
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011 961

A Systematic Approach to Model Checking
Human–Automation Interaction Using

Task Analytic Models
Matthew L. Bolton, Member, IEEE, Radu I. Siminiceanu, and Ellen J. Bass, Senior Member, IEEE

Abstract—Formal methods are typically used in the analysis
of complex system components that can be described as “auto-
mated” (digital circuits, devices, protocols, and software). Human–
automation interaction has been linked to system failure, where
problems stem from human operators interacting with an auto-
mated system via its controls and information displays. As part
of the process of designing and analyzing human–automation
interaction, human factors engineers use task analytic models to
capture the descriptive and normative human operator behavior.
In order to support the integration of task analyses into the
formal verification of larger system models, we have developed
the enhanced operator function model (EOFM) as an Extensi-
ble Markup Language-based, platform- and analysis-independent
language for describing task analytic models. We present the for-
mal syntax and semantics of the EOFM and an automated process
for translating an instantiated EOFM into the model checking
language Symbolic Analysis Laboratory. We present an evaluation
of the scalability of the translation algorithm. We then present an
automobile cruise control example to illustrate how an instantiated
EOFM can be integrated into a larger system model that includes
environmental features and the human operator’s mission. The
system model is verified using model checking in order to analyze a
potentially hazardous situation related to the human–automation
interaction.

Index Terms—Formal methods, human–automation interac-
tion, model checking, task analysis.

I. INTRODUCTION

FAILURES in complex safety-critical systems are often not
due to a single component, but rather system components

interacting in unexpected ways. Formal methods researchers
are developing languages, techniques, and tools capable of
proving whether potentially dangerous interactions between

Manuscript received January 11, 2010; revised August 17, 2010; accepted
November 26, 2010. Date of publication March 22, 2011; date of current
version August 23, 2011. This work was supported in part by the National
Library of Medicine under Grant T15LM009462, by the National Aeronautics
and Space Administration (NASA) Cooperative Agreement NCC1002043, and
by the NASA Contract NNA10DE79C. This paper was recommended by
Associate Editor M. Dorneich.

M. L. Bolton is with the San Jose State University Research Foundation,
National Aeronautics and Space Administration Ames Research Center, Moffet
Field, CA 94043 USA (e-mail: mlb4b@virginia.edu).

R. I. Siminiceanu is with the National Institute of Aerospace, Hampton, VA
23666 USA (e-mail: radu@nianet.org).

E. J. Bass is with the Department of Systems and Information Engi-
neering, University of Virginia, Charlottesville, VA 22904 USA (e-mail:
ejb4n@virginia.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2011.2109709

concurrently executing system components exist. Formal meth-
ods are a set of languages and techniques for the modeling,
specification, and verification of systems [1]. Model checking
is an automated formal methods approach used to verify that
a formal model of a system (usually of computer software or
hardware) satisfies a set of desired properties (a specification)
[2]. A formal model describes a system as a set of variables and
transitions between variable valuations (states). Specification
properties are typically represented in a temporal logic, usually
linear temporal logic (LTL) or computation tree logic (see [3]),
using the variables that describe the formal system model to
construct propositions. Verification is the process of proving
that the system meets the properties in the specification. Model
checking performs this process automatically by exhaustively
searching a system’s state space in order to determine if these
criteria hold. If there is a violation, an execution trace is
produced (a counterexample). This counterexample depicts a
model state (a valuation of the model’s variables) corresponding
to a specification violation along with a list of the incremental
model states that led up to the violation.

Model checking has been successfully used to find problems
in computer hardware and software applications (see [4]).
However, one source of failures in complex safety-critical
systems that is rarely considered in model checking analyses
is the interaction between the human operator and other sys-
tem components. For example, human–automation interaction
has contributed to a number of system failures [5], including
the crashes of American Airlines Flight 965 [6] and China
Air 140 [7].

A. Task Analytic Models of Human Behavior

When designing the procedures, displays, controls, and train-
ing associated with the human-automation interaction (HAI)
of an automated system, human factors engineers use task
analytic methods to describe the normative human behaviors
required to control the system automation [8]. The resulting
task analytic models represent the mental and physical activ-
ities that operators use to achieve the goals that the system
was designed to support. Such models are typically struc-
tured as a hierarchy, where activities decompose into other
activities and (at the lowest level) atomic actions. Task an-
alytic models, such as ConcurTaskTrees (CTT) [9], operator
function model (OFM) [10], or User Action Notation (UAN)
[11], can represent these hierarchies using discrete graph
structures. In these models, strategic knowledge (condition

1083-4427/$26.00 © 2011 IEEE

962 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

logic) controls when activities can execute. Modifiers con-
trol how activities or actions execute in relation to each other.

B. Formal Verification With Task Analytic Models

Because they can be represented discretely, task analytic
models can be used to include human behavior in formal
system models along with other system elements such as device
automation, human–device interfaces, and the operational envi-
ronment. Researchers have incorporated task analytic models
into formal system models of human–automation interactive
systems: either modeling task behavior natively in the formal
notation [12]–[14] or translating task analytic representations,
such as CTT [15]–[18], UAN [19], and other custom represen-
tations [20] into the formal notation. This allows analysts to ver-
ify system safety properties in light of the modeled normative
human behavior and thereby prove that, assuming the represen-
tativeness of the system model, the system will always operate
safely if the human operators adhere to the modeled behavior.

C. Limitations of Current Techniques

The power of these formal verification analyses is limited by
the ability of the task analytic modeling notations to express
normative human behavior. For example, CTT [9] and Fields’
task modeling notation [20] do not support all of the temporal
and cardinal relationships between activities and actions (re-
ferred to as subacts hereinafter) of other task analytic modeling
notations. Considering the OFM [10], CTT [9], Goals, Oper-
ators, Methods, and Selection rules (GOMS) [21], UAN [22],
and Fields’ notation [20], all of the following relationships can
be specified to control how activities or actions in a decompo-
sition hierarchy execute [23].

1) One or more of the subacts must execute, one at a time,
for the parent activity to finish.

2) One or more of the subacts must execute, and each subact
can be executed concurrently.

3) All of the subacts must execute, one at a time.
4) All of the subacts must execute, possibly concurrently.
5) Exactly one subact must execute.
6) All of the subacts must execute, one at a time, in a

specified order.
7) Zero or more of the subacts must execute, one at a time.
8) One or more of the subacts must execute, possibly

concurrently.
9) All subacts must execute synchronously (at the same

time).

Of the task modeling notations used in formal verification (and
task analytic modeling techniques in general), only the UAN
supports all of these relationships. However, unlike the other
notations, the UAN assumes that it is modeling human inter-
action with a desktop computer and thus specifically models
human actions as they relate to moving mouse cursors, clicking
mouse buttons, and pressing keyboard keys. Thus, it is only
applicable to a limited subset of human–automation interactive
systems. Techniques that rely exclusively on formal modeling
notations do not have this limitation [12]–[14]. However, these
require that modelers manually implement task models using
notations not intended for such a use.

Furthermore, of the task modeling techniques employed in
formal verification analyses, only the CTT supports a graph-
ical notation that can be used to represent modeled behavior
visually, where visual notations are common for modeling
paradigms (such as the GOMS or OFM) more typically used
in HAI analyses. Such visualizations can be useful because
they can facilitate the communication and comprehension of
the modeled human behavior.

D. EOFM

The enhanced operator function model (EOFM) [23] was
designed to be a generic task analytic modeling language that
specifically addresses these issues. EOFM extends the OFM
[10] which supports a visual and object-oriented means of
representing task models. It uses state and derived variables
to specify model behavior. It models goal-level behaviors as
activities. Each activity may include conditions that describe
under what conditions it can be undertaken. Activities are
decomposed into lower level subactivities and, finally, actions.
Operators on each decomposition specify how many subactivi-
ties or actions can execute and what the temporal relationship is
between them. The EOFM standardizes the type of conditions
that modify activities and supports all of the cardinalities and
temporal orderings discussed earlier. The EOFM language is
Extensible Markup Language (XML) based, thus making it
platform independent and easy to parse. It also supports a visual
notation where tasks are represented as treelike graphs [24].

