Formal Verification and Modeling in Human-Machine Systems: Papers from the AAAI Spring Symposium

An Approach to Generating Human-Computer Interfaces from Task Models*

Matthew L. Bolton
Industrial and Systems Engineering
The State University of New York at Buffalo
Buffalo, NY 14260

Abstract

Human-computer interaction (HCI) can often occur in
situations unanticipated by designers. As such, usabil-
ity may not always be maintained or human operators
may not be able to achieve task goals. This can result in
poor system adoption, decreased productivity, and un-
safe operating conditions. Formal methods can be used
prove properties about different elements of HCI. Un-
fortunately, these methods require the creation of formal
models of interface designs, a non-standard practice that
is prone to modeling error. This work describes an ap-
proach (based on L* learning) that is being developed
to automatically generate formal human-computer in-
terface designs guaranteed to always adhere to usability
properties and support human operator tasks. The paper
presents a formulation of this approach and describes
plans for its implementation. These are discussed along
with avenues for future research.

When designing a human-computer interface, it is critical
that the design have good usability and allow the human op-
erator to always fulfill his or her task goals. A failure to
do this could result in poor acceptance of the system, re-
duce productivity, or lead to unsafe operating conditions.
Unfortunately, the concurrent nature of human-computer in-
teraction (HCI) can result in designers missing poor usabil-
ity conditions or situation that could prevent operators from
performing their tasks. Luckily, researchers have developed
techniques that can help designers address these issues.
User-centered design is an approach for creating human
interactive systems that emphasizes the need to facilitate
the human operator’s tasks (DIS, ISO 2009). Tasks are
documented using task analyses (Schraagen, Chipman, and
Shalin 2000; Kirwan and Ainsworth 1992), where the pur-
pose is to capture the space of possible behaviors that a hu-
man operator can or should use to achieve goals with a sys-
tem. The product of a task analysis is a task model that de-
scribes the ordinal relationships between the different activ-
ities and actions human operators can perform. It also con-
tains strategic knowledge (usually as logical conditions) to
specify when activities and actions can execute and what

*This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1353019.
Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

92

Samaneh Ebrahimi
Mechanical and Industrial Engineering
University of Illinois at Chicago
Chicago, Illinois 60607

they must accomplish. The products of task analyses and
user-centered designs can also be used with formal methods.

Formal methods are robust mathematical tools and tech-
niques that give analysts means of guaranteeing that a sys-
tem model satisfies certain properties (Wing 1990). Formal
verification have been used to formally model task analytic
and human-computer interface behaviors and prove usabil-
ity and safety properties about them (Bolton, Bass, and Si-
miniceanu 2013; Campos and Harrison 1997). The vast ma-
jority of these analyses use formal verification, where proof
techniques show that a system model adheres to formal spec-
ification properties. Model checking is an approach to for-
mal verification where a model of a system’s behavior is au-
tomatically proven to either satisfy or not satisfy logically
formulated specification properties (Clarke and Wing 1996).

While powerful, such analyses require the creation of for-
mal human-computer interface models, a process that can
be difficult and prone to modeling error (Heitmeyer 1998).
Further, such an approach, with its emphasis on interface
modeling, can ignore the human operator tasks and thus not
be compatible with user-centered design.

A variety of work has investigated how to generate
human-computer interfaces from object-oriented design
models, including task models (Tran et al. 2010; Garcia et
al. 2008; Mahfoudhi, Abid, and Abed 2005; Espaifia, Ped-
eriva, and Panach 2007). However, such methods are pre-
dominantly concerned with rapid software development and
not providing formal guarantees about the produced design.

Thus, there is a real need for formal approaches that will
enable designers to automatically develop interfaces guaran-
teed to allow human operators to usably perform their tasks.

Researcher have shown that the L* learning algorithm
(Angluin 1987) can be used to generate interfaces that ad-
here to usability properties (Combéfis et al. 2011; Combéfis
and Pecheur 2012). However, these designs are created from
models of system automation and are thus not user-centered
and do not provide guaranteed support for human tasks.

Objectives

In this paper, we describe preliminary steps we have taken
to develop a user-centered interface design method. Our ap-
proach uses formal human task behavior models, formal us-
ability properties, and L* learning to automatically gener-
ate formal interface designs. Given the use of task models

and usability properties in the generation, the designs will
be guaranteed to always usably support the human opera-
tor’s task, thus supporting user-centered design.

