scroll through the available options.

When a numerical value is required (such as the volume
of a PCA dose), the value’s name is listed in the interface
message and the value is presented with the cursor under
one of its digits. The programmer can move the position
of the cursor by pressing the left and right buttons. He can
press the up button to scroll through the different digit val-
ues available at that cursor position. The “Clear” button
sets the displayed value to zero. The enter button is used to
confirm values and treatment options.

This system was formally modeled in the language of SAL.
The model is represented here as state transition diagrams
(Figure 3.3). The HDI model was composed of vari-
ables representing the state of the interface as indicated by
the LCD (InterfaceState; Figure 3.3(a)), the type of pre-
scription selected (Type; Figure 3.3(b)), and the different
prescription values in the pump (FluidVolume, PCADose,
Delay, 1HourLimit, Bolus, BasalRate, and Continuous-
Rate; all of which adhere to the behavior in Figure 3.3(c)).
Note that in order to ensure that the HDI model is computa-
tionally tractable, all of the prescription values were mod-
eled abstractly. They start assuming a value of Incorrect.
When the human operator attempts to change the value by
pressing the up button, the value can stay Incorrect or be-
come Correct. Whenever a value is Correct, it will be-
come Incorrect if the human operator presses up. The
value always becomes Incorrect when the “Clear” button
is pressed.

Program

PCA

PrescribedType = PCA

ord

DoOther

PCA

and

1HourLimit = Prescribed1HourLimit

SetPCADose

PCADose = PrescribedPCADose

SetDelay

Delay = PrescribedDelay

SetLimit

SetFluid

Volume

FluidVolume = PrescribedFluidVolume

SetBolus

Bolus = PrescribedBolus

Program

BasalPCA

PrescribedType = BasalPCA

ord

SetFluid

Volume

FluidVolume = PrescribedFluidVolume

DoOther

BasalPCA

and

PCADose = PrescribedPCADose
Delay = PrescribedDelay

SetBasalRate

BasalRate = PrescribedBasalRate

SetBolus

Bolus = PrescribedBolus

Program

Continuous

PrescribedType = Continuous

ord

SetFluid

Volume

FluidVolume = PrescribedFluidVolume

DoOther

Continuous

and

1HourLimit = Prescribed1HourLimit

Set

Continuous

ContinuousRate = PrescribedContinuous

SetBolus

Bolus = PrescribedBolus

SetLimit

SetPCADose

(a)

(b)

(c)

1HourLimit = Prescribed1HourLimit

SetLimit SetDelay

Figure 3.1. EOFM task analytic behavior models for pro-
gramming the three different prescriptions into a PCA
pump: (a) PCA, (b) BasalPCA, and (c) Continuous.

0000 ml

Set Fluid
Volumel

>

▲ ►◄

Start

Stop

Clear

C

On/Off

PCA pump

Figure 3.2. HDI design for a PCA pump.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

134

SelectType
SetFluid

Volume

PressEnter ˄ Type = Continuous

SetContinuou

s

SetPCADose

PressEnter ˄ Type ≠ Continuous

SystemOff

PressOn PressEnter

SetDelay

PressEnter
SetBasal

Rate

Set1HourLimi

t

PressEnter

PressEnter ˄ Type = BasalPCA

PressEnter ˄ Type = PCA

SetBolus

PressEnter

PressEnter

Start

BeginsRx

PressEnter
Treatment

Administering

PressStart

PressEnter

SelectType
SetFluid

Volume

Set

Continuous

SetPCADose

SystemOff

SetDelay
Set

1HourLimit

PressOnOff ˄ X (PressOnOff)

PressStop ˄ X (PressStop)

InterfaceState = SetType ˄ PressUp

PCA BasalPCA Continuous

InterfaceState = SetType

˄ PressUp

InterfaceState = SetType

˄ PressUp

Incorrect Correct

InterfaceState = SetX ˄ PressUp

˅ PressLeft ˅ PressRight ˅ PressClear

InterfaceState = SetX

˄ PressUp

InterfaceState = SetX ˄ PressUp ˅ PressClear

SystemOn

(a) InterfaceState (c) Value X

(b) Type

PressLeft ˅ PressRight

Figure 3.3. State transition model representation of the formal model of the PCA pump HDI. Rounded rectangles and
boxes with dotted lines represent states. Arrows indicate guarded transitions between states. Transitions are labeled with
transition logic. Note that variables in transition logic with the Press prefix indicate that a human has pressed a button on
the HDI. (a) The state of LCD display. (b) The state of the type of prescription selected in the pump. (c) The behavior
used to model the state of prescription value X, where X can be any values associated with a prescription.