E. Objectives

Because the EOFM does not exhibit the limitations of the
other task analytic modeling notations discussed earlier, we
would like to be able to exploit the expressive power of its
notation such that the task analytic behavior models imple-
mented in it could be considered in formal verifications of
system safety properties. The research described in this paper
refines the EOFM task analytic modeling language, its syntax,
and its formal semantics introduced in [23] and shows how task
behavior models represented using the EOFM can be incorpo-
rated into formal system models so that the impact of normative
human behavior on system safety properties can be evaluated
using formal verification with model checking. We first present
the EOFM language, its syntax, and its formal semantics.
We show how our automated EOFM-to-Symbolic-Analysis-
Laboratory (SAL [25]) language translator uses this formal de-
scription to generate models that can be formally verified with
the SAL symbolic model checker (SAL-SMC). Benchmarks
are reported for models produced with this process. We then
present an automobile driving case study illustrating how this
process can be used to verify safety properties related to the use
of the cruise control. Finally, we discuss the limitations of this
technique and outline directions for future development.

II. EOFM

The EOFM language allows for the modeling of a human
operator as an input/output system. Inputs may come from
the human–device interface, environment, mission goals, and
other human operators. Output variables are human actions.

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 963

Fig. 1. Visualization [58] of the EOFM’s RELAX NG language specification.

The operator’s task model describes how human actions may
be generated based on input and local variables (representing
perceptual or cognitive processing).

Each human operator model is a set of EOFM task models
that describe goal-level activities. Activities decompose into
lower level activities and, eventually, atomic actions. Decompo-
sitions are controlled by decomposition operators that specify
the cardinality of and temporal relationship between the sub-
activities or actions. Activities can have preconditions, repeat
conditions, and completion conditions (Boolean expressions
written in terms of input, output, and local variables as well as
constants) which specify what must be true before an activity
can execute, when it can execute again, and what is true when
it has completed the execution, respectively. Atomic actions
are either an assignment to an output variable (indicating an
action has been performed) or a local variable (representing

a perceptual or cognitive action). All variables are defined
in terms of constants, user-defined types, and basic types,
described hereinafter.

A. Syntax

The EOFM language’s XML syntax is defined using the
REgular LAnguage for XML Next Generation (RELAX NG)
standard [26]. The syntax (see Fig. 1) has been modified from
[23] in order to support more standardized terminology and
an XML structure that better represents the EOFM graphical
notation.

XML documents contain a single root node whose attributes
and subnodes define the document. For the EOFM specifi-
cation, the root node is called eofms. The next level of the
hierarchy has zero or more constant nodes, zero or more

964 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

userdefinedtype nodes, and one or more humanoperator nodes.
The userdefinedtype nodes define enumerated types useful for
representing the operational environment, human–device inter-
face, and human mission concepts. A userdefinedtype node is
composed of a unique name attribute (by which it can be ref-
erenced) and a string of data representing the type construction
(the syntax of which is application dependent). A constant node
is defined by a unique name attribute, either a userdefinedtype
attribute (the name attribute of a userdefinedtype node) or a
basictype attribute.

The humanoperator nodes represent the task behavior of
the different human operators. Each humanoperator has zero
or more input variables (inputvariable nodes and inputvari-
ablelink nodes for variables shared with other human opera-
tors), zero or more local variables (localvariable nodes), one
or more human action output variables (humanaction nodes),
and one or more task models (eofm nodes). A human action
(a humanaction node) describes a single, observable, atomic
act that a human operator can perform. A humanaction node
is defined by a unique name attribute and a behavior attribute
which can have one of two values: autoreset (for modeling a
single discrete action such as flipping a switch) or toggle (for
modeling an action that must be started and stopped as separate
discrete events such as starting to hold down a button and then
releasing it).

Input variables (inputvariable nodes) are composed of a
unique name attribute and either a userdefinedtype or basic-
type attribute (defined as in the constant node). To support
the definition of inputs that can be perceived concurrently by
multiple human operators (for example, two human operators
hearing the same alarm issued by an automated system), the
inputvariablelink node allows a humanoperator node to access
input variables defined in a different humanoperator node using
the same input variable name. Local variables are represented
by localvariable nodes, themselves defined with the same at-
tributes as an inputvariable or constant node, with an additional
subnode, initialvalue, which is a data string with the variable’s
default initial value.

The task behaviors of a human operator are defined using
eofm nodes. One eofm node is defined for each goal-directed
task behavior. The tasks are defined in terms of activity nodes.
An activity node is represented by a unique name attribute, a set
of optional conditions, and a decomposition node. Condition
nodes contain a Boolean expression (in terms of variables
and human actions) with a string that constrains the activity’s
execution. The following conditions are supported:

1) precondition: criterion to start executing;
2) repeatcondition: criterion to repeat the execution;
3) completioncondition: criterion to complete the execution.

An activity’s decomposition node is defined by a decompo-
sition operator (an operator attribute) and a set of activities
(activity or activitylink nodes) or actions (action nodes). The
decomposition operator controls the cardinal and temporal ex-
ecution relationships between the subactivity and action nodes
(referred to as subacts). The EOFM language implements the
following decomposition operators: and, or, optor, xor, ord,
and sync. Each of these operators has two modalities: sequential

TABLE I
DECOMPOSITION OPERATORS

(suffixed _seq) and parallel (suffixed _par) (see Table I). For
the sequential mode, the subacts must be executed one at a
time. In the parallel mode, the execution of the subacts may
overlap in any manner. For the xor, ord, and sync decomposition
operators, only one modality can be defined: xor and ord are
always sequential, and sync is always parallel.

The activity nodes represent lower level subactivities and are
defined identically to those higher in the hierarchy. Activity
links (activitylink nodes) allow for the reuse of model structures
by linking to existing activities via a link attribute which names
the linked activity node.

The lowest level of the task model hierarchy is represented by
either observable atomic human actions or internal (cognitive or
perceptual) ones, all using the action node. For an observable
human action, the name of a humanaction node is listed in
the humanaction attribute. For an internal human action, the
valuation of a local variable is specified by providing the name
of the local variable in the localvariable attribute and the
assigned value within the node itself.

B. EOFM Visualization

The structure of an instantiated EOFM’s task behaviors can
be represented visually as a treelike graph structure (examples
appear in Figs. 12–14) where actions are represented by rectan-
gular nodes and activities are represented by rounded rectangle
nodes. In these representations, the conditions are connected
to the activity that they modify: A precondition is represented
by a yellow downward pointing triangle connected to the right
side of the activity; a completioncondition is presented as a
magenta upward pointing triangle connected to the left of the
activity; and a repeatcondition is conveyed as a recursive arrow
attached to the top of the activity. These standard colors are used
for condition shapes to help distinguish them from each other
and the other task structures. Decompositions are presented
as arrows, labeled with the decomposition operator, extending
below an activity that points to a large rounded rectangle
containing the decomposed activities or actions.

C. EOFM Formal Semantics

We now formally describe the semantics of the EOFM lan-
guage’s task models: explicitly defining how and when each
activity and action in a task structure executes.

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 965

Fig. 2. (a) Execution state transition diagram for a generic activity. (b) Execution state transition diagram for a generic action.

An activity’s or action’s execution is controlled by how it
transitions between three discrete states.

1) Ready: The initial (inactive) state which indicates that the
activity or action is waiting to execute.

2) Executing: The active state which indicates that the activ-
ity or action is executing.

3) Done: The secondary (inactive) state which indicates that
the activity has finished executing.

While preconditions, repeatconditions, and completioncon-
ditions can be used to describe when activities and actions
transition between these execution states, three additional con-
ditions are required. These conditions support transitions based
on the activity’s or action’s position in the task structure and
the execution state of its parent, subacts (activities or actions
into which the activity decomposes), and siblings (activities
or actions contained within the same decomposition). These
conditions are as follows:

1) startcondition: implicit condition that triggers the start of
an activity or action defined in terms of the execution
states of its parent and siblings;

2) endcondition: implicit condition to end the execution of
an activity or action defined in terms of the execution state
of its subacts;

3) reset: implicit condition to reset an activity (have it return
to the Ready execution state).

For any given activity or action in a decomposition, a
startcondition is composed of two conjuncts: one stipulating
conditions on the execution state of its parent and the other
stipulating conditions on the execution state of its siblings based
on the parent’s decomposition operator, generally formulated as

(parent.state=Executing)∧
∧

∀siblings s
(s.state �=Executing).

This is formulated differently in the following circumstances.
If the parent’s decomposition operator has a parallel modality,
the second conjunct is eliminated. If the parent’s decomposition
operator is ord, the second conjunct is reformulated to impose
restrictions only on the previous sibling in the decomposition
order: (prev_sibling.state = Done). If it is the xor decom-
position operator, the second conjunct is modified to enforce
the condition that no other sibling can execute after one has
finished: ∧

∀siblings s
(s.state = Ready).

