
20 ergonomics in design | July 2020

Machine learning (ML) is everywhere.
People are eager to test its power by
applying it to any data set they can

find and for any topic they can think of.
Because of the nature of ML, even system
developers are incapable of tracking how
many algorithms learn and generate results.
Such methods are thus ultimately treated as
black boxes.

Black box systems create many important
questions for human–machine interaction:
How do we tell people more about the
system? How do we enable humans to make
judgments about whether the black box or
its prediction is trustworthy? How do we let
humans compare different ML models? How
do we visualize and communicate such
information?

To develop trust in an intelligent system,
systems users need information about both
the quality of the results and how the results
are derived (Swartout, 1983). There are two
general approaches to interpretable ML
(Lipton, 2016): developing new algorithms
that are more transparent and providing post
hoc interpretations to explain ML. Reviews
on the latter method have been done on
related work in social and behavioral science
(Miller, 2019; Miller et al., 2017; Mittelstadt
et al., 2019; Mueller et al., 2019). Most of the
previous research has focused on explaining
the mechanism of ML algorithms. In this
article, we identified information that does
not require an understanding of the mecha-
nisms of the algorithms but still could help
users understand the quality of supervised
learning algorithms. We grouped informa-
tion into three categories that were based on
system input (what data were fed into the
model), training (how and how well the
model was trained), and output (the

prediction result and prediction quality). We
provided an overview of an iterative design
study that examined data visualization that
could support users’ understanding of ML
outputs (specifically algorithm accuracy and
confidence).

Explaining What Data WErE
FED into thE MoDEl

When a system provides a suggestion, the
end user may want to know what the sugges-
tion is based on. Relevant questions include
the following:

•• What features (input variables) are
included to generate the predictions?

•• What are the distributions of these
features?

•• Are the features correlated?
•• What is the importance of a certain

feature?
•• What time span of data were used?

These questions are usually addressed by the
system developers but are not always shared
with the end users.

An important topic on this front is feature
selection. Feature selection is the process of
selecting a subset of relevant features to use
in the final model training. In the context of
ML, it is mostly used to reduce dimensional-
ity, computation cost, redundancy, storage
requirements, and training/utilization time
(Guyon & Elisseeff, 2003). It is useful to
share what features are included, how they
were selected, and why they should be
included or excluded with the end users.

Another related post hoc technique called
black box auditing (Adler et al., 2016) can be
used to decide the extent to which a specific

f e a t u r e

FEATURE AT A GLANCE:
The reach of artificial intelligence
continues to grow, particularly
with the expansion of machine
learning techniques that capital-
ize on increased computing
power. Such systems could have
tremendous benefits by provid-
ing predictions and suggestions.
However, they are limited by the
fact that they offer incomplete
explanations of their predictions
to human decision makers. The
objective of this work was to
summarize general information
that could help users make judg-
ments about whether a system
is trustworthy and whether the
system’s training “makes sense.”
A preliminary study was sum-
marized to show the importance
of iterative design and testing for
visualizing explanations.

KEywoRdS:
black box, binary classification,
machine learning, visualization,
iterative design, decision making,
trust

901641 ERGXXX10.1177/1064804620901641ergonomics in designergonomics in design
research-article2020

Explaining Supervised learning
Models: a preliminary Study
on Binary Classifiers

By Xiaomei Wang , Ann M. Bisantz, Matthew L. Bolton, Lora Cavuoto ,
& Varun Chandola

As the potential reach of artificial
intelligence grows, it could provide
predictions and suggestions but may
leave an incomplete explanation of
“reasoning.” This study explores general
information that could be provided to
system end users or novice analysts.

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1064804620901641&domain=pdf&date_stamp=2020-01-29

f e a t u r e | Explaining Supervised Learning Models

July 2020 | ergonomics in design 21

feature contributes to the accuracy (percentage of correct
predictions) of a trained model. To quantify the direct effect
of a feature, we can replace the feature by random noise and
see how much the model accuracy drops. The resulting drop
in accuracy can be considered the variable’s importance.