In the material that follows, we present the background
necessary for understanding our approach. We then describe
the approach itself. This is followed by an examination
of implementation possibilities. Finally, the method is dis-
cussed and avenues of future research are explored.

Background

There is a significant literature covering the way that for-
mal methods can be used in the analysis of HCI (Bolton,
Bass, and Siminiceanu 2013). For this work, formal human-
computer interface modeling, usability specification, formal
human task behavior modeling, and L* learning are most
relevant. All are discussed below.

Formal Models of Human-computer Interfaces

To be formally evaluated, the behavior of the human com-
puter interfaces must be modeled. This can occur using
many notations including statecharts (Degani and Heymann
2002), interactors (Harrison and Duke 1995), and Object-
Z (Bowen and Reeves 2008). Despite the diversity of tech-
niques, all generally treat the interface as a finite state au-
tomaton (FSA) that can transition between states based on
human operator actions or other system conditions (Parnas
1969).

This work is relevant to this project because it shows that
human-computer interfaces can be formally modeled and
thus reasoned about using formal verification tools.

Formal Interface Usability Properties

Formal verification can be used to evaluate the usability
of modeled interfaces using formal usability specification
properties. Campos and Harrison (1997) identified four cat-
egories of such properties for which generic specification
patterns have been formulated. Reachability properties as-
sert qualities about whether and when interface conditions
can be attained (Campos and Harrison 2009; Abowd, Wang,
and Monk 1995; Paterno 1997). Visibility properties de-
scribe how feedback to human actions should manifest (Pa-
terno 1997; Campos and Harrison 2008). Task-related prop-
erties specify that task goals should be achievable and that
actions can be undone (Paterno 1997; Bolton et al. 2013;
Abowd, Wang, and Monk 1995; Campos and Harrison 2008;
Bolton 2013). Reliability describes properties important
to safety such as behavioral consistency, the absence of
deadlock, and the lack of hidden mode changes (Cam-
pos and Harrison 2009; Abowd, Wang, and Monk 1995;
Joshi, Miller, and Heimdahl 2003).

Formal Models of Human Task Behavior

Methods have additionally been developed that allow mod-
els of human task behavior to be model formally and thus
used in formal analyses. In these, a task model is either
represented using a formalism or translated into one where
it interacts with other formally modeled elements of a tar-
get system. Formal verification is then used to prove that

93

the system is safe or free from deadlock (Basnyat et al.
2007; Gunter et al. 2009; Campos 2003; Ait-Ameur, Baron,
and Girard 2003; Bolton and Bass 2010; 2009; Bolton,
Siminiceanu, and Bass 2011; Paterno and Santoro 2001;
Palanque and Paterno 1997; Navarre et al. 2001; Barboni
et al. 2010) or that it exhibits other desirable usability prop-
erties (Bolton et al. 2013; Bolton 2013).

The L* Learning Algorithm

The L* algorithm is a machine learning process capable of
generating a formal model based on a series of queries to
a teacher and/or oracle (Angluin 1987). Specifically, an L*
algorithm will learn a minimal FSA for accepting a lan-
guage. It does this by iteratively generating queries that it
must receive specific answers to. The L* algorithm will gen-
erate two different types of queries. In the first type, it cre-
ates a string representing a word that may or may not be in
the target language. The algorithm’s teacher must supply an
answer to the algorithm indicating if the string can be ac-
cepted, rejected, or if it doesn’t matter (“Don’t Care”) (An-
gluin 1987; Giannakopoulou and Pésdreanu 2009; Chen et
al. 2009). After a number of such queries, the L* algorithm
will have enough information to generate a FSA. It will send
this to an oracle. It is then the job of the oracle to examine the
automaton and determine if it is satisfactory. If it is, then the
algorithm completes. If it is not, the oracle must generate a
string (counterexample) it considers to be unacceptable that
can be accepted by the FSA created by the L* algorithm.
The oracle will continue generating strings and candidate
automata until a satisfactory automata has been found.

L* learning is pertinent to this project because it gives
us the ability to learn a FSA, thus enabling the automatic
generation of human-computer interface models.

