
20 ergonomics in design | July 2020

Machine learning (ML) is everywhere. 
People are eager to test its power by 
applying it to any data set they can 

find and for any topic they can think of. 
Because of the nature of ML, even system 
developers are incapable of tracking how 
many algorithms learn and generate results. 
Such methods are thus ultimately treated as 
black boxes.

Black box systems create many important 
questions for human–machine interaction: 
How do we tell people more about the 
system? How do we enable humans to make 
judgments about whether the black box or 
its prediction is trustworthy? How do we let 
humans compare different ML models? How 
do we visualize and communicate such 
information?

To develop trust in an intelligent system, 
systems users need information about both 
the quality of the results and how the results 
are derived (Swartout, 1983). There are two 
general approaches to interpretable ML 
(Lipton, 2016): developing new algorithms 
that are more transparent and providing post 
hoc interpretations to explain ML. Reviews 
on the latter method have been done on 
related work in social and behavioral science 
(Miller, 2019; Miller et al., 2017; Mittelstadt 
et al., 2019; Mueller et al., 2019). Most of the 
previous research has focused on explaining 
the mechanism of ML algorithms. In this 
article, we identified information that does 
not require an understanding of the mecha-
nisms of the algorithms but still could help 
users understand the quality of supervised 
learning algorithms. We grouped informa-
tion into three categories that were based on 
system input (what data were fed into the 
model), training (how and how well the 
model was trained), and output (the 

prediction result and prediction quality). We 
provided an overview of an iterative design 
study that examined data visualization that 
could support users’ understanding of ML 
outputs (specifically algorithm accuracy and 
confidence).

Explaining What Data WErE 
FED into thE MoDEl

When a system provides a suggestion, the 
end user may want to know what the sugges-
tion is based on. Relevant questions include 
the following:

•• What features (input variables) are 
included to generate the predictions?

•• What are the distributions of these 
features?

•• Are the features correlated?
•• What is the importance of a certain 

feature?
•• What time span of data were used?

These questions are usually addressed by the 
system developers but are not always shared 
with the end users.

An important topic on this front is feature 
selection. Feature selection is the process of 
selecting a subset of relevant features to use 
in the final model training. In the context of 
ML, it is mostly used to reduce dimensional-
ity, computation cost, redundancy, storage 
requirements, and training/utilization time 
(Guyon & Elisseeff, 2003). It is useful to 
share what features are included, how they 
were selected, and why they should be 
included or excluded with the end users.

Another related post hoc technique called 
black box auditing (Adler et al., 2016) can be 
used to decide the extent to which a specific 
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visualizing explanations.
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feature contributes to the accuracy (percentage of correct 
predictions) of a trained model. To quantify the direct effect 
of a feature, we can replace the feature by random noise and 
see how much the model accuracy drops. The resulting drop 
in accuracy can be considered the variable’s importance.

The benefits of providing measures of importance for the 
input variables includes letting decision makers verify if the 
input makes sense as well as checking for the existence of bias. 
Consider graduate admission decision making as an example 
(Figure 1), a process of determining admission to a graduate 
program based on various parameters (e.g., test scores, prior 
academic performance). A poor example of using ML could 
involve an algorithm (illustrated in Figure 1A), where ID 
number is accidentally added as an input variable and 
provides the largest contribution to the model. Compared 
with the algorithm from Figure 1A, a different algorithm, 
shown in Figure 1B, which uses GPA (grade point average), 
GRE (Graduate Record Examination) math, and undergradu-
ate school as its three most important variables, might be a 
more reasonable model. Furthermore, if a model shows 
variable ranking as in Figure 1C, one might want to check why 
gender and region became so important in the model and if 
that is because of bias in the past decisions.

One limitation of showing such information is that when 
the decision maker is not the system developer, he or she 
cannot choose to use a different set of features. Changing 
features would require retraining the models and could lead to 
dramatic changes in results. Another limitation is that if some 
dimension reduction techniques are used (e.g., principal 
components analysis), the features may no longer retain their 
original meanings. Thus, the combined values themselves 
need representations before being listed as shown in Figure 1.

