
U sing Task Analytic Models to Visualize Model
Checker Counterexamples

Matthew L. Bolton and Ellen J. Bass
Department of Systems and Information Engineering

University of Virginia

Charlottesville, VA

mlb4b@virginia.edu, ejb4n @virginia.edu

Abstract-Model checking is a type of automated formal
verification that searches a system model's entire state space in
order to mathematically prove that the system does or does not
meet desired properties. An output of most model checkers is
a counterexample: an execution trace illustrating exactly how a
specification was violated. In most analysis environments, this
output is a list of the model variables and their values at
each step in the execution trace. We have developed a language
for modeling human task behavior and an automated method
which translates instantiated models into a formal system model
implemented in the language of the Symbolic Analysis Laboratory
(SAL). This allows us to use model checking formal verification to
evaluate human-automation interaction. In this paper we present
an operational concept and design showing how our task modeling
visual notation and system modeling architecture can be exploited
to visualize counterexamples produced by SAL. We illustrate the
use of our design with a model related to the operation of an
automobile with a simple cruise control.

Index Terms-Human-automation interaction, task analysis,
model checking, formal methods, counterexample visualization.

I. INTRODUCT ION

Failures in complex, safety-critical systems are often due

to system components interacting in unexpected ways. Model

checking is an automated approach to formal verification which

can be used to find these types of failures by exhaustively

searching a system's state space in order to determine if desired

properties or specifications (usually written in temporal logic)

hold [1]. If there is no violation, then the specification has

been formally proven to be valid for the model. If there is a

violation, an execution trace is produced (a counterexample).

This counterexample depicts a model's state corresponding to

a specification violation along with a list of the incremental

model states that led up to the violation.

Model checking has been used successfully to find interac­

tion errors in computer hardware and software applications.

However, one source of failures in complex, safety critical

systems is the interaction between the human operator and

other system components.

When designing for human-automation interaction (HAl),

human factors engineers generally do not use formal models

(see [2] for a review of the ways formal methods have been

used to analyze HAl), but rather task analytic methods to

represent human behaviors. Task analytic models represent

descriptive and normative human behavior as sequences of

activities with respect to the fulfillment of goals [3], [4].

978-1-4244-6588-0/10/$25.00 ©2010 IEEE

We have developed a method [5] to evaluate HAl formally

for systems where human tasks can be represented using

task analytic behavior models. The methods utilizes a for­

mal modeling architectural framework which models human­

automation interactive systems in terms of human missions

(i.e. goals), human task behavior, human-device interfaces,

device automation, and environment (see [6]). In our analysis

framework, human task models are created using an inter­

mediary language called Enhanced Operator Function Model

(EOFM) [7], [8], an XML-based, generic human task modeling

language based on the Operator Function Model (OFM) [9],

[10]. EOFMs are hierarchical and heterarchical representations

of goal driven, high-level, conceptual activities that decompose

into lower level activities, and finally, atomic actions (discrete,

observable, cognitive, or perceptual human behavior). EOFMs

express task knowledge by explicitly specifying the conditions

under which human operator activities can be undertaken: what

must be true before they can execute (preconditions), when

they can repeat (repeat conditions), and when they have com­

pleted (completion conditions). Each activity is composed of

one or more other activities or one or more actions, represented

as a decomposition in a hierarchy. A decomposition operator

specifies the temporal relationships between and the cardinality

of the decomposed activities or actions (when they can execute

relative to each other and how many can execute).

EOFMs can be represented visually as a tree-like graph

(see examples in Figs. 1-3). Actions are rectangles and ac­

tivities are rounded rectangles. An activity'S decomposition

is presented as an arrow, labeled with the decomposition

operator, that points to a large rounded rectangle containing

the decomposed activities or actions. In the work presented

here, three decomposition operators are used: (a) ord (all

activities or actions in the decomposition must execute in the

order they appear); (b) or_seq (one or more of the activities

or actions in the decomposition must execute); and (c) xor

(exactly one activity or action in the decomposition must

execute). Conditions on activities are represented as shapes or

arrows (annotated with the condition logic) connected to the

activity that they constrain. A precondition is represented as a

yellow, downward-pointing triangle; a completion condition is

a magenta, upward-pointing triangle; and a repeat condition is

an arrow recursively pointing to the top of the activity. More

details can be found in [7] and [8].