An endcondition is also composed of two conjuncts both
related to an activity’s subacts. Since an action has no subacts,
an action’s endcondition defaults to true. The first conjunct
asserts that the execution states of the activity’s subacts satisfy
the requirements stipulated by the activity’s decomposition op-
erator. The second asserts that none of the subacts are executing.
This is generically expressed as follows:

(⊕
∀subacts c

(c.state=Done)

)
∧

∧
∀subacts c

(c.state �=Executing).

In the first conjunct,
⊕

(a generic operator) is to be sub-
stituted with ∧ if the activity has the and_seq, and_par, or
sync decomposition operator and with ∨ if the activity has the
or_seq, or_par, or xor decomposition operator. Since optor_seq
and optor_par enforce no restrictions, the first conjunct is
eliminated when the activity has either of these decomposition
operators. When the activity has the ord decomposition opera-
tor, the first conjunct asserts that the last subact has executed.

The reset condition is true when an activity’s or action’s
parent transitions from Done to Ready or from Executing to
Executing when it repeats the execution. If the activity has no
parent (i.e., it is at the top of the decomposition hierarchy), reset
is true if that activity is in the Done execution state.

The startcondition, endcondition, and reset conditions are
used with the precondition, repeatcondition, and completion-
condition to define how an activity or action transitions between
the execution states. This is presented in Fig. 2 where the
states are represented as nodes (rounded rectangles) and the
transitions are represented as arcs. Guards are attached to
each arc.

The transition criteria for an activity [see Fig. 2(a)] are
described in more detail in the following list.

1) An activity is initially in the inactive state, Ready. If
the startcondition and precondition are satisfied and the
completioncondition is not, then the activity can transi-
tion to the Executing state. However, if the startcondition
and completioncondition are satisfied, the activity moves
directly to Done.

2) In the Executing state, an activity will repeat execution
when its endcondition is satisfied as long as its repeat-
condition is true and its completioncondition is not. An
activity transitions from Executing to Done when both the
endcondition and completioncondition are satisfied.

966 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

3) An activity will remain in the Done state until its reset
condition is satisfied, where it returns to the Ready state.

The transition criterion for an action is simpler [see Fig. 2(b)]
since an action cannot have a precondition, completioncondi-
tion, or repeatcondition. Note that, because actions do not have
any subacts, their endconditions are always true.

III. EOFM TO SAL TRANSLATION

To be utilized in a model checking verification, instantiated
EOFMs must be translated into a model checking language.
We use the formal semantics to translate instantiated EOFMs
into the language of the SAL. The SAL is a framework for
combining different tools to calculate properties of concurrent
systems [25], [27]. The SAL language is designed for spec-
ifying concurrent systems in a compositional way. Constants
and types are defined globally. Discrete system components are
represented as modules. Each module is defined in terms of
input, output, and local variables. Modules are linked by their
input and output variables. Within a module, local and output
variables are given initial values. All subsequent value changes
occur as a result of transitions. A transition is composed of a
guard and a transition assignment. The guard is a Boolean ex-
pression composed of input, output, and local variables as well
as the SAL’s mathematical operators. The transition assignment
defines how the values of the local and output variables change
when the guard is satisfied. The SAL language is supported by
a tool suite containing several state-of-the-art model checkers
including SAL-SMC. Auxiliary tools include a simulator, a
deadlock checker, and an automated test case generator.

The EOFM-to-SAL translation is automated by our custom-
built Java program which uses the Document Object Model [28]
to parse an instantiated EOFM’s XML code and convert it into
a SAL code.

For a given instantiated EOFM, the translator defines the
SAL constants and types using the constant and userdefinedtype
nodes. The translator creates a separate SAL module for each
humanoperator node. Input, local, and output variables are
defined in each module corresponding to the humanoperator
node’s inputvariable, localvariable, and humanaction nodes,
respectively. Input and local variables are defined in the SAL
using the name and type (basictype or userdefinedtype) at-
tributes from their markup. Local variables are initialized to
their values from the markup. All output variables in the SAL
module (one for each humanaction node) are defined with a
Boolean type and initialized to false: A value of true indicates
that the action is being performed.

The translator defines the following two Boolean variables
in the humanoperator node’s module to handle a coordination
handshake with the human–device interface module (see [29]
and [30]):

1) an input variable interfaceReady that is true when the
interface is ready to receive input;

2) an output variable actionsSubmitted that is true when one
or more human actions are performed.

The actionsSubmitted output variable is initialized to false.

The translator defines a SAL type, ActivityState, to represent
the execution states of activities and actions: Ready, Executing,
or Done (see Fig. 2). As described previously, the activity and
action state transactions define the task (see Fig. 2). Each ac-
tivity and action in the human operator’s node structure has an
associated local variable of the type ActivityState. For activities,
in addition to the task-model-defined preconditions, repeatcon-
ditions, and completionconditions, three other conditions are
required to define the transition guards: startconditions, end-
conditions, and reset. The translator defines the startconditions
based on the execution state of its parent activity, the state of
the activity’s siblings, and its parent’s decomposition operator.
The startcondition for an activity is true when the parent is
Executing, when the activity is Ready, and when any of the
following conditions are true.

1) The decomposition operator is ord, and all preceding
siblings are Done (it is the next activity to execute).

2) The decomposition operator is xor, and all siblings are
Ready (it is the only activity to execute).

3) The decomposition operator is and_seq, or_seq, op-
tor_seq, or sync, and no other siblings are Executing (the
activity cannot execute when its siblings execute).

The endcondition for an activity is true when the activity is
Executing and when any of the following conditions are true.

1) The decomposition operator is and_seq, and_par, or
sync, and all child activities or actions are Done.

2) The decomposition operator is ord, and the last child
activity or action is Done.

3) The decomposition operator is or_seq, or_par, or xor, and
all child activities or actions are not Executing with at
least one being Done.

4) The decomposition operator is optor_seq or optor_par,
and all child activities or actions are not Executing.

Because the reset occurs when an activity’s parent resets, the
reset transition is handled differently than the others. When
a parent activity transitions from Executing to Executing, its
subacts’ execution state variables (and all activities and actions
lower in the hierarchy) are assigned the Ready state. Addition-
ally, for each activity at the top of a task hierarchy, a guard is
created that checks if its execution state variable is Done. Then,
in the transition assignment, this variable is assigned a value of
Ready along with the lower level activities and actions in order
to achieve the desired reset behavior.

Transitions between execution states for variables associated
with action nodes are handled differently due to the coordi-
nation handshake. For each action, a startcondition is created
using execution state variables and written as a guard for the
Ready to Executing transition [see Fig. 2(b)] with the addi-
tional condition that interfaceReady is true. In the transition
assignment, the execution variable associated with the given
action is set to Executing, the corresponding humanaction
output variable is set to the logical negation of its value (true
or false, where the change in the variable value indicates that
a human action has been performed), and actionsSubmitted is
set to true. Because the endcondition for all actions is always
true, the Executing to Done transition is handled by a single
guard and transition assignment, where the guard accounts

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 967

TABLE II
BENCHMARK EXPERIMENT RESULTS

for the handshake protocol. Thus, the guard specifies that the
actionsSubmitted is true and that the interfaceReady is false:
verifying that the interface has received submitted humanaction
outputs. In the assignment, actionsSubmitted is set to true, any
execution state variable associated with an action that has the
value Executing is set to Done (it is unchanged otherwise), and
any humanaction output variables that support the autoreset
behavior are set to false. The reset transition occurs as a result
of the activity reset process discussed earlier.

Because all of the transitions are nondeterministic, multiple
activities can be executed independent of each other when
_par decomposition operators are used. Multiple human actions
resulting from such decompositions are treated as if they occur
at the same time if the associated humanaction output variables
change during the same interval (a sequential set of model
transitions) when interfaceReady is true.

IV. BENCHMARKS

A variety of tests was run to validate that the translator was
generating a SAL code that adhered to the EOFM’s formal
semantics (see [31]). To evaluate the complexity and scalability
of the EOFM task models, we generated EOFM models and
investigated the translated models’ state spaces and runtimes
using the SAL.

The EOFM models include a single human operator who
presses keys on a human–device interface. The autoreset behav-
ior was used for all key press actions. The human operator had
a single goal-level activity that decomposed into two or more
actions via a decomposition operator.

To ensure that the verification process would search a
model’s entire state space, we created an LTL specification
that would not produce a counterexample. This stated that the
model could never have an execution state variable indicating
that a specific action is executing (action1State) without its
corresponding human action output (PressKey1) being true

G (¬(action1State=actExecuting ∧ PressKey1 �= true)) .

Using the SAL-SMC on a single-core 2.8-GHz machine with
8 GB of RAM running the Ubuntu Linux, we ran nine bench-
marking trials. Table II shows the size of the state space and
runtimes for the entire set of singleton operators. The results are
consistent with the interleavings of the actions associated with

the decomposition operators. For example, there is one more
interleaving allowed for optor than for or.1 Also, the number of
synchronous actions executed at the same time has no impact
on the size of the state space.