The benefits of providing measures of importance for the
input variables includes letting decision makers verify if the
input makes sense as well as checking for the existence of bias.
Consider graduate admission decision making as an example
(Figure 1), a process of determining admission to a graduate
program based on various parameters (e.g., test scores, prior
academic performance). A poor example of using ML could
involve an algorithm (illustrated in Figure 1A), where ID
number is accidentally added as an input variable and
provides the largest contribution to the model. Compared
with the algorithm from Figure 1A, a different algorithm,
shown in Figure 1B, which uses GPA (grade point average),
GRE (Graduate Record Examination) math, and undergradu-
ate school as its three most important variables, might be a
more reasonable model. Furthermore, if a model shows
variable ranking as in Figure 1C, one might want to check why
gender and region became so important in the model and if
that is because of bias in the past decisions.

One limitation of showing such information is that when
the decision maker is not the system developer, he or she
cannot choose to use a different set of features. Changing
features would require retraining the models and could lead to
dramatic changes in results. Another limitation is that if some
dimension reduction techniques are used (e.g., principal
components analysis), the features may no longer retain their
original meanings. Thus, the combined values themselves
need representations before being listed as shown in Figure 1.

Another way to test the system input is to do controlled
experiments. One can accomplish this by feeding controlled
input (either simulated or real examples) to the model and
comparing the different outputs. The experiment would then
perform a hypothesis test on the cause and effect relations
inside the box. Datta et al. (2015) took this black box analysis
perspective to explore Google ad settings. They treated the
entire advertising ecosystem as the black box and simulated
agents with different user profiles, ad settings, page views, and
ad views as controlled inputs. They then tested how the

changes in the inputs affected the ads that were recommended
to the agents. One example of their findings was that the
gender of the agent significantly affected job-related ads.
Specifically, setting the gender to female resulted in fewer
instances of ads related to high paying jobs than when the
gender setting was male. This study highlights how showing
and comparing different outputs given controlled input (either
simulated or real data) can affect how an end user will
interpret how input variables affect outcome. If conditions do
not allow such interactive experiments with the system, we
could still provide some typical or simple cases to the end
users to allow them to verify whether presented relationships
are consistent with their own knowledge.

Explaining hoW (WEll) thE MoDEl iS trainED

Through a review of the existing techniques, we identified
four aspects of model training that could be understood without
needing to explain the mechanism of the model. They are stabil-
ity, robustness/generalizability, parameter sensitivity, and train-
ing and inference times. When there are different models with
similar performance, these measures can serve as additional cri-
teria to help users to choose a more suitable model to use.

Stability

Stability is a measure of how an ML algorithm is perturbed
by small changes to its inputs. A stable learning algorithm is one
for which the prediction does not change much when the train-
ing data are modified slightly (Bousquet & Elisseeff, 2000).

One way to check stability is to plot a learning curve. If we
randomly take samples from the data to be the training set,
calculate the average prediction accuracy (or any other
performance metric), and plot the results with sample size on
the x-axis and the metric on the y-axis, the accuracy is
expected to increase as the sample size increases. Plotting the
learning curve shows the model stability by showing how
much the model performance changes with changing training
data sample size.

An article on sample size determination (Figueroa et al.,
2012) indicated that there is a generic shape for learning
curves: At first, the performance increases rapidly, then there

Figure 1. Examples of variable importance ranking for graduate admission decision making.

f e a t u r e | Explaining Supervised Learning Models

22 ergonomics in design | July 2020

is a turning point where the increase of performance is less
rapid, and finally the algorithm reaches an efficiency thresh-
old where the curve becomes flat.

Figure 2 shows some example learning curves. Figure 2B
presents a case that is similar to a generic learning curve. For
the curve in Figure 2A, with the maximum amount of data we
have on hand, the curve is not flat. The x

max
 in Figure 2A

might just be the x
n
 in Figure 2B. Thus, we could expect the

model performance to improve with more data. For Figure
2C, the curve is already flat with the current sample, but the
best accuracy we get is only 60%. It might indicate that the
algorithm we chose is not suitable. If other algorithms also do
not work well, then it might indicate that the input variables
we used cannot explain enough of the variance in the output.

For models that keep absorbing new data, we can plot a
similar curve with sample size (x-axis) replaced by time. This
way, we can monitor the quality of the doming data and how
the new data affect the model performance.

Robustness/Generalizability

Learning algorithm robustness can be understood as fol-
lows (Xu & Mannor, 2012): If a testing sample is “similar” to a
training sample, then the testing error is close to the training
error. Essentially, robustness reflects the degree to which a
model usefully extends to data that were not used in training.
Thus, robustness describes how well the model extends, or
generalizes, to additional data. Generalizability is the opposite
of overfitting, where the latter means that a model has good
performance at training but bad performance at testing.