Another way to test the system input is to do controlled 
experiments. One can accomplish this by feeding controlled 
input (either simulated or real examples) to the model and 
comparing the different outputs. The experiment would then 
perform a hypothesis test on the cause and effect relations 
inside the box. Datta et al. (2015) took this black box analysis 
perspective to explore Google ad settings. They treated the 
entire advertising ecosystem as the black box and simulated 
agents with different user profiles, ad settings, page views, and 
ad views as controlled inputs. They then tested how the 

changes in the inputs affected the ads that were recommended 
to the agents. One example of their findings was that the 
gender of the agent significantly affected job-related ads. 
Specifically, setting the gender to female resulted in fewer 
instances of ads related to high paying jobs than when the 
gender setting was male. This study highlights how showing 
and comparing different outputs given controlled input (either 
simulated or real data) can affect how an end user will 
interpret how input variables affect outcome. If conditions do 
not allow such interactive experiments with the system, we 
could still provide some typical or simple cases to the end 
users to allow them to verify whether presented relationships 
are consistent with their own knowledge.

Explaining hoW (WEll) thE MoDEl iS trainED

Through a review of the existing techniques, we identified 
four aspects of model training that could be understood without 
needing to explain the mechanism of the model. They are stabil-
ity, robustness/generalizability, parameter sensitivity, and train-
ing and inference times. When there are different models with 
similar performance, these measures can serve as additional cri-
teria to help users to choose a more suitable model to use.

Stability

Stability is a measure of how an ML algorithm is perturbed 
by small changes to its inputs. A stable learning algorithm is one 
for which the prediction does not change much when the train-
ing data are modified slightly (Bousquet & Elisseeff, 2000).

One way to check stability is to plot a learning curve. If we 
randomly take samples from the data to be the training set, 
calculate the average prediction accuracy (or any other 
performance metric), and plot the results with sample size on 
the x-axis and the metric on the y-axis, the accuracy is 
expected to increase as the sample size increases. Plotting the 
learning curve shows the model stability by showing how 
much the model performance changes with changing training 
data sample size.

An article on sample size determination (Figueroa et al., 
2012) indicated that there is a generic shape for learning 
curves: At first, the performance increases rapidly, then there 

Figure 1. Examples of variable importance ranking for graduate admission decision making.
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is a turning point where the increase of performance is less 
rapid, and finally the algorithm reaches an efficiency thresh-
old where the curve becomes flat.

Figure 2 shows some example learning curves. Figure 2B 
presents a case that is similar to a generic learning curve. For 
the curve in Figure 2A, with the maximum amount of data we 
have on hand, the curve is not flat. The x

max
 in Figure 2A 

might just be the x
n
 in Figure 2B. Thus, we could expect the 

model performance to improve with more data. For Figure 
2C, the curve is already flat with the current sample, but the 
best accuracy we get is only 60%. It might indicate that the 
algorithm we chose is not suitable. If other algorithms also do 
not work well, then it might indicate that the input variables 
we used cannot explain enough of the variance in the output.

For models that keep absorbing new data, we can plot a 
similar curve with sample size (x-axis) replaced by time. This 
way, we can monitor the quality of the doming data and how 
the new data affect the model performance.

Robustness/Generalizability

Learning algorithm robustness can be understood as fol-
lows (Xu & Mannor, 2012): If a testing sample is “similar” to a 
training sample, then the testing error is close to the training 
error. Essentially, robustness reflects the degree to which a 
model usefully extends to data that were not used in training. 
Thus, robustness describes how well the model extends, or 
generalizes, to additional data. Generalizability is the opposite 
of overfitting, where the latter means that a model has good 
performance at training but bad performance at testing.

There are many different ways to test the robustness of  
a model. A frequently used method is the k-fold cross- 
validation method (Tan et al., 2019). With k-fold cross- 
validation, the whole data set is split into k subsets of equal 
size and each subset “takes turns” as the test set. The perfor-
mance metrics are averaged over all k to yield an overall 
estimate. Each subset is used as training data k − 1 times and 
used as testing data 1 time.

To visualize robustness/generalizability, we could simply 
list the performance of the k tests and see the variance. Figure 
3 shows two examples of 10-fold cross-validation that listed 
the accuracy of the tests. Both examples have average accuracy 

of 70%, but the result in Figure 3A is less robust/generalizable 
than the one in Figure 3B. This is because, when both 
associated approaches are given similar testing samples, the 
results in Figure 3B showed steadier performance.