In terms of scalability, the symbolic model checker can
handle large state spaces (over half a trillion for some of the
parallel operators). However, the size of the state space, the time
to check the LTL query, and the type of decomposition operator
interact to impact the runtime. With the and_par, or_par,
and optor_par decomposition operators, the state spaces are
roughly of the same size; however, the runtimes vary by a factor
of seven between and_par and or_par.

V. APPLICATION: CRUISE CONTROL SYSTEM

To illustrate how an instantiated EOFM can be used to find
human–automation interaction-related problems, we present a
formal model of driving with a simple automobile cruise control
system (see Fig. 3) in which a car is traveling down a street
toward a traffic light. The distance of the car from the light
is represented in discrete intervals corresponding to its relative
position: Very Very Far, Very Far, Far, Merging, Close, Very
Close, and At Intersection. At the Merging interval, a ramp
intersects with the road, allowing any traffic on the ramp to
merge.

The driver of the car wants to drive safely down the road. The
driver starts at an initial speed with his foot on an accelerator
pedal. His goal is to drive at his desired speed while avoiding
merging traffic and safely responding to traffic lights. He can
drive at one of three speeds (Slow, Moderate, or Fast) by
manipulating the pressure applied to the accelerator pedal.
Pressing the accelerator pedal causes the car to accelerate to the
next faster speed. Decreasing the pressure on the accelerator
pedal decelerates the car to the next slower speed. The driver
can release the accelerator pedal (which causes the car to
decelerate two speeds per interval until it stops) and can press
the brake (which stops the car in a single interval). The driver
can enable or disable the cruise control using available buttons.
Cruise control can also be disabled by pressing the brake.
When enabled, the cruise control will keep the car moving
forward at its current constant speed unless the driver presses

1The number of reachable states is multiplied by two because each inter-
leaving produces an additional reachable state where the key is pressed and the
corresponding action is first executing and then transitions to done.

968 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

Fig. 3. Cruise control model scenario.

the accelerator pedal. In this situation, the driver controls the
car’s speed above the cruise speed.

The formal system model architecture [29], [32] includes
the human–device interface, device automation, operational
environment, and human mission. It also contains the human
task behavior which is translated from an instantiated EOFM
for the driving tasks: driving at the desired speed, avoiding
merging traffic, and responding to the light. Formal verification
is performed on this system model using the SAL-SMC to
ensure that the driver will never run a red light.

At each distance interval, the driver can perform a single
action, or a synchronous set of actions, in response to the
information that he is receiving from the rest of the model.
Once these actions have been committed, the human–device
interface, device automation, and environments update: The
light is allowed to change, merging traffic may arrive on the
ramp, and the car advances one interval down the road if it has
not stopped. We discuss each component of this system model,
how each is modeled formally, and the instantiated EOFM.

A. Human–Device Interface

The human–device interface receives actions from the human
operator and provides feedback from the device automation.
Through the human–device interface, the driver can press the
accelerator pedal (PressAccelerator), decrease the pressure on
the accelerator pedal (EaseOffAccelerator), release the accel-
erator pedal (ReleaseAccelerator), press the brake (Brake),2

press the enable cruise control button (EnableCruise), and
press the disable cruise control button (DisableCruise). The
driver receives information as inputs from the human–device
interface: the position of the pedal (Accelerator), the speed
of the car (CarSpeed), and whether the car has accelerated,
decelerated, or remained at a constant speed (CarAcceleration).

The driver can directly control the state of the human–device
interface’s accelerator pedal (see Fig. 4).3 The pedal has four
different states (Unpressed, PressedToSlow, PressedToModer-
ate, and PressedToFast) representing its position. These directly
correspond to a car speed (Stopped, Slow, Moderate, or Fast,
respectively). The initial state of the pedal (PressedToSlow,

2The model assumes that the human operator will never press the break and
accelerator pedal at the same time.

3Figs. 4–11 represent the formal models of system elements as nonde-
terministic finite state transition diagrams [33], [34]. States are depicted as
rounded rectangles. Arcs with Boolean expressions attached represent guards
on transitions between states. Arrows with dots point to valid initial states. In
actual practice, these models were represented in the notation of the SAL.

Fig. 4. State transition diagram depicting the formal model’s behavior for the
accelerator pedal (Accelerator).

Fig. 5. State transition diagram depicting the formal model’s behavior for the
state of the cruise control (Cruise).

PressedToModerate, or PressedToFast) determines the initial
speed of the car. If the human operator presses the accelerator
pedal, the state of the pedal is set to the next higher state. If he
decreases the pressure on the pedal, its state is set to the next
lower state. The pedal transitions to the Unpressed state when
the operator releases the pedal.

B. Device Automation

The device automation tracks the status of the cruise control
and manages the car’s speed and acceleration.

Cruise (see Fig. 5) is Enabled when the driver presses the
enable cruise button and Disabled when he presses the disable
cruise button or presses the brake.

Enabling the cruise control also sets the cruise speed in the
device’s automation (see Fig. 6) where the cruise speed directly
corresponds to the speed of the car when the cruise is enabled.

The human operator input to the accelerator pedal and the
state of the cruise control also impact how the device au-
tomation controls the speed of the car (see Fig. 7): a property
visible to the human operator via the speedometer. The driver
can increase the car’s speed by pressing the accelerator pedal
even when the cruise control is enabled. The application of the
brake stops the car. When the driver decreases the pressure on
the accelerator pedal (without applying the brake), the car’s
speed decreases when Cruise is Disabled or when Cruise is
Enabled and the CruiseSpeed is below the car’s current speed.
When the driver removes his foot from the accelerator pedal (as
indicated by the Accelerator being Unpressed), the car slows

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 969

Fig. 6. State transition diagram depicting the formal model’s behavior for the
state of the cruise speed (CruiseSpeed).

Fig. 7. State transition diagram depicting the formal model’s behavior for the
state of the car’s speed (CarSpeed).

by two speed increments below the current speed unless Cruise
is Enabled at an intermediate speed. In this case, the car will
remain at or slow down to the CruiseSpeed.

The state of the car’s acceleration (see Fig. 8) is tied to
the changes in the state of the car’s speed. If the car’s speed
has decreased, then the car has Decelerated. If the car’s speed
has increased, then the car has Accelerated. If there has been
no change in the car’s speed, the car has remained at a
ConstantSpeed.

C. Operational Environment

The environment model encompasses the state of the traffic
light, the state of merging traffic, and the relative position of the
car to the traffic light.

Fig. 8. State transition diagram depicting the formal model’s behavior for the
state of the car’s acceleration (CarAcceleration).

Fig. 9. State transition diagram depicting the formal model’s behavior for the
traffic light (TrafficLight).

Fig. 10. State transition diagram depicting the formal model’s behavior for
the presence of merging traffic (Traffic).

The state of the traffic light changes between its three colors
in response to a modulo 8 counter (see Fig. 9). The light is
Green when the counter is between zero and three, Yellow
when the counter is four, and Red when the counter is between
five and seven. At every step in the model’s execution, when
the environment model is allowed to update, the light counter
increments.

When the car is at the Merging interval, there may be merging
traffic based on the transition logic in Fig. 10. Initially, there is
no merging traffic. When the car is at the Merging interval, there
can either be no merging traffic or a single merging car. The
Merging state will automatically transition back to NotMerging
when the environmental model next updates.

The environment model tracks the relative distance, or the
interval, of the car from the traffic light (see Fig. 11).
The car starts at the VeryVeryFar interval and proceeds through
the intervals every time the environmental model updates if the
car is not stopped. Once the AtIntersection interval is reached,
the entire system model is at its final state.

D. Human Mission

The human mission model controls how fast the human
operator wants to drive via the MissionSpeed variable. It is
initialized to Slow, Moderate, or Fast.

970 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

Fig. 11. State transition diagram depicting the formal model’s behavior for the
relative distance/interval of the car to the traffic light (TrafficLightDistance). A
thick black line around a node indicates a final state.

E. Human Task Behavior Model

An instantiated EOFM describes the human driver task be-
havior using a single humanoperator. This human operator
driver has access to input variables from the following:

1) the environment model: the traffic light’s color
(TrafficLight) and its relative interval distance
(TrafficLightDistance);

2) the device automation and human–device interface mod-
els: the car’s speed (CarSpeed), the car’s acceleration
(CarAcceleration), and the state of the accelerator pedal
(Accelerator);

3) the mission model: mission speed (MissionSpeed).
The driver model generates humanaction outputs represent-

ing actions performed through the human–device interface:
pressing the accelerator pedal (PressAccelerator), decreasing
the pressure on the accelerator pedal (EaseOffAccelerator),
releasing the accelerator pedal (ReleaseAccelerator), making
no change to the accelerator pedal (NoChange), pressing the
brake (Brake), enabling the cruise control (EnableCruise), and
disabling the cruise control (DisableCruise).