2069

The EOFM language is used to represent the structure of

human task analytic models. The details of how an instantiated

EOFM executes based on the represented structure is con­

trolled by the language's formal semantics [8]. Thus, in order

to be included in formal verification analyses, instantiated

EOFMs must be converted into a formal notation which imple­

ments the represented human task based on its semantic inter­

pretation. In our method, EOFM's formal semantics are used to

translate instantiated EOFM task models into the language of

the Symbolic Analysis Laboratory (SAL) [11]: a framework for

combining different tools to calculate properties of concurrent

systems which includes a state of the art symbolic model

checker called SAL-SMC. SAL-SMC is used to perform

formal verifications on the complete system model. Each step

in a SAL produced counterexample is presented as a list of

variable values sorted by variable name, with no indication

of the relationships between variables. Further, the translation

process divorces the formal representation of the human task

behavior from its original EOFM instantiation. Because there

has been little work investigating formal verification of HAl,

there is no precedent for how to visualize task analytic behavior

from model checker counterexamples. This paper reviews

the literature that does exist on counterexample visualization.

Concepts from existing techniques are incorporated into a

design in which the HAl architectural framework and the

visual notation supported by the EOFM are used to create a

counterexample visualization to help analysts evaluate the role

of HAl in specification violations.

II. COUNTEREXAMPLE VISUALIZATION TECHNIQUES

Tables, state diagrams, process and sequence diagrams, and

domain or application dependent representations have been

used to display counterexamples.

A. Variable Tables

Tables depict variable values in each counterexample step.

Table representations are supported by some model checkers

such as the Cadence SMV [12]. These tables may sometimes

highlight changes in variables to make it easier to compare

variable values between steps [13], [14]. They can also allow

analysts to hide variables and steps from the display [15].

B. State Diagrams

Some visualizations illustrate counterexample steps using

state diagrams. Tools such as UPPAAL2k [16] and S TATEM­

ATE [17] represent models using the statecharts visual formal­

ism [18] and allow counterexamples to be visually inspected

by highlighting states and/or transitions active at each step.

Some tools [19]-[21] allow representations of a model's

state space to be interactively explored to find witnesses or

counterexamples. In these representations, a subset of the

systems states are depicted as nodes in a directed graph

with model specified transitions between them. The presented

state space subset is calculated from user specifiable proof

strategies [19], [21] or statistical measures [20]. Nodes can be

interactively examined in order to get a complete view of their

variable values, and the tools provide feedback about whether

temporal logic properties evaluate to true. Human analysts can

expand their search of the state space by interactively selecting

paths or applying new proof strategies. The tools facilitate

this task by highlighting paths statistically likely to produce

a counterexample [20] or label each graph edge with the proof

steps used to reach the target states [19].

C. Process and Sequence Diagrams

With process and sequence diagrams, variables are either

grouped into domain relevant designations (such as processes

or threads for software) or represented by themselves [14],

[16], [21]-[26]. These designations are listed together along

an axis. Time or execution order is represented along a

perpendicular axis. A mark (such as a dot or box) in this

visualization indicates a change in a designation's state at the

given time or step. It can often be inspected to obtain state

variable values. Marks connected at a given step or time by a

line or arrow can either show synchronized changes between

the designations [23] or information passing [22]. Color can

be used to convey the truth value of temporal logic properties

[23], [24] at each time or step.

D. Domain and Application Dependent Representations

Representations specific to a particular domain or applica­

tion, such as timing plots for models of computer hardware

[27], [28], have been employed. Models animating human

interaction with visual prototypes of human-device interfaces

for counterexamples and formal model simulation traces have

also been explored [14], [29].

E. Common Features

These visualization share common features that support

evaluation including:

1) Encapsulation of Variables or States: The sequence di­

agrams and application dependent representations allow model

state variables to be encapsulated in higher level designations

that are familiar to the analyst. These also sort model variables

and provide other formatting enhancements.