There are many different ways to test the robustness of
a model. A frequently used method is the k-fold cross-
validation method (Tan et al., 2019). With k-fold cross-
validation, the whole data set is split into k subsets of equal
size and each subset “takes turns” as the test set. The perfor-
mance metrics are averaged over all k to yield an overall
estimate. Each subset is used as training data k − 1 times and
used as testing data 1 time.

To visualize robustness/generalizability, we could simply
list the performance of the k tests and see the variance. Figure
3 shows two examples of 10-fold cross-validation that listed
the accuracy of the tests. Both examples have average accuracy

of 70%, but the result in Figure 3A is less robust/generalizable
than the one in Figure 3B. This is because, when both
associated approaches are given similar testing samples, the
results in Figure 3B showed steadier performance.

For models with low generalizability, we should check if the
model is overfitted.

Hyperparameter Sensitivity

Hyperparameters in the context of ML are the values preset
before the learning process starts. These differ from the
parameters that are learned from data during the training pro-
cess. Hyperparameter tuning is the process of finding the
optimal values that maximize model performance. Hyperpa-
rameter sensitivity is how much the model performance
changes by changing the values of hyperparameters.

During the hyperparameter tuning process, if we record the
changes of the performance metric, we can see if the perfor-
mance changes dramatically or slightly. Figure 4 shows two
examples of hyperparameter tuning. The y-axis is a metric

Figure 2. Examples of different learning curves.

Figure 3. Example of 10-fold cross-validation.

f e a t u r e | Explaining Supervised Learning Models

July 2020 | ergonomics in design 23

called root mean square error to be minimized and the two
x-axes are two different hyperparameters: one called M and
one called λ. As M gets bigger, the error decreases and remains
relatively steady. Thus, when M is large, the model is no longer
sensitive to the change of M. For λ, we can see that there is no
clear pattern and the error randomly jumps between 0.71 and
0.78, thus the performance does not reach a steady state. Thus,
the model is always sensitive to the change of λ.

Unlike stability and robustness/generalizability, there does
not exist a clear preference over hyperparameter sensitivity.
However, a less sensitive algorithm might be preferred by less
experienced users when it is easier to train and still produces
good results (Lavesson & Davidsson, 2006).

Training Time and Inference Time

The time it takes to train a model can differ significantly
between algorithms. Training time is also affected by the tar-
get accuracy, the amount of data, and the number of attributes
of the problem. When the performance of two algorithms are
comparable, the one with a longer training time might be
undesirable.

While training time might not be interesting for the end
users that are only using the trained model, the inference time
(the time needed for the model to generate a prediction for a
new case) could be vital for some applications, such as voice
recognition, where you need a very short response time (Jiang
et al., 2012). The inference time could be a filtering index
when choosing algorithms for scenarios that require fast
responses from the system.

Explaining thE prEDiCtion rESult
anD prEDiCtion Quality

While prediction quality applies broadly across ML algo-
rithms, in this section, we focus on classification algorithms
where the output is a categorical variable.

Model Predictions May Not Map to
Decision-Making Needs

For some classification problems, the prediction result is
straightforward: Is the image showing a cat or a dog; is the

transaction fraud or normal; is the target on the radar friend
or an enemy, and so on. However, for decision support prob-
lems, the prediction is not as straightforward. For such prob-
lems, the prediction outcome should always be translated or
transformed to suggestions relevant for decision making. For
example, an algorithm could provide a prediction that a stock
will rise, but the actual suggestion for decision making is to
buy (or hold) that stock. Also consider an algorithm that pre-
dicts that it will rain during the coming week. For most peo-
ple, the actual suggestion is to bring an umbrella; but for
agricultural purposes, the suggestion might be to turn off irri-
gation. It is thus vital to understand the human decision-mak-
ing task so as to provide the information that is truly needed.

Prediction Quality: Historical Performance
and Confidence

Ribeiro et al. (2016) developed a technique that uses local
models to explain why classifiers give particular suggestions.
Here we introduce metrics that can show the prediction qual-
ity of classifiers.

There are two different aspects to the quality (or uncer-
tainty) of a prediction: historical performance and confidence.