In addition to the system behavior, the formal model
also describes all of the possible types of prescrip-
tions. Thus there is a PrescribedType which can assume
all of the following values: PCA, BasalPCA, and
Continuous. If PrescribedType = PCA, Prescribed-
FluidVolume, PrescribedPCADose, PrescribedDelay,
Prescribed1HourLimit, and PrescribedBolus are all
Correct. If PrescribedType = BasalPCA, Prescribed-
FluidVolume, PrescribedPCADose, PrescribedDelay,
Prescribed1HourLimit, PrescribedBolus, and Basal-
Rate are all Correct. If PrescribedType = Continu-
ous, PrescribedFluidVolume, Prescribed1HourLimit,
PrescribedBolus, and ContinuousRate are all Correct.

Finally, the system model is completed with a model that
can issue any possible human action (button presses) at any
given time: PressOnOff, PressLeft, PressUp, PressRight,
PressClear, PressEnter, PressStart, and PressStop.

3.3 LTL property generation and formal verification

Using the process described above, the instantiated EOFM
tasks (Figure 3.1) were converted into linear temporal logic
properties. This resulted in the propositions in Figure 3.4.

When these were checked against the formal system model
of the HDI design, properties 3.4(a) and (b) produced the
expected counterexamples/witnesses illustrating how the
associated tasks (3.1(a) and (b)) could successfully be per-
formed. However, the property in 3.4(c) did not return a
counterexample, indicating that the task in 3.1(c) could not
be completed as specified.

PrescribedType PCA
FluidVolume PrescribedFluidVolume

1HourLimit Prescribed1HourLimit
Bolus PrescribedBolus

PCADose PrescribedPCADose
Bolus PrescribedBolus

Delay PrescribedDelay
Bol

F
G

F
F

F

F us PrescribedBolus

PrescribedType PCA
FluidVolume PrescribedFluidVolume

1HourLimit Prescribed1HourLimit
Bolus PrescribedBolus

PCADose PrescribedPCADose
Bolus PrescribedBolus

Delay PrescribedDelay
Bol

F

G FF
F

F

us PrescribedBolus

BasalRate PrescribedBasalRate
Bolus PrescribedBolus

F

PrescribedType PCA
FluidVolume PrescribedFluidVolume

1HourLimit Prescribed1HourLimit
Bolus PrescribedBolus

ContinuousRate PrescribedContinuous
Bolus PrescribedBolus

G FF
F

F

(a)

(b)

(c)

Figure 3.4. LTL Properties generated from the instantiated
EOFM model tasks from Figure 3.1.

Thus, the HDI design is valid for the tasks described in
3.1(a) and (b). However, it must be redesigned or modified
in order to be valid for (c). An examination of Figure 3.3(a)
shows that when the human operator is attempting to pro-
gram in a Continuous prescription type, that the interface
does not allow him to set a one hour limit – something re-

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

135

quired by 3.1(c). Thus, the HDI can be redesigned so that
after the human operator sets the continuous rate, he sets
the one hour limit, and then enters the bolus. Making this
change in the formal model results in all of the properties
in 3.4 producing the expected counterexamples/witnesses.

4. Discussion

Given how important it is for HDIs of safety critical sys-
tems to enable the tasks the system was designed to sup-
port, the work presented here represents a significant con-
tribution in that it helps automate the process of validating
HDI designs. This work has shown that it is possible to
generate temporal logic properties from task analytic mod-
els created early in the system design process and use them
to validated that formal models of HDI designs support the
associated tasks using a model checker. An implementation
of this process was presented which uses SAL and EOFM.
The process was illustrated with a PCA pump program-
ming HDI example which showed how shortcomings in a
design could be discovered using the presented method.