2) lnteractive Detail Refinement: By allowing analysts to

interactively query for information not currently displayed,

visualizations support encapsulation without removing access

to detailed information.

3) Highlighting Analysis Relevant Changes: The discussed

visualizations make variable changes salient at several levels:

individual variables (tables, sequence diagrams, and state dia­

gram animations); designations; and system properties speci­

fied in temporal logic. Sequence diagrams and tables show co­

ordination between changes in state between different variables

or designations. Some sequence diagram and state diagrams

provide visual feedback about the value of analysis-relevant

temporal logic properties.

III. OPERATIONAL CONCEPT AND DESIGN

An analyst performing formal verifications of HAl is in­

terested in determining how human behavior may contribute

to a violation of a system specification. The analyst wants

2070

to examine the conditions under which the human operator

performs actions and what the impact of those actions are

on the other elements of the system. To support analysts

performing such a verification using SAL, our architectural

framework, and our EOFM task modeling language; we are

developing a counterexample visualization that draws from

the common features of other visualization techniques and

EOFM's visual notation. Example designs can be seen in Figs.

1-3. These are discussed in greater depth in Section IV .

A. Encapsulation of Variables or States

The visualization encapsulates variable states based on

the elements of the architectural framework (mission, task

behavior, human-device interface, device automation, and envi­

ronment) and EOFM's visual notation. High level designations

of these are organized in a table with designations as the rows

and counterexample steps as the columnsl.

B. Interactive Detail Refinement

The visualization allows an analyst to interactively inspect

the values of encapsulated variables. An analyst can traverse

the table by either using navigation buttons (previous: � and

next: �) or by scrolling through the table cells and selecting a

specific step!. Selecting a cell moves a cursor (..1 ..) that points to

the associated step's column and presents a detailed view of the

model variable values in a separate, detailed view. This view

presents the individual variable values from the system model

elements for the given step in separate labeled columns. It also

displays the execution state of the human task task behavior

model using EOFM's visual notation2.

The formal semantics of the EOFM language [8] specify

that each activity and action in an instantiated EOFM has

three possible execution states: Ready (waiting to execute),

Executing, and Done (finished executing). When the visualizer

presents the execution state of the human operator's task

behavior model, it renders the entire graph for the goal level

(root) activity that is executing. It color codes each of the

activities and actions in this structure to indicate its execution

state: white for Ready, green for Executing, and grey for Done.

e. Highlighting Analysis Relevant Changes

The visualization highlights changes in variable values in

both the high level encapsulated designations and the individ­

ual variables. At the high level, each table cell's color indicates

whether or not there has been a change in one of the associated

designation's variables since the previous step: white for no

change, and yellow for a change. In our architecture, human

task behavior can only produce a change in the other elements

of the system architecture if a human action is performed.

Thus, a counterexample step with a human action is indicated

with an 'X' in its corresponding table cell. In the detailed view,

variables whose values changed from the previous step are

highlighted in yellow. An activity or action whose execution

1 See the "navigation form " in Figs. 1-3.
2Everything outside of the "navigation form " in Figs. 1-3.

state has changed since the previous step is presented with a

yellow highlight around its border3.

D. Implementation

Our counterexample visualization prototype is implemented

in Microsoft Visio and Visual Basic for Applications. With an

instantiated EOFM and a text file containing a SAL produced

counterexample as input, the software identifies variables that

represent the human task behavior model. The analyst indicates

under which architectural designation the remaining variables

belong: mission, human-device interface, device automation,

or environment. The software then renders each detailed view

as a separate page in a Visio document. The high-level encap­

sulation table (labeled "Navigation Form") is presented as a

dialog box that is presented over each page.

IV. EXAMPLE

The following example illustrates the visualization using a

formal model of a human operator driving towards a traffic

light in a car equipped with cruise control. The driver's goal

is to drive at hislher desired (mission) speed while safely

responding to traffic lights and avoiding merging traffic. Traffic

can merge from a ramp intersecting the road before the traffic

light. For modeling purposes, the relative distance between the

car and the light is: Very Very Far, Very Far, Far, Merging,

Close, Very Close, and At Intersection.