Historical performance is evaluated for every ML model.
The most common performance metric for a classifier is
accuracy (see Sidebar “Performance Metrics”). The metrics
apply only to the overall performance of the model on the
known data set that was used to train it. It shows, to some
extent, the amount of knowledge that is learned from the past
data. However, it cannot tell you how “right” the model could
be for a new unknown case.

The confidence of a model is how “sure” it is for a particu-
lar prediction. It is the estimated probability of the case in the
predicted class. In binary classification, a case belongs to
either class 0 or 1. If the model predicts a case x to belong to 0,
then the confidence is P(x ∈ 0). Confidence can be a good
compensation for the historical performance because it is an
estimation of the prediction quality for each new case, rather
than the whole model.

While historical performance is an overall measure of the
whole model, the confidence score is different for every single
case. You can thus use this score to rank the cases. Suppose we
trained a model from the past years’ decisions on graduate

Figure 4. Example of parameter tuning.

f e a t u r e | Explaining Supervised Learning Models

24 ergonomics in design | July 2020

admission decisions and used it for the future admission
work. The model mimics how the admission committee
valued an applicant in the past. Its output is a binary choice of
whether to accept or reject a student. However, the optimal
output of the system would be a ranking of all of the appli-
cants, because the essence of graduate admissions is to pick
the best applicants from the pool. We could calculate the
probability score of P(x = accept) (which is equivalent to the
confidence of predicting the case to belong to class “accept”)
and output a rank for each applicant, rather than just an
accept/reject suggestion.

An Iterative Design Study on Visualization Design
for Binary Prediction Result and Prediction Quality

As suggested above, providing algorithms’ historical per-
formance (accuracy) and confidence can help users under-
stand the prediction quality of the algorithms. We designed
two different visualizations, which could present these two
variables for binary classification algorithms and used surveys
to collect feedback. We used stock investment as the example
decision-making task.

The first version of the design is shown in Figure 5. The
prediction result is shown by the color (green—rise, red—fall)
and whether the bar extends to the right (price will rise) or the
left (price will fall). Accuracy and confidence are shown by the
transparency of the color and the bar length, respectively. In
Figure 5, algorithm A suggested that the stock price would
rise, while algorithm B suggested the opposite. There was
higher confidence for Algorithm A, as shown by the longer
bar. Algorithm B has better historical performance because
the color is deeper.

Seventy-nine individuals provided feedback on the first
version of this visualization through a survey conducted on
Amazon Mechanical Turk (approved by the University at
Buffalo Institutional Review Board). Examining the pattern of
results indicated that some participants appeared to be
confused by the color coding. Regardless of the fact that the
red/green colors corresponded to whether the stock price
would fall or rise, participants associated the red color with

worse performing algorithms, and vice versa. Thus, partici-
pants tended to discount strong advice to avoid a stock.

We redesigned a second version of the visualization to
address these issues, which resulted in better performance. In
this second version (Figure 6), the color coding was replaced
by simple marks on top of the bar. It avoided the “translation”
(green → stock price will rise → I should buy), and instead
gave the suggestion directly. It also avoided comparing
transparencies among different colors.

Seventy-three participants provided their feedback on the
second version of the visualization. This time, participants
were able to understand the accuracy and confidence infor-
mation. These results suggest that this visualization can be
useful to support the explanation of binary classifiers’ outputs.

An important step in providing visual explanations of ML
algorithms is to ensure that the visualizations themselves are
interpretable. The improvement in performance across
iterations, and the possible initial confusion regarding the red/
green color scheme employed, reinforces the importance of
iterative design and testing for complex visualizations. Design
choices in the values of the graphical variables (color, trans-
parency) can affect how the information presented is inter-
preted (Bisantz et al., 2009).

takEaWayS

Supervised learning models could provide tremendous
benefits by providing predictions and suggestions but suffer
the disadvantage of inadequate explanation of those predic-
tions to human decision makers. To help users understand the
model training and model quality, we suggest the following
techniques:

Explain what data were fed into the model by

•• calculating and visualizing the input variable importance in
a descending order

•• explaining how the input variables were selected (why to
include or exclude the variables)

•• allowing experiments where users can test how controlled
input variables affect the output variable

•• providing some typical examples of test results so that users
can verify these with their knowledge

Figure 5. First version of the visualization. The top panel
provides explanatory text that was provided to participants
during training. The bottom panel shows the visualization
without the explanation, as used during the experimental task.