This process has a distinct advantage over previous work
where properties had to be created manually from scratch
or through the application of temporal logic patterns
(Abowd et al., 1995; Campos & Harrison, 2008; Paternò,
1997). Despite this, there are several limitations of the pre-
sented method which future work should address.

4.1 Human-device interface modeling

A distinct disadvantage of this method is that it requires the
analyst to create a formal model of an HDI design, some-
thing that is not standard practice and is likely unfamiliar
to most HDI designers. This problem could be rectified
through the use of HDI design tools such as ADEPT (Feary,
2007) and Dwyer et al.’s formalization of HDIs defined in
Visual Basic and Java Swing (Dwyer, Carr, & Hines, 1997;
Dwyer, Robby, Tkachuk, & Visser, 2004). Such tools are
capable of creating formal models of HDIs without the hu-
man operator needing to be an expert on formal modeling.
Future work should investigate how the method presented
here might be made to work with these types of tools. Fu-
ture work should also investigate how formal models com-
patible with this method might be generated from other
HDI design tools currently used by human factors engi-
neers.

4.2 Task model condition logic

Another limitation of this work comes from EOFM’s re-
quirement that strategic knowledge in preconditions and
completion conditions must be specified using variables in
Boolean expressions (Bolton et al., n.d.). While this al-
lows for precise definition of the conditions which indicate

when tasks can be performed and what goals they achieve,
it is unlikely that these variables will be defined the same
in the early design process (when the task analytic models
are created) as they will be in HDI design models. Thus,
in actual practice, analysts will need to redefine task model
preconditions and completion conditions so that they accu-
rately reflect the variable names present in the HDI models.
Such a process may be time consuming and prone to ana-
lyst error. Future work should investigate how design tools
can be used to integrate task analytic model and HDI design
development in order to avoid such problems.

4.3 Lack of diagnosis

The analysis presented here will indicate that a task is not
supported by an HDI if a counterexample/witness is not
returned. However, the method does nothing to tell the an-
alyst why the task was not supported. While the problem
in the presented HDI was easily diagnosed by examining
the presented figures, this may not be the case with other
applications. By allowing the analyst to generate discrete,
checkable temporal logic properties for each subtask (ac-
tivity) in a model, the method would give analysts a means
of potentially diagnosing why a task was not supported.
Future work should investigate the feasibility of this.

4.4 Multiple means of satisfying goals and sub-goals

Finally, the process presented here is only capable of pro-
ducing a single path (counterexample/witness) through a
HDI model, illustrating one way a given task can be ac-
complished. Thus, if a task behavior model encompasses
multiple options for achieving the task’s associated goals,
the method presented here will not provide insights on the
feasibility of any but one of them. This is a distinct lim-
itation because analysts may wish to understand all of the
different ways a HDI supports a task rather than just one.
For example, an interface that facilitates multiple means of
performing a task based on different environmental con-
straints may be more desirable than one that only support
the task under very limited environmental conditions. Fu-
ture work will investigate how the method presented here
can be extended to provide insights into the different ways
that an HDI can support the modeled tasks.

5. Acknowledgement

The author would like to thank Michael Feary for his feed-
back during the preparation of this manuscript. This work
was supported in part by NASA cooperative agreement
NNX08AX12A, the NASA Aviation Safety program, and
the FAA-NASA Nextgen flight research project. The con-
tent is solely the responsibility of the author and does not
necessarily represent the official views of NASA or the
FAA.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

136

6. References

Abowd, G. D., Wang, H., & Monk, A. F. (1995). A formal
technique for automated dialogue development. In
Proceedings of the 1st Conference on Designing In-
teractive Systems (pp. 219–226). New York: ACM.

Bolton, M. L. (2010). Using task analytic behav-
ior modeling, erroneous human behavior generation,
and formal methods to evaluate the role of human-
automation interaction in system failure. Unpub-
lished doctoral dissertation, University of Virginia,
Charlottesville.

Bolton, M. L., & Bass, E. J. (2009). A method for the
formal verification of human interactive systems. In
Proceedings of the 53rd Annual Meeting of the Hu-
man Factors and Ergonomics Society (pp. 764–768).
Santa Monica: HFES.

Bolton, M. L., & Bass, E. J. (2010a). Formally verify-
ing human-automation interaction as part of a sys-
tem model: Limitations and tradeoffs. Innovations in
Systems and Software Engineering: A NASA Journal,
6(3), 219–231.