Using L* to Generate Interface Designs

L* learning has been used to generate human-computer in-
terface designs (Combéfis et al. 2011; Combéfis and Pecheur
2012). In this approach, the L* algorithm learns a formal in-
terface design as a FSA. The alphabet associated with the
FSA includes the human actions and other system condi-
tions that can alter interface state. The interface’s state rep-
resents an abstraction of the underlying automation’s state.
Using this representation, Combéfis et al. (2011; 2012) have
shown that L* learning can generate a minimal interface
design from a model of system automation while ensuring
that the human operator retains “full control” (a condition
that will nominally prevent mode confusion; Combéfis and
Pecheur 2009). While this work did not consider human task
behavior, it does demonstrate that L* learning can generate
interfaces that adhere to certain usability properties.

Interface Generation Approach

In this work, we synthesizes each of these concepts into a
single novel approach that use L* learning to automatically
generate formal human-computer interface designs from for-
mal task analytic behaviors models and usability properties.
Given the nature of L* learning, this approach should guar-
antee that the produced interface design will always usably
support the human operator’s task.

We assume the same formal interface representation used
by Combéfis et al. (2011; 2012), where a learned interface
design is a FSA that transitions between interface states
based on human actions and other system conditions. How-
ever, instead of using a model of system automation as input,
our approach takes a task analytic behavior model (which
describes human normative interaction with the system) and
a set of desirable formal usability properties as inputs. The
method extracts the “alphabet” of the interface from the ac-
tions and strategic knowledge in the task model. Then, an
L* algorithm learner will progressively learn a minimal in-
terface FSA by generating queries and design candidates
that are evaluated by a teacher and oracle (respectively). The
teacher and oracle will compare the outputs created by the
learner to the task model and the usability properties using
formal verification techniques. These will produce the re-
sponses that will tell the learner if the produced queries and
designs are or are not acceptable. When complete, the L*
algorithm will produce a formal human-computer interface
design that will support the human operator’is tasks and sat-
isfy the included usability properties.

A graphical representation of the approach can be seen in
Figure 1. It proceeds as follows:

A.1 A task analytic behavior model is evaluated by an al-
phabet extraction process that identifies the human ac-
tions and system conditions (found in task analytic be-
havior model strategic knowledge) that will constitute
the alphabet of the formal interface design’s FSA rep-
resentation. This is sent to the L* learner.

A.2 The L* learner uses the alphabet to generate a unique
execution sequence (a string of actions and system con-

ditions) that it sends to the teacher.

A.3 The teacher process compares the string to the original
task analytic behavior model to see if the execution se-
quence is compatible with its contained behavior. If it
is, the teacher produces an “Accept” response. If not, it
produces a “Reject”. If the string is incomplete (doesn’t
constitute a full execution sequence through the task

model) it issues a “Don’t Care” response.

A.4 The response is observed by the L* learner. Then, if the
L* learner has enough information to produce a design,
it will go to step A.5. Otherwise, it will go back to step

A.2 to produce a new string.

A.5 The learner creates a formal interface design (a FSA)
that is capable of accepting and/or rejecting all of the
previously considered execution sequence strings (re-
spectively accepted or rejected by the teacher). This is
examined by the oracle that checks it to ensure that it
is compatible with the provided task analytic behavior
model and the included formal usability properties. If
the interface design passes these evaluations, then the
candidate design is output as the final design. Other-
wise, the oracle produces an unacceptable execution se-
quence that is allowed by the current interface design (a
counterexample). This is examined by the learner who
then proceeds at step A.2.

94

The oracle process (in step A.5) produces its results
through a sequence of model checking verifications (see Fig-
ure 2). This is a multistep process that proceeds as follows:

O.1 The oracle translates the task analytic behavior model
and the produced interface design into a larger for-
mal system model. Concurrently, it also produces task-
related usability specifications that assert properties
about the proper execution of the task when interacting
with the interface.

0.2 The formal system model is iteratively checked against
these properties using a model checker. If all of these
are satisfied, then the process proceeds to the next step.

Otherwise, any produced counterexample is output.

0.3 The original formal interface design is iteratively
checked against all of the formal usability properties in-
cluded in the analysis. If a counterexample is ever pro-
duced, it is output. If no counterexample is produced,

then the candidate design is output as the final design.

