
An Approach to Generating Human-computer

Interfaces from Task Models

Task

Model

L*

Learner

“Alphabet”

Interface

Design

“Alphabet”

Extraction

Teacher

Execution

Sequence

Responses
{Accept, Reject}

Task-related

and Usability

Properties

Model

Checker

Response

Candidate

Design

Formal System

Models

Introduction

– Human-computer interaction (HCI)

can occur in situations

unanticipated by designers and

thus not always be usable or

support operator tasks

– The proposed method uses existing

work, which shows that formal

methods and L* machine learning

can be used to analyze and design

robust HCI, to automatically

generate interface designs from

task models guaranteed to usably

support operator task goals

Interface Design

– The produced finite state machine

will represent a human-computer

interface design guaranteed to

always support the human behavior

in the task model and adhere to the

checked usability properties

– The formal model can then be used

in the design, implementation, and

testing of the actual human-

computer interface

Task-related and

Usability Properties

– A translator uses the design and

task model to generate LTL

specification properties for

checking the candidate design

– Task-related specification

properties that assert desirable

properties of task execution are

generated from the EOFM

task models

– Usability property patterns and the

candidate design are used to

create usability specifications

Formal System Models

– Two formal system models are

created

– Model 1 represents the human

operator interacting with the

candidate design with the behavior

in the task model

– Model 2 represents the candidate

interface design’s behavior

independently of the human

behavior in the task model

Teacher

– A teacher checks an execution

sequence against the EOFM task

model to ensure the two are

consistent

– If not, a “Reject” is returned

– If they are, an “Accept” is returned

– This search will be implemented

using the formal representation of

EOFM with the model checkers in

the Symbolic Analysis Laboratory

(SAL)

Meng Li
Department of System and Industrial Engineering

State University of New York at Buffalo

Samaneh Ebrahimi
Department of Mechanical and Industrial Engineering

University of Illinois at Chicago

Matthew L. Bolton, Ph.D.
Department of System and Industrial Engineering

State University of New York at Buffalo

Model Checker

– A model checker (SAL) is used to evaluate the

acceptability of the candidate design

– It does this by checking the two formal system models

against the generated specification properties

– Model 1 is checked against the task-related properties

– Model 2 is checked against all other usability properties

– If a verification fails, the counterexample illustrating

why the interface is unacceptable is returned

– If all of the specifications are verified,

“Accept” is returned

“Alphabet” Extraction

– Task models are parsed to find the

events that trigger changes in the

human-computer interface:
 Human actions

 System conditions from task

strategic knowledge

– These are treated as characters in

the alphabet accepted by a finite

state machine representing the

interface design

– Human task behavior is

represented using the Enhanced

Operator Function Model (EOFM)

– Human behavior is captured as a

hierarchy of goal-directed

activities and actions

– Strategic knowledge describes

when activities are relevant

– Decomposition operators define

the ordinal relationships between

activities and actions

Conclusions and

Future Work

– The implementation of this

approach is currently underway

– If successful, the approach has the

potential to improve the usability of

human-computer interfaces and

encourage user-centered design

– The implemented approach will be

tested and validated using artificial

examples as well as a PCA pump

application

{Accept, Counterexample}

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1429910.

L* Learner

– An L* algorithm iteratively learns a

finite state automata representation

of an interface design by issuing

queries and producing candidate

designs that are examined by other

processes in the approach

– Queries represent execution

sequences (“strings” of “alphabet”

characters)

– The L* Learner receives inputs

indicating if a produced execution

sequence is valid or not

– Candidate interface designs

represent learned interfaces

consistent with previous inputs

– The L* Learner receives inputs

indicating if the candidate is valid or

not and, if not, an illustrative

unacceptable execution sequence

(a counterexample)

Task Model

Action1

Activity

1a

Activity

1b

Action2

Activity1

xor

ord ord

Precondition CompletionCondition

Translator