The driver can drive at one of 3 speeds (Slow, Moderate,

or Fast). Increasing the gas (pressing the gas pedal) causes the

car to accelerate to the next faster speed and decreasing the

gas decelerates the car to the next slower speed. The driver can

release the gas pedal and the car decelerates until it stops or the

driver can press the break and the car stops more quickly. The

driver can enable or disable the cruise control using available

buttons. Pressing the break also disables the cruise control.

The cruise control will maintain the car's current speed unless

the driver increases the gas, where the driver controls the cars

speed above the cruise speed.

The formal system model architecture [6] includes the

human-device interface (the pedal and the car's indicated

speed), device automation (the car's speed and acceleration),

operational environment (the color of the light, its relative

position to the car, and whether or not there is merging

traffic), and human mission (the driver's desired speed). It also

contains the human task behavior which is translated from an

instantiated EOFM for the driving tasks: driving at the desired

speed (adjusting the car's speed and cruise control), avoiding

merging traffic (accelerating or slowing down to avoid the

traffic), and responding to the light (waiting until very close to

the light and breaking, or rolling to a stop from further away).

A full specification of this model can be be found in [8].

SAL-SMC was used to formally verify that the driver will

never run a red light (reach the intersection when the light is

red with the car not being stopped). This is specified in linear

3Examp1es of highlighting can be seen in Figs. 1-3.

2071

NavIgatIon Fonn

Human Task

Environment

MiSSion

Human-device Interface

Automation

Environment Variables

Traffie = NotMerging

TraffieLight = Red

TraffieLightDisianee = Close

Step 44 of 44

'1
Pedal = Unpressed AND

CarAcceleretion 1= Decelerated

Mission Variables

MissionSpeed = Moderate

TrafficUght 1= Green AND IRttpond CarSpeed = Stopped
y ®T(afficug� Green OR

(TrafficU{/JtDist8f/Ce <= Close) T�

or_seq

'V 'V
Tra/ficUghtl= Green AND

Q
TrafficUghtOist8l1Ce = Close AND

Tra��t:�:=; ��,:;ND aBreakStop CarSpeed= F8St

rd"""------[EJ
'1 '1

TrafficUght 1= Green AND -.r:::::J Peda = Unpressed AND �
T,.�',;'t:�:�:; =,:,:�ND � C.rAcce�"'on � Decelerated �

Human-device Interlace Variables

Pedat = Unpressed

md 0

G 8
Device Automation Variables

CarAeeeteration = ConstantSpeed

CarSpeed = Moderate

Cruising = true

Cruising Speed = Moderate

Fig. I. Step 44 from the visualization of the counterexample. The car has reached the intersection while moving at a constant, moderate speed while the traffic
light is red, a violation of (I). The operator has attempted to perform a roll stop by keeping his/her foot off of the gas pedal. However, this has not impacted
the car's speed because the cruise control is enabled and the car is at its cruise speed.

temporal logic as:

G
(Traf ficLightDistance = AtIntersection)

--,
1\ Traf ficLight = Red 1\ Car of=. Stopped (I)

When checked against the formal system model, this spec­

ification produced a counterexample. The violation occurs in

the last step of the counterexample (step 44; Fig. 1): where

the driver is attempting to roll to a stop at the traffic light. The

driver is not pressing the gas pedal, but the car is moving at

a moderate, constant speed (not decelerating) with the cruise

control enabled. Here, the driver has attempted to roll to a stop

without disabling the cruise control.

The driver had previously attempted to slow the car by

releasing the gas pedal (aReleaseGas and aRemoveGas) rather

than disable the cruise control (Fig. 1). By stepping through the

counterexample with the navigation form, we see that at step

33 (Fig. 2), the driver should disable the cruise control as part

of performing a roll stop (aDisableCruise via aRemoveGas and

aRollStop). However, even though cruise is enabled (Cruising

= true under 'Device Automation Variables'), the driver is

pressing the gas pedal. Thus he/she performs the activity for

releasing the gas pedal (aReleaseGas) instead.