Implementation Plans

To realize the interface generation approach presented, there
are three major components that will need to be identified
or developed: (a) A suitable task analytic modeling system
needs to be selected; (b) An L* learning algorithm needs to
be implemented and/or a suitable existing implementation
needs to be found; and (c¢) A formal evaluation framework
for implementing the teacher and model checking compo-
nent of the oracle needs to be chosen. Although this project
is still in its early stages, we have identified some prime can-
didates for each of these. All three are discussed below.

Task Modeling

There are many different task analytic modeling techniques.
However, the formal task modeling notation that is most rel-
evant to this work is the Enhanced Operator Function Model
(EOFM) (Bolton, Siminiceanu, and Bass 2011).

EOFM is an XML-based task modeling language specif-
ically designed to allow task analytic human behavior to be
included in formal analyses. EOFMs represent human be-
havior as a hierarchy of goal driven activities that decom-
pose into lower level activities, and finally, atomic actions. A
decomposition operator specifies the temporal and cardinal
relationships between the decomposed activities or actions
(when they can execute relative to each other and how many
can execute). EOFMs express strategic knowledge explicitly
as conditions on activities. They can assert what must be true
before an activity can execute (preconditions), when it can
repeat (repeat conditions), and what must be true when it fin-
ishes (completion conditions). Most importantly, EOFM has
formal semantics which specify how an instantiated EOFM
model executes. This enables its use with formal methods.

EOFM is relevant for this work because it can formally
represent normative human task behaviors and can thus be
included in formal verification analyses (Bolton and Bass
2010; Bolton, Siminiceanu, and Bass 2011; Bolton and Bass
2012; Bolton, Bass, and Siminiceanu 2012; Bolton and Bass
2013b; 2013a). Thus it can be used by the proposed oracle

- Interface Generator

Usability
Properties

Responses

{Accept, Reject, Don't Care}

“Alphabet”) .
Extraction Alphabet
Execution

Teacher Sequences
(“Strings”)

Interface
Design

|

\

\

. \
L |
Learner |
\

\

Responses

{Accept, Counterexample}

A
A4
Candidate
Interface - Oracle
Designs

Figure 1: The approach for automatically generating human-computer interfaces from task models and usability properties.
Note that a description of the inner workings of the oracle can be found in Figure 2.

Model
Checker

Formal System
Model

- Responses --———,
I |

Counterexample
Response

Verification

Counterexample
Response

Confirmation?

,~—- Oracle
|
1
Task L >
Mo : Translator
J ‘
|
| #
|
1
X |
Candidate [Task-related
Interface ‘ i >
_ \ Properties
Designs ‘
| .
|
|
|
} L2/
|
Usability L Model
Properties } Checker
J |
|
|
|

Verification
Report

Accept
Response

Confirmation?

Figure 2: The approach used by the oracle (see Figure 1) to evaluate an interface designs produced by the L* learner.

and teaching procedures to evaluate learner outputs. Further,
EOFM supports the ability to automatically generate speci-
fication properties for evaluating how well an interface sup-
ports tasks (Bolton et al. 2013; Bolton 2013). This can be
used by the oracle to check that an interface design is prop-
erly supporting the task (step O.1 from above).

L* Learning

There are several preexisting implementations of the L*
learning algorithm that could be used in this project. These
include learnlib (Raffelt and Steffen 2006) and libalf (Bol-

95

lig et al. 2010). However, neither automatically work with
a particular model checker nor have they been used to learn
human-computer interface designs previously. Alternatively,
the Java Pathfinder (Havelund and Pressburger 2000) en-
vironment offers an implementation of L* that can work
with its native model checking capabilities (Combéfis et al.
2011). Further, Java Pathfinder’s L* learner was successfully
used in Combéfis et al.’s (2011; 2012) interface generation
effort. Thus, while all options are still being considered, Java
Pathfinder’s L* algorithm will likely be used in the imple-
mentation of our approach.

The Teacher and the Model Checker

Both the teacher and oracle are effectively searching through
models to evaluate execution sequences and interface de-
signs. As such, a model checker should be able to serve both
purposes. Given the probable choice of Java Pathfinder’s
L* Learning algorithm for our implementation, its model
checker is a prime candidate for use in our teacher and or-
acle. However, this choice will necessitate several devel-
opments. Firstly, a translator will need to be constructed
to convert EOFM task models into a notation readable by
Java Pathfinder. It will also require that all utilized specifi-
cation properties (including those generated from EOFMs)
be adapted to work in Java Pathfinder.

