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Introduction 
 

– Human-computer interaction (HCI) 

can occur in situations 

unanticipated by designers and 

thus not always be usable or 

support operator tasks 

– The proposed method uses existing 

work, which shows that formal 

methods and L* machine learning 

can be used to analyze and design 

robust HCI, to automatically 

generate interface designs from 

task models guaranteed to usably 

support operator task goals  

Interface Design 
 

– The produced finite state machine 

will represent a human-computer 

interface design guaranteed to 

always support the human behavior 

in the task model and adhere to the 

checked usability properties 

– The formal model can then be used 

in the design, implementation, and 

testing of the actual human-

computer interface 

Task-related and  

Usability Properties 
 

– A translator uses the design and 

task model to generate LTL 

specification properties for 

checking the candidate design 

– Task-related specification 

properties that assert desirable 

properties of task execution are 

generated from the EOFM  

task models 

– Usability property patterns and the 

candidate design are used to 

create usability specifications 

Formal System Models 
 

– Two formal system models are 

created 

– Model 1 represents the human 

operator interacting with the 

candidate design with the behavior 

in the task model 

– Model 2 represents the candidate 

interface design’s behavior 

independently of the human 

behavior in the task model 

Teacher 
 

– A teacher checks an execution 

sequence against the EOFM task 

model to ensure the two are 

consistent 

– If not, a “Reject” is returned 

– If they are, an “Accept” is returned 

– This search will be implemented 

using the formal representation of 

EOFM with the model checkers in 

the Symbolic Analysis Laboratory 

(SAL) 
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Model Checker 
 

– A model checker (SAL) is used to evaluate the 

acceptability of the candidate design 

– It does this by checking the two formal system models 

against the generated specification properties 

– Model 1 is checked against the task-related properties 

– Model 2 is checked against all other usability properties 

– If a verification fails, the counterexample illustrating 

why the interface is unacceptable is returned 

– If all of the specifications are verified,  

“Accept” is returned 

“Alphabet” Extraction 
 

– Task models are parsed to find the 

events that trigger changes in the 

human-computer interface: 
 Human actions 

 System conditions from task  

strategic knowledge 

– These are treated as characters in 

the alphabet accepted by a finite 

state machine representing the 

interface design 

 
 

– Human task behavior is 

represented using the Enhanced 

Operator Function Model (EOFM) 

– Human behavior is captured as a 

hierarchy of goal-directed 

activities and actions 

– Strategic knowledge describes 

when activities are relevant 

– Decomposition operators define 

the ordinal relationships between 

activities and actions 

Conclusions and  

Future Work 
 

– The implementation of this 

approach is currently underway 

– If successful, the approach has the 

potential to improve the usability of 

human-computer interfaces and 

encourage user-centered design 

– The implemented approach will be 

tested and validated using artificial 

examples as well as a PCA pump 

application 

{Accept, Counterexample} 
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L* Learner 
 

– An L* algorithm iteratively learns a 

finite state automata representation 

of an interface design by issuing 

queries and producing candidate 

designs that are examined by other 

processes in the approach 

– Queries represent execution 

sequences (“strings” of “alphabet” 

characters) 

– The L* Learner receives inputs 

indicating if a produced execution 

sequence is valid or not 

– Candidate interface designs 

represent learned interfaces 

consistent with previous inputs 

– The L* Learner receives inputs 

indicating if the candidate is valid or 

not and, if not, an illustrative 

unacceptable execution sequence 

(a counterexample) 
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