The navigation form shows when the last human action was

performed (the 'X' at step 26). The associated detailed view

(accessed by clicking on the 'X') reveals that while cruise

was enabled, the driver pressed the gas pedal (IncreaseGas) to

let merging traffic in behind (Fig. 3). Thus, the visualization

shows that this violation occurs when the driver accelerates to

go ahead of merging traffic after enabling the cruise control

and then attempts to roll to a stop at a traffic light.

V. DISCUSSION

When using our HAl architectural framework and our

EOFM task modeling language, the counterexample visual­

ization supports the interpretation of a SAL produced coun­

terexample by providing a means of determining how human

task behavior interacts with other system architectural elements

leading up to a specification violation. It accomplishes this

by exploiting the visual notation of the EOFM and useful

features of other visualization techniques: (a) It encapsulates

variables into designations from the architectural framework

and presents task model data using the EOFM visual notation;

(b) Counterexample steps can be interactively inspected to

display detailed human task behavior and other model variable

state information; and (c) It highlights changes in the high level

encapsulation view, the detailed view of the variables, and the

human task behavior execution state.

While the application presented here is simple for illustra­

tive purposes, our visualization has been used successfully with

a number of other applications including a pain medication

pump, a radiation therapy machine, and an aircraft on approach

[2]. Because both the abstracted encapsulation of variables

(the "navigation form") and the detailed display of variable

values are similar to table visualizations, they should scale

for systems with larger numbers of variables [13]. However,

because human task behavior is being represented diagrammat­

ically, it may not scale well for applications with large task

2072

Navigation Form •

Hl.I'TIan Task

Environment

MissIOn

Human-device Interface

Automation

Step 33 of 44
y ®r'./ficU<j>�G""'OR TrafflcU�.'= Green AND � CarS eed = St (TraffjcU�{)stance <= Close) ToLIfIJI P opped

Of_Seq

v V
r,a/licUghtI=G,eenAND � rnl/ficu<j>,()st.",e" Close AND

r,.�c;::::�:::,:; =:'7�ND .Q C..speed" F""

�-�
y

Peds 1= Unpressed
'-----

'Y
Pede/" Unpressed AND

CarAtxeleration 1= Decelerated

'Y 'Y

TrafficU!/It{)stance = VetyClose AND aBreakStop CarAcceleration = Decelertied
TrafficLightl=GreenAND -8 Peda/=UnpressedAND

C8fAcceleration 1= Decelertied
�-----------'�--------------------'w---J �-------------------��,--------------------o

Environment Variables

Traffic: NotMerging

TrafficLight: Yellow

TrafficLightDistance : Close

Mission Variables

MissionSpeed: Moderate

Human·device Interface Variables

Pedal: PressedToFast

Device Automation Variables

CarAcceleration : Accelerated

CarSpeed : Fast

Cruising: true

CruisingSpeed : Moderate

B

Fig. 2. Step 33 from the visualization of the counterexample. The car is close to the light and the light is yellow. Thus the driver is attempting to respond to
the light by performing a roll stop. To accomplish this task, he/she "removes " gas from the car by performing the activity for releasing the gas pedal.

Human Task

Environment

Mission

Human-device Interface

Automation

Environment Variables

Traffic: NotMerging

TrafficLight: Yellow

TrafficLightDistance: Close

Step 26 of 44

- .

Mission Variables

MissionSpeed : Moderate

y
r,.fflc" �gng (�)

Tillie

y
Pedal: Unpressed AND

CarAcceleration 1= Decelerat

Human-device Interlace Variables Device Automation Variables

Pedal: PressedToFast CarAcceleration : Accelerated

CarSpeed : Fast

Cruising: true

CruisingSpeed : Moderate

Fig. 3. Step 26 from the visualization of the counterexample. The driver has just performed the action for increasing the gas to avoid merging traffic by letting
the merging traffic pass behind. This has caused the gas pedal to be pressed to the "fast " position, with the car accelerating to the fast speed, allowing the traffic
to merge, and the car to go to the "Close " interval. The traffic light has also turned yellow.

structures or systems with multiple human operators. Future

work should attempt to identify how our visualization scales

to larger applications and what applications it is suited for.