Alternatively, the model checkers found in the symbolic
analysis laboratory (SAL) could be used. This would be ad-
vantageous because EOFM’s translator and property genera-
tion tools already work with SAL (Bolton, Siminiceanu, and
Bass 2011; Bolton 2013; Bolton et al. 2013). However, this
would require that an additional translators be constructed
to coordinate between SAL and the L* learner.

Future work will evaluate these options.

Conclusions and Future work

Humans are increasingly relying on computer technology
to help them safely and efficiently do their work and con-
duct everyday tasks. It is therefore critical that the human-
computer interfaces they interact with allow them to usably
achieve their goals. If an interface fails to do this, it could
severely limit the ability of human operators to do their jobs
and effectively live their lives. As such, this work is impor-
tant because, if successful, it will allow for the automatic
generation of user-centered human-computer interface de-
signs with guaranteed usable support for operator tasks. Be-
cause this work is in its early stages, there is still much to be
done. However, we have identified an approach and devel-
oped an implementation plan that will guide future efforts.

To validate our approach, we will use it to design an in-
terface for a realistic system. The first application will be
a patient controlled analgesia (PCA) pump. A PCA pump
is a medical device that intravenously delivers pain med-
ication to patients based on a prescription programmed
into it by a practitioner. This is an appropriate applica-
tion for this project because task analyses already exist for
describing PCA pump interaction (Bolton and Bass 2010;
2013b) and PCA pump usability is important to patient
safety. Further, a formal reference standard exists for de-
scribing the interface behavior of PCA pumps (Arney et al.
2007). This provides a robust design against which a gener-
ated model can be compared. Future work will investigate
this and other potential applications for our approach.

Finally, by creating formal interface designs as formal
models, our approach enables human-computer interfaces to
be evaluated in ways that may not have been available to
designers otherwise. For example, formal verification could
be used to prove properties about system safety and formal
tools could be used to automatically generate test cases for
certification. Thus, future work should investigate how to
best adapt our approach to support these analyses.

96

References

Abowd, G. D.; Wang, H.; and Monk, A. F. 1995. A formal tech-
nique for automated dialogue development. In Proceedings of the
1st Conference on Designing Interactive Systems, 219-226. New
York: ACM.

Ait-Ameur, Y.; Baron, M.; and Girard, P. 2003. Formal validation
of HCI user tasks. In Proceedings of the International Conference
on Software Engineering Research and Practice, 732-738. Las
Vegas: CSREA Press.

Angluin, D. 1987. Learning regular sets from queries and coun-
terexamples. Information and computation 75(2):87-106.

Arney, D.; Jetley, R.; Jones, P.; Lee, I.; and Sokolsky, O. 2007. For-
mal methods based development of a pca infusion pump reference
model: Generic infusion pump (GIP) project. In Proceedings of the
Joint Workshop on High Confidence Medical Devices, Software,
and Systems and Medical Device Plug-and-Play Interoperability,
23-33. IEEE.

Barboni, E.; Ladry, J.-F.; Navarre, D.; Palanque, P.; and Winckler,
M. 2010. Beyond modelling: An integrated environment support-
ing co-execution of tasks and systems models. In Proceedings of
the 2nd ACM SIGCHI symposium on Engineering interactive com-
puting systems, 165-174. ACM.

Basnyat, S.; Palanque, P.; Schupp, B.; and Wright, P. 2007. For-
mal socio-technical barrier modelling for safety-critical interactive
systems design. Safety Science 45(5):545-565.

Bollig, B.; Katoen, J.-P.; Kern, C.; Leucker, M.; Neider, D.; and
Piegdon, D. R. 2010. libalf: The automata learning framework. In
Computer Aided Verification, 360-364. Springer.

Bolton, M. L., and Bass, E. J. 2009. A method for the formal ver-
ification of human interactive systems. In Proceedings of the 53rd
Annual Meeting of the Human Factors and Ergonomics Society,
764-768. Santa Monica: HFES.

Bolton, M. L., and Bass, E. J. 2010. Formally verifying human-
automation interaction as part of a system model: Limitations and
tradeoffs. Innovations in Systems and Software Engineering: A
NASA Journal 6(3):219-231.