Three goal-directed task models were constructed4: one for
driving at the desired speed (see Fig. 12), one for avoiding
merging traffic (see Fig. 13), and one for responding to the light
(see Fig. 14).

The task model for driving at the desired speed (see Fig. 12)
has the root activity aDriveAtDesiredSpeed. This has both a
precondition and a repeatcondition that control when it can
execute and when it can repeat the execution: when there is
no merging traffic and either the traffic light is green or the
car is not close to the intersection. The execution will stop
(completioncondition) if the traffic light is not green and the
car is close to the traffic light or if traffic is merging.

The driver performs this activity using one or more methods
(the or_seq decomposition operator): accelerating (aAcceler-
ate), decelerating (aDecelerate), or maintaining the current
speed (aMaintainSpeed). Accelerating can be performed if the
car’s speed is below the mission speed. This activity completes
when the car reaches or surpasses the mission speed or if
the operator must respond to the light or merging traffic. The
driver accelerates by pressing the accelerator pedal (the ord

4A full code listing can be found at http://cog.sys.virginia.edu/
formalmethods/ccND.xml.

decomposition operator indicates a sequential order, but with
one action, only the one action is performed).

The driver can start or continue decelerating if the car’s
speed is greater than the desired (mission) speed. The activity
completes when the car’s speed is less than or equal to the
desired speed or the driver needs to respond to the light or
traffic. Deceleration is accomplished by one of two activities
(the xor decomposition operator): decreasing the pressure on
the accelerator pedal (aEaseOffAccelerator) or disabling the
cruise control (aDisableCruise). If the accelerator pedal is
pressed, the driver can decrease the pressure on the pedal. The
driver can disable the cruise control if it is enabled: The pedal
is not pressed and the car has not just decelerated.

The driver can maintain speed as long as the car’s speed
matches the desired speed. The activity completes if the car’s
speed does not match the desired speed or the driver needs
to respond to the light or traffic. The driver maintains speed
by either enabling the cruise (aCruise) or holding the current
speed (aHoldSpeed). If the cruise control does not appear to be
enabled (indicated by the pedal being pressed), it can be enabled
by synchronously performing (the sync decomposition opera-
tor) the actions for enabling the cruise control and releasing the
accelerator pedal. The driver knows that the cruise control has
been enabled if the car does not decelerate when he removes
his foot from the accelerator pedal. The driver holds the current
speed by making no change to the accelerator pedal.

The driver can avoid merging traffic (aAvoidMergingTraffic;
see Fig. 13) when traffic is merging by performing one of two
activities: If the car is not at its minimum speed, the driver
can let the merging traffic go in front (aLetCarGoInFront),
or if the car is not at its maximum speed, the driver can let
the merging traffic in behind (aLetCarGoBehind). Letting the
traffic pull in front is achieved by: 1) decreasing the pressure on
the accelerator pedal (via aEaseOffAccelerator) if the cruise is
not enabled or 2) disabling the cruise (via aDisableCruise) if it
is enabled. Letting the traffic in behind is achieved by pressing
the accelerator pedal.

By performing one of three activities, the driver responds
to the traffic light (aRespondToLight in Fig. 14) if the traffic
light is not green and the vehicle is close to it: waiting to
respond to the light until the car is closer (aWaitTillCloser),
performing a brake stop (aBrakeStop), or performing a roll stop
(aRollStop). If the traffic light is close, the driver can wait until
the light is closer by making no change to the car’s accelerator
pedal.

If the traffic light is not green, the car is very close to the light,
and the car has not decelerated, the driver can quickly slow by
braking.

If the traffic light is close and the car is going fast, the driver
can let the car slowly roll to a stop by first initiating a roll
(aInitiateRoll) and then stopping at the intersection (aStopAtIn-
tersection). He initiates a roll by either releasing the accelerator
pedal (via aReleaseAccelerator) if the cruise is not enabled or
disabling the cruise (via aDisableCruise) if it is.

The driver no longer considers stopping at the intersection
when the light is green. Otherwise, the driver performs a brake
stop (via aBrakeStop) if the car has not decelerated or continues
to roll to a stop if it has.

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 971

Fig. 12. Visualization of the EOFM task model for driving at the desired speed. Activities are represented as rounded rectangles, actions as unrounded rectangles,
preconditions as inverted yellow triangles, and completion conditions as magenta triangles. Boolean expressions in conditions use the syntax supported by
transition guards in the SAL.

Fig. 13. Visualization of the EOFM for responding to merging traffic.

F. EOFM to SAL Translation

The EOFM instance was translated into a SAL code and
incorporated into the larger formal system model so that it
can be considered in the formal verification analyses of the
system. In its original XML form, the human task behavior
model was represented in 168 lines of code (43 lines were
devoted to closing the XML tags). The translated SAL ver-
sion of the model was represented in 439 lines of code (2.6
times more lines of code than the XML EOFM language
representation).

G. Specification and Verification

To ensure safety, we wanted to use formal verification to
check that the car would never reach the intersection while

moving when the traffic light was red. This was represented in
LTL as follows:

G¬

⎛
⎝TrafficLightDistance = AtIntersection

∧ Car �= Stopped
∧ TrafficLight = Red

⎞
⎠ . (1)

The attempt to verify this specification using the SAL-SMC
on a workstation with a 3.0-GHz dual-core Intel Xeon processor
and 16 GB of RAM running the Ubuntu 9.04 desktop resulted
in a counterexample illustrating a violation. This occurred as
follows.

1) The car starts VeryVeryFar from the traffic light going
Slow with a ConstantSpeed acceleration. The pedal is
PressedToSlow, and the cruise is Disabled. The traffic
light is Green, and the driver wants to maintain a Mod-
erate speed.

2) Because the current speed is too slow, the driver increases
his speed by pressing the accelerator pedal (PressAc-
celerator via the aDriveAtDesiredSpeed and aAccelerate
activities; see Fig. 12). The car proceeds to the VeryFar
interval, having Accelerated to a Moderate speed.

3) Now, at his desired speed, the driver engages the cruise
control (synchronously performing EnableCruise and
ReleaseAccelerator via the aDriveAtDesiredSpeed,
aMaintainSpeed, and aCruise activities; see Fig. 12).
The car thus proceeds to the Far position at a Moderate
ConstantSpeed.

4) The driver makes no changes to the speed of the car
(NoChange via the aDriveAtDesiredSpeed, aMaintain-
Speed, and aHoldSpeed activities). The car proceeds
to the Merging position at a Moderate ConstantSpeed,
where traffic is attempting to merge.

5) The driver lets the traffic in behind by pressing the ac-
celerator pedal (PressAccelerator via the aAvoidMerging-
Traffic and aLetCarGoBehind activities; see Fig. 13). The

972 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

Fig. 14. Visualization of the EOFM for responding to a traffic light.

car advances to the Close interval, having Accelerated to
the Fast speed. The traffic light turns Yellow.

6) The driver responds to the light by releasing his foot from
the accelerator to perform a roll stop (ReleaseAcceler-
ator via the aRespondToLight, aRollStop, aInitiateRoll,
and aReleaseAccelerator activities; see Fig. 14). The car
proceeds to the VeryClose interval, having Decelerated to
the Slow speed. The light turns Red.

7) Having felt the car decelerate when he released the accel-
erator pedal, the driver attempts to continue rolling to a
stop at the intersection by making no change (NoChange
via the aRespondToLight, aRollStop, aStopAtIntersec-
tion, and aRollToAStop activities; see Fig. 14). However,
the car has reached its cruising speed (Moderate) and
has continued to the AtIntersection interval at a Moderate
ConstantSpeed.

The specification has been violated with the car reaching the
intersection without having stopped when the light is red. Thus,
this example shows how normative human behavior modeled
using the EOFM can be used in a larger process to find
violations of system safety properties using formal verification
with model checking.

H. Redesign

A potential explanation for the aforementioned problem is
that the driver does not remember that the cruise control is
engaged and therefore cannot properly perform a roll stop.
In the current implementation, the only way that the operator
can tell that the cruise control is engaged is if the accelerator
pedal is not pressed and the car is not decelerating. We can use
our method to explore potential design interventions that may
correct this problem.