There are other features that could be incorporated into our

visualization. Several existing visualizations [19]-[21], [23],

[24] provide feedback about how logically expressed properties

evaluate at each step, often with color coding. While our visu­

alization displays the conditions associated with task behavior

activities, it does not provide any visual indication of how they

evaluate (true or false). Additionally, our visualization provides

no feedback about the evaluation of temporal logic properties

(like that used to produce the counterexample). Future work

2073

should investigate how to incorporate visual feedback about

property evaluations into our visualization.

Interactive statespace exploration is supported by [19]-[21].

SAL-SMC counterexamples represent a single execution path

through the model and thus do not facilitate additional model

exploration. Future work should investigate how statespace

exploration could be made to work with our visualization.

Our visualization was explicitly designed to help analysts

interpret counterexamples. However, such a visualization may

be useful for debugging models during development. Future

work should determine what the requirements are for debug­

ging and related visualization tools.

Analysts may wish to compare different counterexamples

to diagnose potentially related specification violations. Future

work should investigate what the requirements are for such a

feature and potentially adapt the visualization to support it.

Because there are no existing visualizations designed ex­

plicitly to help analysts interpret counterexamples utilizing

task analytic models, there are no analogous technologies

to compare with ours. Our visualization uses the EOFM's

visual notation to display the state of task analytic behavior

models coupled with concepts employed by variable tables

and sequence diagrams. This would suggest that our visual­

ization is better suited to analyses with our method [5] than

with SAL's default counterexample display, variable tables, or

sequence diagrams. Future work should conduct human subject

experiments to determine if this is the case.

ACKNOW LEDGEMENT

This work was supported in part by Grant Number

T15LM009462 from the National Library of Medicine (NLM)

and Research Grant Agreement UVA-03-01, sub-award 6073-

VA and 2723-VA from the National Institute of Aerospace

(NIA). The content is solely the responsibility of the authors

and does not necessarily represent the official views of the

NIA, NASA, NLM, or NIH. The authors would like to thank

Radu I. Siminiceanu of the NIA and Ben Di Vito of the NASA

Langley Research Center for their technical help and support.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cam­
bridge: MIT Press, 1999.

[2] M. L. Bolton, "Using task analytic behavior modeling, erroneous human
behavior generation, and formal methods to evaluate the role of human­
automation interaction in system failure," Ph.D. dissertation, University
of Virginia, Charlottesville, 2010.

[3] B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. London:
Taylor and Francis, 1992.

[4] J. M. Schraagen, S. F. Chipman, and V. L. Shalin, Cognitive Task
Analysis. Philadelphia: Lawrence Erlbaum Associates, Inc., 2000.

[5] M. L. Bolton and E. 1. Bass, "A method for the formal verification of
human interactive systems," in Proceedings of the 53rd Annual Meeting
of the Human Factors and Ergonomics Society. Santa Monica: Human
Factors and Ergonomics Society, 2009, pp. 764-768.

[6] --, "Formally verifying human-automation interaction as part of a
system model: Limitations and tradeoffs," Innovations in Systems and
Software Engineering: A NASA Journal, 2010, doi:IO.1007/s11334-01O-
0129-9.

[7] --, "Enhanced operator function model: A generic human task be­
havior modeling language," in Proceedings of the IEEE International
Conference on Systems Man and Cybernetics. Piscataway: IEEE, 2009,
pp. 2983-2990.

[8] M. L. Bolton, R. 1. Sirniniceanu, and E. 1. Bass, "A systematic approach
to model checking human-automation interaction using task-analytic
models," under review.

[9] C. M. Mitchell and R. A. Miller, "A discrete control model of operator
function: A methodology for information dislay design," IEEE Transac­
tions on Systems Man Cybernetics Part A: Systems and Humans, vol. 16,
no. 3, pp. 343-357, 1986.