Bolton, M. L., and Bass, E. J. 2012. Using model checking to
explore checklist-guided pilot behavior. International Journal of
Aviation Psychology 22:343-366.

Bolton, M. L., and Bass, E. J. 2013a. Evaluating human-human
communication protocols with miscommunication generation and
model checking. In Proceedings of the Fifth NASA Formal Methods
Symposium. Moffett Field: NASA Ames Research Center, 48—62.
Moftfett Field: NASA Ames Research Center.

Bolton, M. L., and Bass, E. J. 2013b. Generating erroneous human
behavior from strategic knowledge in task models and evaluating
its impact on system safety with model checking. IEEE Transac-
tions on Systems, Man and Cybernetics: Systems. In Press.

Bolton, M. L.; Bass, E. J.; and Siminiceanu, R. I. 2012. Using phe-
notypical erroneous human behavior generation to evaluate human-
automation interaction using model checking. International Jour-
nal of Human-Computer Studies 70:888-906.

Bolton, M. L.; Bass, E. J.; and Siminiceanu, R. I. 2013. Using for-
mal verification to evaluate human-automation interaction in safety
critical systems, a review. I[EEE Transactions on Systems, Man and
Cybernetics: Systems 43:488-503.

Bolton, M. L.; Jimenez, N.; van Paassen; M., M.; and Trujillo, M.
2013. Formally verifying human-automation interaction with spec-
ification properties generated from task analytic models. In Pro-
ceedings of the 6th [AASS Conference. Montreal: IAASS. In Press.

Bolton, M. L.; Siminiceanu, R. L.; and Bass, E. J. 2011. A sys-
tematic approach to model checking human-automation interaction
using task-analytic models. IEEE Transactions on Systems, Man,
and Cybernetics, Part A 41(5):961-976.

Bolton, M. L. 2013. Automatic validation and failure diagnosis
of human-device interfaces using task analytic models and model
checking. Computational and Mathematical Organization Theory
19(3):288-312.

Bowen, J., and Reeves, S. 2008. Formal models for user interface
design artefacts. Innovations in Systems and Software Engineering
4(2):125-141.

Campos, J. C., and Harrison, M. 1997. Formally verifying interac-
tive systems: A review. In Proceedings of the Fouth International
Eurographics Workshop on the Design, Specification, and Verifica-
tion of Interactive Systems, 109-124. Berlin: Springer.

Campos, J. C., and Harrison, M. D. 2008. Systematic analysis
of control panel interfaces using formal tools. In Proceedings of
the 15th International Workshop on the Design, Verification and
Specification of Interactive Systems, 72—85. Berlin: Springer.

Campos, J. C., and Harrison, M. D. 2009. Interaction engineering
using the ivy tool. In Proceedings of the 1st ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, 35-44. New
York: ACM.

Campos, J. C. 2003. Using task knowledge to guide interactor
specifications analysis. In In Proceedings of the 10th International
Workshop on Interactive Systems. Design, Specification, and Veri-
fication., 171-186. Berlin: Springer.

Chen, Y.-F.; Farzan, A.; Clarke, E. M.; Tsay, Y.-K.; and Wang, B.-
Y. 2009. Learning minimal separating dfa’s for compositional ver-
ification. In Proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
31-45. Berlin, Heidelberg: Springer-Verlag.

Clarke, E. M., and Wing, J. M. 1996. Formal methods: State of the
art and future directions. ACM Comput. Surv. 28(4):626—-643.

Combéfis, S., and Pecheur, C. 2009. A bisimulation-based ap-
proach to the analysis of human-computer interaction. In Proceed-
ings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. New York: ACM.

Comb¢éfis, S., and Pecheur, C. 2012. Automatic generation of full-
control system abstraction for human-machine interaction. 9.

Combéfis, S.; Giannakopoulou, D.; Pecheur, C.; and Feary, M.
2011. Learning system abstractions for human operators. In Pro-
ceedings of the 2011 International Workshop on Machine Learning
Technologies in Software Engineering, 3—10. New York: ACM.

Degani, A., and Heymann, M. 2002. Formal verification of human-
automation interaction. Human Factors 44(1):28-43.