The car designer can add an indicator light with the state of
the cruise control. In the formal model, this can be represented
by a new variable (Cruising) which indicates whether cruise
control is Enabled or Disabled. The driver’s task model then
changes to check this variable before executing a roll stop. To
model this change, a Cruising inputvariable node is added to
the driver’s humanoperator node. In the aDriveAtDesiredSpeed
activity (see Fig. 12), the preconditions for aEaseOffAccelera-
tor and aCruise check that cruising is Disabled, and the precon-
dition for aDisableCruise checks that the cruise is Enabled. In
the aAvoidMergingTraffic (see Fig. 13) activity, the precondi-
tions on aEaseOffAccelerator and aDisableCruise check that
the cruise is Disabled and Enabled, respectively. Finally, in
the aRespondToLight (see Fig. 14) activity, the preconditions
to aReleaseAccelerator and aDisableCruise check that cruise
is Disabled and Enabled, respectively. The decomposition of
aDisableCruise also changes to the sync decomposition oper-
ator to support the actions for disabling the cruise control and
releasing the accelerator pedal.

An EOFM instantiation modified to reflect these changes was
translated into the SAL and incorporated into the compatibly
modified system model. When the SAL-SMC was run using
this new model and the specification in (1), it verified to true.
Thus, the minor modifications to the human–device interface
and the human task behavior model eliminated the potential
human–automation interaction problem discovered in the pre-
vious verification.

VI. DISCUSSION AND FUTURE WORK

The EOFM task modeling language is defined formally,
and its formal description has been used to construct a trans-
lator to support model checking. Translated models can be

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 973

incorporated into larger system models so that they can be
formally verified. The driving application system presented in
this paper is simple, but it demonstrates how our EOFM task
behavior modeling language and formal verification process
can be used to discover potentially dangerous problems related
to human–automation interaction.

Despite this success, our process is restricted to what systems
it can be applied. These restrictions can be attributed to both the
limitations of formal verification with model checking as well
as the EOFM language. We discuss both of these in the follow-
ing sections. We first examine how state space complexity and
formalisms limit what types of systems can be evaluated with
model checking. We then describe the limitation of the EOFM
modeling notation as it relates to other task analytic modeling
techniques and the types of analyses that it can facilitate. We
recommend directions that future work can take to address the
identified issues.

A. Limitations of Model Checking

1) Model Complexity: One of the challenges facing model
checking verification is the state explosion problem. As the
complexity of the modeled system increases, the memory and
time required to store the combinatorially expanding state space
can easily exceed the available resources [2]. One way that this
has been addressed is through the use of extremely efficient
means of representing large state spaces. This is utilized in
symbolic model checking [35]. Other techniques allow select
portions of the state space to be searched without compromising
the accuracy of the verification, such as partial order reduction
[36], symmetry reduction [37], abstract interpretation [38], and
counterexample-guided abstraction refinement [39].

The SAL-SMC utilizes symbolic model checking. However,
even with this efficiency, the size of the models that can be
evaluated with our method is limited. For example, Bolton
and Bass [30] found that an abstracted model of a patient
controlled analgesia pump (a system containing large ranges of
numerical integer data) represented a reasonable upper bound
on the complexity of system models that could be verified using
a high-end desktop computer. Future work will investigate
whether other techniques for combating state space complexity
can be incorporated into our method.

However, determining what the actual limits are on the size
of the system that can be evaluated using our technique can
be difficult given the influence of the modeled human task be-
havior on the state space complexity. The reported benchmarks
highlight the tradeoffs associated with modeling different tem-
poral orderings of human behavior within a given task. Further-
more, Bolton and Bass [30] indicate that, rather than add to
the complexity of formal system models, the formal represen-
tation of the human task models can reduce model complexity
for systems that depend on human–automation interaction by
constraining the reachable state space to that associated with
modeled human behavior. This suggests that the decomposition
operators associated with higher model complexity in Table II
would simply fail to constrain the system model as tightly as the
less complex decomposition operators. Future work will inves-
tigate the frequency that each decomposition operator is used

in task analytic modeling and in what contexts they are most
appropriate. This will help provide a better understanding of
what types of systems are best suited for the analysis presented
in this paper.

There may be potential for reducing the complexity of the
translated EOFM models. In the current implementation, the
formal model represents every transitional step of an activity’s
execution state as a single model transition in the formal model.
While this accurately adheres to the formal semantics of the lan-
guage, it requires that the formal model have a discrete state for
every intermediate transition in the task model hierarchy. These
intermediary transitions are of no consequence to the other
elements of the system model, which are only concerned with
the resulting human actions. Thus, the complexity of the formal
task model representation could be reduced by decreasing the
number of internal transitions required to traverse an instanti-
ated EOFM’s translated task structure during execution. Future
work will investigate the feasibility of this, as such an efficiency
would allow for our method to be applied to more systems.

2) Formal Notation Expressiveness: A second major limita-
tion of model checking is the expressive power of its modeling
formalisms. Traditional model checking is applied to systems
that can be modeled with discrete variables. However, complex
systems can have continuous quantities. The field of hybrid
systems has been developed to address this issue [40]. However,
current techniques can only handle system models with about a
half-dozen continuous variables. As such, continuous quantities
are often modeled abstractly using discrete representations: like
how velocity, distance, and acceleration were modeled in our
driving application.

With respect to the modeling of time, discrete-state models
can be augmented with a set of clocks [41]. While this tech-
nique can be used to model clock synchronization problems in
digital systems, only very simple models can be fully verified.

Future work should investigate how our method can be
adapted to the formal verification of hybrid systems.

B. Limitation of the EOFM Language

While the EOFM supports a superset of the cardinal and
temporal relationships found in other task analytic modeling
paradigms, the EOFM lacks some features that could make it
even more expressive.

1) Task Priority and Interruption: One feature that is sup-
ported by the UAN and CTT is the ability for activities to be
interrupted when a higher priority activity becomes relevant
due to a change in the human–device interface or environmental
conditions. For example, a driver already dealing with a traffic
light may need to immediately respond to traffic. After the
higher priority activity has been addressed, the UAN and CTT
provide a means for restarting, resuming, or abandoning any
interrupted activities. Future work will investigate how such a
feature can be incorporated into the EOFM.

2) Root Activity Execution: The current EOFM implemen-
tation assumes that all root activities are temporally related with
the equivalent of an optor_seq decomposition operator. Future
work should investigate under what conditions or for which task
domains, if any, additional options are necessary.

974 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

3) Cognitive Modeling: The EOFM currently only supports
a simple model of cognitive and perceptual operations using
local variables and thus does not utilize more realistic models
of human memory, perception, or cognitive processing. Further-
more, the EOFM assumes that the human operator has access
to all environmental and human–device interface information
that is available at any given time, ignoring limitations on
perception, attention, and memory, and the scanning process
that humans often use for acquiring information in dynamic
environments. The presented driving application (as well as
other applications presented in [29]–[31] and [42]) shows that
insights into the safety and design of systems can be obtained
using human behavior models that exhibit these limitations.
However, the limitation of our approach can also be seen in
the presented example, where the discovered problem occurred
because the model assumes that the driver will not remember
that he engaged the cruise control. While local variables would
allow the memory of this to be modeled, it would have pre-
vented the discovery of the problem using formal verification.
Cognitive modeling offers possibilities for addressing these
types of limitations.

Lee and Sanquist’s Operator Function Model with Cogni-
tive Operations [43] extended the OFM to support cognitive
operations related to the following: perceptual sensitivity, per-
ceptual discrimination, selective attention, distributed attention,
working memory, long-term memory, and response precision.
They have shown how this can be used to identify design and
training requirements to prevent erroneous human behavior and
facilitate efficient human work.

Within the formal modeling literature, the work by
Blandford, Curzon, and colleagues has focused on creating
programmable user models (PUMs) [44] that capture the
knowledge and cognitively plausible behavior that an operator
might use when interacting with an automated system and
implementing them as part of a formal system model [45]–
[47]. PUMs encompass the goals that the operator wishes
to achieve with the system, his beliefs and knowledge about
the operation of the system, the information available to him
from the human–device interface, and the actions that he can
execute to interact with the system. Thus, the operator model
must use its knowledge about the system with the currently
available information to select actions that will fulfill its goals.
PUMs and formal verification have been used to identify cog-
nitively plausible errors based on a human operator model
interacting with an automated system. These include repeat-
ing actions, omitting actions, committing actions too early,
replacing one action with another, performing one or more
actions out of order, and performing an unrelated action [48].
Means of identifying postcompletion errors (where the operator
forgets to perform actions that occur after the completion of
a high-level goal) have also been identified and illustrated
using a system model of a vending machine [49]. PUMs have
also been extended so that formal verification can investi-
gate how humans might make errors due to issues related to
salience, cognitive load, and cognitive interpretation of spatial
cues [50], [51].