[10] D. A. Thurman, A. R. Chappell, and C. M. Mitchell, "An enhanced
architecture for OFMspert: A domain-independent system for intent
inferencing," in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics. Piscataway: IEEE, 1998.

[11] L. De Moura, S. Owre, and N. Shankar, "The SAL language manual,"
Computer Science Laboratory, SRI International, Menlo Park, Tech. Rep.
CSL-OI-0l, 2003.

[12] K. McMillan, "The cadence smv model checker," http://www.kenmcmil.
comlsmv.html.

[13] K. Loer and M. D. Harrison, "An integrated framework for the analysis
of dependable interactive systems (IFADIS): Its tool support and eval­
uation," Automated Software Engineering, vol. 13, no. 4, pp. 469-496,
2006.

[14] J. C. Campos and M. D. Harrison, "Interaction engineering using the ivy
tool," in Proceedings of the 1st ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. New York: ACM, 2009, pp. 35-44.

[15] M. Kermelis, "Towards an improved understanding of model-checking
traces by visualisation," Master's thesis, University of York, York, 2003.

[16] T. Amnell, G. Behrmann, 1. Bengtsson, P. R. DArgenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen, M. O. Miler, P. Pet­
tersson, C. Weise, and W. Yi, "UPPAAL - now, next, and future," in
Proceedings of the 4th Summer School Modeling and Verification of
Parallel Processes. Berlin: Springer, 2001, pp. 99-124.

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot, "STATEMATE: A working
environment for the development of complex reactive systems," IEEE
Transactions on Software Engineering, vol. 16, no. 4, pp. 403-414,1990.

[18] D. Harel, "Statecharts: A visual formalism for complex systems," Science
of Computer Programming, vol. 8, no. 3, pp. 231-274, 1987.

[19] M. Chechik and A. Gurfinkel, "A framework for counterexample gen­
eration and exploration," International Journal on Software Tools for
Technology Transfer, vol. 9, no. 5, pp. 429-445, 2007.

[20] H. Aljazzar and S. Leue, "Debugging of dependability models using
interactive visualization of counterexamples," in Proceedings of the 5th
International Conference on Quantitative Evaluation of Systems. Los
Alamitos: IEEE Computer Society, 2008, pp. 189-198.

[21] Y. Dong, C. R. Ramakrishnan, and S. A. Smolka, "Evidence Explorer:
A tool for exploring model-checking proofs," in Proceedings of the
15th International Conference on Computer Aided Verification. Berlin:
Springer, 2003, pp. 215-218.

[22] C. Artho, K. Havelund, and S. Honiden, "Visualization of concurrent
program executions," in Proceedings of the 31st Annual International
Computer Software and Applications Conference. Piscataway: IEEE,
July 2007, pp. 541-546.

[23] P. Kemper and C. Tepper, "Trace analysis-gain insight through mod­
elchecking and cycle reduction," Dortmund University of Technology,
Dortmund, Tech. Rep. 06007, 2006.

[24] R. Simmons and C. Pecheur, "Automating model checking for au­
tonomous systems," in Proceedings of the AAAI Spring Symposium on
Real-Time Autonomous Systems. Menlo Park: AAAI Press, pp. CD­
ROM.

[25] G. J. Holzmann, The Spin Model Checker, Primer and Reference Manual.
Reading: Addison-Wesley, 2003.

[26] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran, "MOCHA: Modularity in model checking," in Proceedings
of the 10th International Conference on Computer Aided Verification.
Berlin: Springer, 1998, pp. 521-525.

[27] S. Jeon, "Verification of function block diagram through verilog trans­
lation," Master's thesis, Korea Advanced Institute for Science and
Technology, Daejeon, 2007.

[28] P. C. Tae Jung Kim, "smv2vcd," Pittsburgh, December 2001, http://www.
cs.cmu.edu/�modelcheck/smv2vcd.html.

[29] Y. Ail-Ameur and M. Baron, "Formal and experimental validation
approaches in HCI systems design based on a shared event B model,"
International Journal on Software Tools for Technology Transfer, vol. 8,
no. 6, pp. 547-563, 2006.

2074