DIS, ISO. 2009. 9241-210: 2010. Ergonomics of human sys-
tem interaction-part 210: Human-centred design for interactive
systems. [International Organization for Standardization (1SO),
Switzerland.

Espaiia, S.; Pederiva, I.; and Panach, J. I. 2007. Integrating
model-based and task-based approaches to user interface genera-
tion. In Computer-Aided Design of User Interfaces V. Netherlands:
Springer. 253-260.

Garcia, J. G.; Lemaigre, C.; Gonzdlez-Calleros, J. M.; and Vander-
donckt, J. 2008. Model-driven approach to design user interfaces
for workflow information systems. Journal of Universal Computer
Science 14(19):3160-3173.

Giannakopoulou, D., and Pasédreanu, C. S. 2009. Interface gener-

ation and compositional verification in javapathfinder. In Funda-
mental Approaches to Software Engineering. Springer. 94-108.

97

Gunter, E. L.; Yasmeen, A.; Gunter, C. A.; and Nguyen, A. 2009.
Specifying and analyzing workflows for automated identification
and data capture. In Proceedings of the 42nd Hawaii International
Conference on System Sciences, 1-11. Los Alatimos: IEEE Com-
puter Society.

Harrison, M., and Duke, D. 1995. A review of formalisms for
describing interactive behaviour. In Proceedings of the Workshop
on Software Engineering and Human-Computer Interaction, 49—
75. London: Springer.

Havelund, K., and Pressburger, T. 2000. Model checking java
programs using java pathfinder. International Journal on Software
Tools for Technology Transfer 2(4):366-381.

Heitmeyer, C. 1998. On the need for practical formal meth-
ods. In Proceedings of the 5th International Symposium on Formal
Techniques in Real-Time Fault-Tolerant Systems, 18-26. London:
Springer.

Joshi, A.; Miller, S. P.; and Heimdahl, M. P. 2003. Mode con-
fusion analysis of a flight guidance system using formal methods.
In Proceedings of the 22nd Digital Avionics Systems Conference,
2.D.1-1-2.D.1-12. Piscataway: IEEE.

Kirwan, B., and Ainsworth, L. K. 1992. A Guide to Task Analysis.
London: Taylor and Francis.

Mahfoudhi, A.; Abid, M.; and Abed, M. 2005. Towards a user
interface generation approach based on object oriented design and
task model. In Proceedings of the 4th International Workshop on
Task Models and Diagrams, 135-142. New York: ACM.

Navarre, D.; Palanque, P.; Paterno, F.; Santoro, C.; and Bastide, R.
2001. A tool suite for integrating task and system models through
scenarios. In Proceedings of the 8th International Workshop on In-
teractive Systems: Design, Specification, and Verification, 88—113.
Berlin: Springer.

Palanque, P., and Paterno, F., eds. 1997. Formal Methods in
Human-Computer Interaction. Secaucus: Springer.

Parnas, D. L. 1969. On the use of transition diagrams in the design
of a user interface for an interactive computer system. In Proceed-
ings of the 24th National ACM Conference, 379-385. New York:
ACM.

Paterno, F., and Santoro, C. 2001. Integrating model checking and
HCI tools to help designers verify user interface properties. In Pro-
ceedings of the 7th International Workshop on the Design, Speci-
fication, and Verification of Interactive Systems, 135-150. Berlin:
Springer.

Paterno, F. 1997. Formal reasoning about dialogue properties with
automatic support. Interacting with Computers 9(2):173-196.

Raffelt, H., and Steffen, B. 2006. Learnlib: A library for automata
learning and experimentation. In Proceedings of the 9th Interna-
tional Conference on Fundamental Approaches to Software Engi-
neering, 377-380. Berlin: Springer.

Schraagen, J. M.; Chipman, S. F.; and Shalin, V. L. 2000. Cognitive
Task Analysis. Philadelphia: Lawrence Erlbaum Associates, Inc.
Tran, V.; Kolp, M.; Vanderdonckt, J.; Wautelet, Y.; and Faulkner, S.
2010. Agent-based user interface generation from combined task,
context and domain models. In Proceedings of the Sth Interna-
tional Workshop on Task Models and Diagrams for User Interface
Design, 146-161. Berlin: Springer.

Wing, J. M. 1990. A specifier’s introduction to formal methods.
Computer 23(9):8, 10-22, 24.