Figure 6. Second version of the visualization.

f e a t u r e | Explaining Supervised Learning Models

July 2020 | ergonomics in design 25

Explain how the model is trained by recording and visual-
izing the following measures during training:

•• Stability: How a model is perturbed by small changes to its
inputs. Visualize this by drawing a plot to show how the
model accuracy changes with the increase of the sample
training set.

•• Robustness/generalizability: How effective a model is while
being tested on a new but similar data set. Visualize this by
doing k-fold cross-validation and plotting the test
accuracies.

•• Hyperparameter sensitivity: How sensitive a model is with
changes to its hyperparameters. Visualize this by drawing a
plot that shows how the model accuracy changes with
different values of the hyperparameter.

•• Training time and inference time: How long it takes to train
the model and how long it takes to infer prediction for a
new case.

Explain the prediction result and prediction quality by

•• mapping the prediction to the decision-making needs by
explaining the actual meaning of the predicted value or
translating it into decision-making suggestions

•• calculating and visualizing model historical performance
and prediction confidence

Care must be taken in designing visualization to ensure
that the explanations themselves are interpretable. Itera-
tive design and testing is important for complex
visualizations.

MaChinE lEarning

A widely recognized definition of an ML algorithm is
given by Mitchell (1997): “A computer program is said
to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experi-
ence E,” which in short, “computer programs that auto-
matically improve with experience” (p. 2).

Supervised learning algorithms are ML algorithms
that map input data to a desired output.

Binary classifiers are algorithms that predict the
instances as belonging to one group or another.

pErForManCE MEtriCS

For binary classification problems, a case is either
positive (P) or negative (N). The confusion matrix
below shows the four different conditions of the result:
true positive (TP), false positive (FP), false negative
(FN), and true negative (TN).

The performance metrics are defined as follows.
Accuracy is the proportion of correct predictions

among all predictions. On the contrary, error is the
proportion of wrong predictions. Accuracy + Error = 1.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Error =
FP + FN

TP+ TN+ FP+ FN

Accuracy and error can be misleading when the class
distributions are imbalanced. Suppose there are 95% of
noise and 5% of signal. When the algorithm predicts
everything to be noise, the accuracy is 95% which is
high, but it actually missed all the signals.

Thus, there are three better metrics to measure the
unbalanced class problems.

Precision = TP
TP+ FP

Recall = TP
TP+ FN

2 1 1

1F P R
= +

F1 =
2TP

2TP+ FP+ FN
= 2

Precision Recall
Precision + Recall

∗
∗

rEFErEnCES

Adler, P., Falk, C., Friedler, S. A., Rybeck, G., Scheidegger, C., Smith, B., &
Venkatasubramanian, S. (2016). Auditing black-box models for indirect
influence. In 2016 IEEE 16th International Conference on Data Mining
(ICDM) (pp. 1–10). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/ICDM.2016.0011

Bisantz, A. M., Stone, R. T., Pfautz, J., Fouse, A., Farry, M., Roth, E., Nagy,
A. L., & Thomas, G. (2009). Visual representations of meta-information.
Journal of Cognitive Engineering and Decision Making, 3(1), 67–91.
https://doi.org/10.1518/155534309X433726

Bousquet, O., & Elisseeff, A. (2000). Algorithmic stability and generaliza-
tion performance. Advances in Neural Information Processing Systems 13
(NIPS 2000) (pp. 196–202).

Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated experiments on ad
privacy settings. Proceedings on Privacy Enhancing Technologies, 2015(1),
92–112. https://doi.org/10.1515/popets-2015-0007

Predicted class

 P N

Actual class P TP FN

 N FP TN

https://doi.org/10.1109/ICDM.2016.0011
https://doi.org/10.1518/155534309X433726
https://doi.org/10.1515/popets-2015-0007

f e a t u r e | Explaining Supervised Learning Models

26 ergonomics in design | July 2020

Figueroa, R. L., Zeng-Treitler, Q., Kandula, S., & Ngo, L. H. (2012). Predict-
ing sample size required for classification performance. BMC Medical
Informatics and Decision Making, 12, Article 8. https://doi
.org/10.1186/1472-6947-12-8

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of Machine Learning Research, 3, 1157–1182.

Jiang, J., Teichert, A. R., Daumé, H., & Eisner, J. (2012). Learned prioritiza-
tion for trading off accuracy and speed. Advances in Neural Information
Processing Systems 25 (NIPS 2012).