Bolton, M. L., & Bass, E. J. (2010b). Using task analytic
models to visualize model checker counterexamples.
In Proceedings of the 2010 IEEE International Con-
ference on Systems, Man, and Cybernetics (pp. 2069–
2074). Piscataway: IEEE.

Bolton, M. L., Siminiceanu, R. I., & Bass, E. J. (n.d.).
A systematic approach to model checking human-
automation interaction using task-analytic models.
IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A. (In Press)

Campos, J. C., & Harrison, M. (1997). Formally veri-
fying interactive systems: A review. In Proceedings
of the Fouth International Eurographics Workshop on
Design, Specification, and Verification of Interactive
Systems (pp. 109–124). Berlin: Springer.

Campos, J. C., & Harrison, M. D. (2008). Systematic anal-
ysis of control panel interfaces using formal tools. In
Proceedings of the 15th International Workshop on
the Design, Verification and Specification of Interac-
tive Systems (pp. 72–85). Berlin: Springer.

Campos, J. C., & Harrison, M. D. (2009). Interaction engi-
neering using the ivy tool. In Proceedings of the 1st
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (pp. 35–44). New York: ACM.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model
checking. Cambridge: MIT Press.

De Moura, L., Owre, S., & Shankar, N. (2003). The
SAL language manual (Tech. Rep. No. CSL-01-01).
Menlo Park: Computer Science Laboratory, SRI In-
ternational.

Dwyer, M. B., Carr, V., & Hines, L. (1997). Model
checking graphical user interfaces using abstractions.

In Proceedings of the Sixth European Software En-
gineering Conference (pp. 244–261). New York:
Springer.

Dwyer, M. B., Robby, Tkachuk, O., & Visser, W. (2004).
Analyzing interaction orderings with model check-
ing. In Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (pp.
154–163). Los Alamitos: IEEE Computer Society.

Emerson, E. A. (1990). Temporal and modal logic. In
J. van Leeuwen, A. R. Meyer, M. Nivat, M. Paterson,
& D. Perrin (Eds.), Handbook of theoretical computer
science (pp. 995–1072). Cambridge: MIT Press.

Feary, M. (2007). Automatic detection of interaction vul-
nerabilities in an executable specification. In Pro-
ceedings of the 7th International Conference on En-
gineering Psychology and Cognitive Ergonomics (pp.
487–496). Berlin: Springer.

Kirwan, B., & Ainsworth, L. K. (1992). A guide to task
analysis. London: Taylor and Francis.

Loer, K., & Harrison, M. D. (2006). An integrated frame-
work for the analysis of dependable interactive sys-
tems (IFADIS): Its tool support and evaluation. Auto-
mated Software Engineering, 13(4), 469–496.

Mitchell, C. M., & Miller, R. A. (1986). A discrete control
model of operator function: A methodology for in-
formation display design. IEEE Transactions on Sys-
tems Man Cybernetics Part A: Systems and Humans,
16(3), 343–357.

Parnas, D. L. (1969). On the use of transition diagrams in
the design of a user interface for an interactive com-
puter system. In Proceedings of the 24th National
ACM Conference (pp. 379–385). New York: ACM.

Paternò, F. (1997). Formal reasoning about dialogue prop-
erties with automatic support. Interacting with Com-
puters, 9(2), 173–196.

Shankar, N. (2000). Symbolic analysis of transition sys-
tems. In Proceedings of the international workshop
on abstract state machines, theory and applications
(pp. 287–302). London: Springer.

Wing, J. M. (1990). A specifier’s introduction to formal
methods. Computer, 23(9), 8, 10–22, 24.

Author Biographies

MATTHEW BOLTON received the B.S. in computer sci-
ence in 2003, the M.S. in systems engineering in 2006, and
the Ph.D. in systems engineering in 2010 from the Uni-
versity of Virginia, Charlotteville, USA. He is a Senior Re-
search Associate for the San José State University Research
Foundation at the NASA Ames Research Center. His pri-
mary research focuss is on the development of tools and
techniques for using formal methods in the modeling, val-
idation, verification, and design of safety-critical, human-
automation interactive systems.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-020

137

	11-BRIMS-020