The GOMS family of models [21] supports the timing anal-
ysis of human task behavior based on cognitive modeling.

Rukšėnas et al. [51] have shown how these types of anal-
yses can be coupled with formal verification analyses with
formal PUMs.

Future work should investigate how to couple the features
of these cognitive models with the EOFM so that they can be
factored into the formal verifications that the EOFM supports.

4) Multioperator Scalability: Although the EOFM has been
designed to support multiple operators, to date, it has only
been used to model single operator systems [23], [29], [30],
[32], [42], [52]. There are a number of systems that depend on
multiple human operators interacting with automation.

There are a variety of ways that the language could be mod-
ified in order to better support multiple operators. The current
EOFM language allows multiple humanoperator nodes to share
input information via inputvariablelink nodes. While this ac-
complishes the desired goal, it requires that all inputs be defined
within a given humanoperator node. This results in a strong
coupling between the humanoperator nodes and associates the
input exclusively with a human operator rather than the source
of that input like the environment or a human–device interface.
Similarly, multiple human operators may be able to interact
with a human–device interface that they share, allowing each
to submit identical human actions to system automation. The
current implementation of the EOFM language supports this
but requires that these human actions be defined using different
names in the associated humanoperator nodes. Thus, it is the
job of the modeler to ensure that these human actions are treated
the same when the language is interpreted. Finally, multihuman
operator systems may support direct communication between
human operators which does not occur through a human–device
interface. The current implementation of the EOFM does not
support this feature.

These limitations could be resolved by modifying the EOFM
semantics so that they were more object oriented. inputvariable
and humanaction nodes as well as communication channels
between human operators could be defined independent of
the humanoperator nodes and referenced where appropriate in
these nodes. Future work will investigate how these features
might be incorporated into the EOFM.

Another limitation comes in the way that task structures
(activity and action hierarchies) can be reused between human-
operator nodes. In the current implementation, activities must
be defined in one humanoperator node and referenced in others
using activitylink nodes. This too results in strong coupling
and does not support good object-oriented design. There are
a variety of different architectures that might be supported
in a multioperator system: There may be multiple operators
with a mixture of shared and discrepant task structures, and
there may be shared or discrepant human–device interfaces.
Object-oriented concepts, such as inheritance, interfaces, and
polymorphism, may allow these types of relationships to be
more easily and flexibly instantiated in the EOFM. Future work
should investigate how this might be accomplished.

C. Need for Unification

The EOFM was developed to not only extend the function-
ality of the OFM but also allow it to be incorporated into
the formal modeling notation using defined formal semantics.

BOLTON et al.: SYSTEMATIC APPROACH TO MODEL CHECKING HUMAN–AUTOMATION INTERACTION 975

However, the discrepant feature sets present in the various task
analytic modeling paradigms, the current limitations of the
EOFM, and the limitations inherent to model checking analyses
suggest that there is a need for a unifying study on exactly
what features task analytic models need to support. Thus,
before making significant changes to the EOFM, work should
identify what these features are so that the EOFM, or some
other task modeling language, can serve the human–automation
interaction community at large.

Furthermore, while the EOFM’s formal semantics are de-
fined generically, our EOFM-to-SAL translator makes assump-
tions about the way that an instantiated EOFM will integrate
with the rest of a formal system model. Future work could
investigate whether there are generic and/or abstract methods
for integrating task analytic models into formal analyses.

All of the conditions that have been formally verified using
our technique have been safety properties specific to the partic-
ular application being evaluated. Work concerned with the for-
mal modeling of human–device interfaces has identified generic
temporal logic patterns for specifying usability properties that
can be formally verified against models of human–device in-
terfaces (see [53]–[55]). Future work should determine if there
are generic temporal logic properties that can be used to check
for properties important to HAI against formal system models
containing task analytic models.

Finally, the system analyzed in this paper as well as all of
the other systems evaluated using our technique [30], [31],
[42] have used control automation. However, there are many
different types of automation in human–automation interactive
systems [56] such as information analysis automation [57].
Future work should investigate how applicable our method is
to systems that utilize these other types of automation.

ACKNOWLEDGMENT

The research described herein originated when the first au-
thor was pursuing his Ph.D. in systems engineering at the
University of Virginia. The content is solely the responsibility
of the authors and does not necessarily represent the official
views of the National Institute of Aerospace, the National
Aeronautics and Space Administration, the National Library of
Medicine, or the National Institutes of Health.

REFERENCES

[1] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8, 10–22, 24, Sep. 1990.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: MIT Press, 1999.

[3] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theo-
retical Computer Science, J. van Leeuwen, A. R. Meyer, M. Nivat,
M. Paterson, and D. Perrin, Eds. Cambridge, MA: MIT Press, 1990,
ch. 16, pp. 995–1072.

[4] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future
directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626–643, 1996.

[5] D. Hughes and M. Dornheim, “Accidents direct focus on cockpit automa-
tion,” Aviation Week Space Technol., vol. 142, no. 5, pp. 52–54, 1995.

[6] P. Ladkin, AA965 Cali Accident Report: Near Buga, Colombia,
Dec. 20, 1995, Bielefeld, Germany, 1996. [Online]. Available: http://
sunnyday.mit.edu/accidents/calirep.html

[7] E. Sekigawa and M. Mecham, “Pilots, A300 systems cited in Nagoya
crash,” Aviation Week Space Technol., vol. 29, pp. 6–37, 1996.

[8] B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. London,
U.K.: Taylor & Francis, 1992.

[9] F. Paternò, C. Mancini, and S. Meniconi, “Concurtasktrees: A diagram-
matic notation for specifying task models,” in Proc. IFIP TC13 Int. Conf.
Human-Comput. Interact., 1997, pp. 362–369.

[10] C. M. Mitchell and R. A. Miller, “A discrete control model of operator
function: A methodology for information display design,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-16, no. 3, pp. 343–357, May 1986.

[11] H. R. Hartson, A. C. Siochi, and D. Hix, “The UAN: A user-oriented
representation for direct manipulation interface designs,” ACM Trans. Inf.
Syst., vol. 8, no. 3, pp. 181–203, Jul. 1990.

[12] S. Basnyat, P. Palanque, B. Schupp, and P. Wright, “Formal socio-
technical barrier modelling for safety-critical interactive systems design,”
Safety Sci., vol. 45, no. 5, pp. 545–565, Jun. 2007.

[13] S. Basnyat, P. A. Palanque, R. Bernhaupt, and E. Poupart, “Formal mod-
elling of incidents and accidents as a means for enriching training material
for satellite control operations,” in Proc. Joint ESREL and 17th SRA-Eur.
Conf., London, U.K., 2008, CD–ROM.

[14] E. L. Gunter, A. Yasmeen, C. A. Gunter, and A. Nguyen, “Specifying and
analyzing workflows for automated identification and data capture,” in
Proc. 42nd Hawaii Int. Conf. Syst. Sci., 2009, pp. 1–11.

[15] Y. Aït-Ameur, M. Baron, and P. Girard, “Formal validation of HCI user
tasks,” in Proc. Int. Conf. Softw. Eng. Res. Pract., 2003, pp. 732–738.

[16] Y. Aït-Ameur and M. Baron, “Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model,” Int. J.
Softw. Tools Technol. Transf., vol. 8, no. 6, pp. 547–563, Nov. 2006.

[17] F. Paternò, C. Santoro, and S. Tahmassebi, “Formal model for cooperative
tasks: Concepts and an application for en-route air traffic control,” in Proc.
5th Int. Conf. Des., Specification, Verification Interactive Syst., 1998,
pp. 71–86.

[18] F. Paternò and C. Santoro, “Integrating model checking and HCI tools to
help designers verify user interface properties,” in Proc. 7th Int. Workshop
Des., Specification, Verification Interactive Syst., 2001, pp. 135–150.

[19] P. A. Palanque, R. Bastide, and V. Senges, “Validating interactive system
design through the verification of formal task and system models,” in
Proc. IFIP TC2/WG2.7 Work. Conf. Eng. Human-Comput. Interact., 1996,
pp. 189–212.

[20] R. E. Fields, “Analysis of erroneous actions in the design of critical
systems,” Ph.D. dissertation, Univ. York, York, U.K., 2001.

[21] B. E. John and D. E. Kieras, “Using GOMS for user interface design and
evaluation: Which technique?” ACM Trans. Comput.-Human Interact.,
vol. 3, no. 4, pp. 287–319, Dec. 1996.