Lavesson, N., & Davidsson, P. (2006). Quantifying the impact of learning
algorithm parameter tuning. American Association for Artificial Intel-
ligence, 1(1), 395–400.

Lipton, Z. C. (2016). The mythos of model interpretability. KDD-98 Proceed-
ings. ICML Workshop on Human Interpretability in Machine Learning.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the
social sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/
j.artint.2018.07.007

Miller, T., Howe, P., & Sonenberg, L. (2017). Explainable AI: Beware of
inmates running the asylum or: How I learnt to stop worrying and love the
social and behavioural sciences. arXiv preprint arXiv:1712.00547.

Mitchell, T. (1997). Machine learning. McGraw-Hill.
Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in

AI. Proceedings of the conference on fairness, accountability, and transpar-
ency (pp. 279–288). https://doi.org/10.1145/3287560.3287574

Mueller, S. T., Hoffman, R. R., Clancey, W., Emrey, A., & Klein, G. (2019).
Explanation in human-AI systems: A literature meta-review, synopsis of
key ideas and publications, and bibliography for explainable AI. arXiv
preprint arXiv:1902.01876.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”
Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778

Swartout, W. R. (1983). XPLAIN: A system for creating and explaining expert
consulting programs. Artificial Intelligence, 21(3), 285–325. https://doi
.org/10.1016/S0004-3702(83)80014-9

Tan, P., Steinbach, M., Karpatne, A., & Kumar, V. (2019). Introduction to
data mining (2nd ed.). Pearson Education.

Xu, H., & Mannor, S. (2012). Robustness and generalization. Machine Learn-
ing, 86(3), 391–423. https://doi.org/10.1007/s10994-011-5268-1

Xiaomei Wang is a PhD candidate in the
Industrial and Systems Engineering Depart-
ment of the University at Buffalo. She
received her BS in industrial design from
Xi’an Jiaotong University. Her research
interests are in cognitive engineering,
machine learning, human decision making,
data analysis, and visualization. ORCID iD:
https://orcid.org/0000-0002-3432-0227

Ann M. Bisantz, PhD, is a professor of
industrial and systems engineering at the
University at Buffalo, where she also serves
as dean of undergraduate education for the
university. She received her PhD in indus-
trial and systems engineering/human
machine systems from Georgia Institute of

Technology. Her research interests are in cognitive engineering,
human decision making, human–computer interface design, and
complex work system analysis. She is a fellow of the Human Fac-
tors and Ergonomics Society.

Matthew L. Bolton, PhD, is an associate
professor of industrial and systems engi-
neering at the University at Buffalo. He
received his PhD in systems engineering
from the University of Virginia. His research
interests include systems engineering,
human–automation interaction, formal

methods, human behavior modeling, and human performance
modeling. He is an associate editor of the IEEE Transactions on
Human–Machine Systems.

Lora Cavuoto, PhD, is an associate pro-
fessor of industrial and systems engineering
at the University at Buffalo. She received her
PhD in industrial and systems engineering
from Virginia Tech. Her research focuses on
quantifying indicators of fatigue develop-
ment, understanding and modeling the

effects obesity on physical capacity, and evaluating effective means
for training motor skills. She is a scientific editor for Applied Ergo-
nomics and an associate editor of Human Factors and Ergonom-
ics in Manufacturing and Service Industries. ORCID iD: https://
orcid.org/0000-0003-4717-8378

Varun Chandola, PhD, is an assistant pro-
fessor in the Computer Science and Engi-
neering Department and the Center for
Computational Data Science and Engineer-
ing at the University at Buffalo. He com-
pleted his PhD from University of Minnesota,
Department of Computer Science. His

research is in the area of scalable anomaly detection and data
mining for big graphs, temporal, and spatial data.

Copyright 2020 by Human Factors and Ergonomics Society. All rights reserved.
doI: 10.1177/1064804620901641
Article reuse guidelines: sagepub.com/journals-permissions

https://doi.org/10.1186/1472-6947-12-8
https://doi.org/10.1186/1472-6947-12-8
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1145/3287560.3287574
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/S0004-3702(83)80014-9
https://doi.org/10.1016/S0004-3702(83)80014-9
https://doi.org/10.1007/s10994-011-5268-1
https://orcid.org/0000-0002-3432-0227
https://orcid.org/0000-0003-4717-8378
https://orcid.org/0000-0003-4717-8378
https://us.sagepub.com/en-us/journals-permissions