[22] D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability
Through Product and Process. New York: Wiley, 1993.

[23] M. L. Bolton and E. J. Bass, “Enhanced operator function model: A
generic human task behavior modeling language,” in Proc. IEEE Int.
Conf. Syst., Man, Cybern., 2009, pp. 2983–2990.

[24] M. L. Bolton and E. J. Bass, “Using task analytic models to visualize
model checker counterexamples,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., 2010, pp. 2069–2074.

[25] L. De Moura, S. Owre, and N. Shankar, “The SAL language manual,”
Comput. Sci. Lab., SRI Int., Menlo Park, CA, Tech. Rep. CSL-01-01, 2003.

[26] J. Clark and M. Murata, “Relax NG specification,” Committee Specifica-
tion, Organization for the Advancement of Structured Information Stan-
dards, 2001. [Online]. Available: http://relaxng.org/spec-20011203.html

[27] N. Shankar, “Symbolic analysis of transition systems,” in Proc. Int. Work-
shop Abstr. State Mach., Theory Appl., 2000, pp. 287–302.

[28] P. Le Hégaret, The W3C Document Object Model (DOM), 2002. [Online].
Available: http://www.w3.org/2002/07/26-dom-article.html

[29] M. L. Bolton and E. J. Bass, “Building a formal model of a human-
interactive system: Insights into the integration of formal methods and
human factors engineering,” in Proc. 1st NASA Formal Methods Symp.,
2009, pp. 6–15.

[30] M. L. Bolton and E. J. Bass, “Formally verifying human–automation
interaction as part of a system model: Limitations and tradeoffs,” Innov.
Syst. Softw. Eng.: NASA J., vol. 6, no. 3, pp. 219–231, Sep. 2010.

[31] M. L. Bolton, “Using task analytic behavior modeling, erroneous hu-
man behavior generation, and formal methods to evaluate the role of
human–automation interaction in system failure,” Ph.D. dissertation,
Univ. Virginia, Charlottesville, VA, 2010.

[32] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal methods
to predict human error and system failures,” in Proc. 2nd Int. Conf. Appl.
Human Factors Ergonom., 2008, CD–ROM.

[33] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[34] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Boston,
MA: Thomson Course Technol., 2006.

976 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 5, SEPTEMBER 2011

[35] J. R. Burch, E. M. Clarke, D. L. Dill, J. Hwang, and
K. L. McMillan, “Symbolic model checking: 1020 states and beyond,”
Inf. Comput., vol. 98, no. 2, pp. 142–171, Jun. 1992.

[36] G. Holzmann and D. Peled, “An improvement in formal verification,” in
Proc. 7th Int. Conf. Formal Description Techn., 1994, pp. 197–211.

[37] S. Graf and H. Saïdi, “Verifying invariants using theorem proving,” in
Proc. 8th Int. Conf. Comput. Aided Verification, 1996, pp. 196–207.

[38] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Proc. 4th ACM SIGACT-SIGPLAN Symp. Principles Program.
Lang., 1977, pp. 238–252.

[39] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, Sep. 2003.

[40] T. A. Henzinger, “The theory of hybrid automata,” in Proc. 11th Annu.
IEEE Symp. Logic Comput. Sci., 1996, pp. 278–292.

[41] T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,” in
Proc. REX Workshop, 1991, pp. 226–251.

[42] M. L. Bolton and E. J. Bass, “A method for the formal verification of
human interactive systems,” in Proc. 53rd Annu. Meeting Human Factors
Ergonom. Soc., 2009, pp. 764–768.

[43] J. D. Lee and T. F. Sanquist, “Augmenting the operator function model
with cognitive operations: Assessing the cognitive demands of technolog-
ical innovation in ship navigation,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 30, no. 3, pp. 273–285, May 2000.

[44] R. M. Young, T. R. G. Green, and T. Simon, “Programmable user models
for predictive evaluation of interface designs,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst., 1989, pp. 15–19.

[45] A. Blandford, R. Butterworth, and J. Good, “Users as rational interacting
agents: Formalising assumptions about cognition and interaction,” in
Proc. 4th Int. Eurographics Workshop, Des., Specification Verification
Interactive Syst., vol. 97. Berlin, Germany: Springer-Verlag, 1997,
pp. 45–60.

[46] R. Butterworth, A. Blandford, and D. Duke, “Demonstrating the cognitive
plausibility of interactive system specifications,” Formal Aspects Com-
put., vol. 12, no. 4, pp. 237–259, 2000.

[47] A. Blandford, R. Butterworth, and P. Curzon, “Models of interactive
systems: A case study on programmable user modelling,” Int. J. Human-
Comput. Stud., vol. 60, no. 2, pp. 149–200, Feb. 2004.

[48] P. Curzon and A. Blandford, “From a formal user model to design rules,”
in Proc. 9th Int. Workshop Interactive Syst. Des., Specification, Verifica-
tion, 2002, pp. 1–15.

[49] P. Curzon and A. Blandford, “Formally justifying user-centered design
rules: A case study on post-completion errors,” in Proc. 4th Int. Conf.
Integr. Formal Methods, 2004, pp. 461–480.

[50] R. Rukšėnas, P. Curzon, J. Back, and A. Blandford, “Formal modelling of
cognitive interpretation,” in Proc. 13th Int. Workshop Des., Specification,
Verification Interactive Syst., 2007, pp. 123–136.

[51] R. Rukšėnas, P. Curzon, A. Blandford, and J. Back, “Combining human
error verification and timing analysis,” in Proc. Conf. Eng. Interactive
Syst., 2009, pp. 18–35.

[52] M. L. Bolton and E. J. Bass, “Formal modeling of erroneous human
behavior and its implications for model checking,” in Proc. 6th NASA
Langley Formal Methods Workshop, 2008, pp. 62–64.

[53] G. D. Abowd, H. Wang, and A. F. Monk, “A formal technique for auto-
mated dialogue development,” in Proc. 1st Conf. Designing Interactive
Syst., 1995, pp. 219–226.

[54] J. C. Campos and M. D. Harrison, “Systematic analysis of control panel
interfaces using formal tools,” in Proc. 15th Int. Workshop Des., Verifica-
tion Specification Interactive Syst., 2008, pp. 72–85.

[55] F. Paternò, “Formal reasoning about dialogue properties with automatic
support,” Interacting Comput., vol. 9, no. 2, pp. 173–196, 1997.

[56] R. Parasuraman, T. Sheridan, and C. Wickens, “A model for types and
levels of human interaction with automation,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 30, no. 3, pp. 286–297, May 2000.

[57] E. Bass and A. Pritchett, “Human-automated judge learning: A methodol-
ogy for examining human interaction with information analysis automa-
tion,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 4,
pp. 759–776, Jul. 2008.

[58] “Relax NG schema diagram,” Syncro Soft. [Online]. Available: http://
www.oxygenxml.com/doc/ug-oxygen/topics/relax-ng-schema-diagram.
html

Matthew L. Bolton (S’05–M’10) received the
B.S. degree in computer science, the M.S. de-
gree in systems engineering, and the Ph.D. de-
gree in systems engineering from the University of
Virginia, Charlotteville, in 2003, 2006, and 2010,
respectively.

He is currently a Senior Research Associate with
the San José State University Research Founda-
tion, National Aeronautics and Space Administration
Ames Research Center, Moffett Field, CA. His pri-
mary research focus is on the development of tools

and techniques for using formal methods in the modeling, validation, verifica-
tion, and design of safety-critical human–automation interactive systems.

Radu I. Siminiceanu received the B.S. and M.S.
degrees in computer science from the University of
Iaşi, Iaşi, Romania, and the Ph.D. degree in com-
puter science from the College of William and Mary,
Williamsburg, VA, in 2003.

He is currently a Senior Research Scientist with
the National Institute of Aerospace, Hampton, VA.
His research interests include formal methods, par-
ticularly model checking, applied to aerospace, air
traffic management, and avionics systems.

Ellen J. Bass (M’98–SM’03) received the B.S.
Eng. and B.S. Econ. degrees from the University of
Pennsylvania, Philadelphia, the M.S. degree from the
State University of New York at Binghamton, Vestal,
and the Ph.D. degree from the Georgia Institute of
Technology, Atlanta.

She is currently an Associate Professor of sys-
tems engineering with the Department of Systems
and Information Engineering, University of Virginia,
Charlottesville. She has over 25 years of industry
and research experience in human-centered systems

engineering in the domains of aviation, meteorology, bioinformatics, and
medical informatics. Her research focuses on modeling human judgment and
decision making in dynamic environments in order to inform the design of
decision support and training systems.