For models with low generalizability, we should check if the 
model is overfitted.

Hyperparameter Sensitivity

Hyperparameters in the context of ML are the values preset 
before the learning process starts. These differ from the 
parameters that are learned from data during the training pro-
cess. Hyperparameter tuning is the process of finding the 
optimal values that maximize model performance. Hyperpa-
rameter sensitivity is how much the model performance 
changes by changing the values of hyperparameters.

During the hyperparameter tuning process, if we record the 
changes of the performance metric, we can see if the perfor-
mance changes dramatically or slightly. Figure 4 shows two 
examples of hyperparameter tuning. The y-axis is a metric 

Figure 2. Examples of different learning curves.

Figure 3. Example of 10-fold cross-validation.
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called root mean square error to be minimized and the two 
x-axes are two different hyperparameters: one called M and 
one called λ. As M gets bigger, the error decreases and remains 
relatively steady. Thus, when M is large, the model is no longer 
sensitive to the change of M. For λ, we can see that there is no 
clear pattern and the error randomly jumps between 0.71 and 
0.78, thus the performance does not reach a steady state. Thus, 
the model is always sensitive to the change of λ.

Unlike stability and robustness/generalizability, there does 
not exist a clear preference over hyperparameter sensitivity. 
However, a less sensitive algorithm might be preferred by less 
experienced users when it is easier to train and still produces 
good results (Lavesson & Davidsson, 2006).

Training Time and Inference Time

The time it takes to train a model can differ significantly 
between algorithms. Training time is also affected by the tar-
get accuracy, the amount of data, and the number of attributes 
of the problem. When the performance of two algorithms are 
comparable, the one with a longer training time might be 
undesirable.

While training time might not be interesting for the end 
users that are only using the trained model, the inference time 
(the time needed for the model to generate a prediction for a 
new case) could be vital for some applications, such as voice 
recognition, where you need a very short response time (Jiang 
et al., 2012). The inference time could be a filtering index 
when choosing algorithms for scenarios that require fast 
responses from the system.

Explaining thE prEDiCtion rESult  
anD prEDiCtion Quality

While prediction quality applies broadly across ML algo-
rithms, in this section, we focus on classification algorithms 
where the output is a categorical variable.

Model Predictions May Not Map to  
Decision-Making Needs

For some classification problems, the prediction result is 
straightforward: Is the image showing a cat or a dog; is the 

transaction fraud or normal; is the target on the radar friend 
or an enemy, and so on. However, for decision support prob-
lems, the prediction is not as straightforward. For such prob-
lems, the prediction outcome should always be translated or 
transformed to suggestions relevant for decision making. For 
example, an algorithm could provide a prediction that a stock 
will rise, but the actual suggestion for decision making is to 
buy (or hold) that stock. Also consider an algorithm that pre-
dicts that it will rain during the coming week. For most peo-
ple, the actual suggestion is to bring an umbrella; but for 
agricultural purposes, the suggestion might be to turn off irri-
gation. It is thus vital to understand the human decision-mak-
ing task so as to provide the information that is truly needed.

Prediction Quality: Historical Performance  
and Confidence

Ribeiro et al. (2016) developed a technique that uses local 
models to explain why classifiers give particular suggestions. 
Here we introduce metrics that can show the prediction qual-
ity of classifiers.

There are two different aspects to the quality (or uncer-
tainty) of a prediction: historical performance and confidence.

Historical performance is evaluated for every ML model. 
The most common performance metric for a classifier is 
accuracy (see Sidebar “Performance Metrics”). The metrics 
apply only to the overall performance of the model on the 
known data set that was used to train it. It shows, to some 
extent, the amount of knowledge that is learned from the past 
data. However, it cannot tell you how “right” the model could 
be for a new unknown case.

The confidence of a model is how “sure” it is for a particu-
lar prediction. It is the estimated probability of the case in the 
predicted class. In binary classification, a case belongs to 
either class 0 or 1. If the model predicts a case x to belong to 0, 
then the confidence is P(x ∈ 0). Confidence can be a good 
compensation for the historical performance because it is an 
estimation of the prediction quality for each new case, rather 
than the whole model.

While historical performance is an overall measure of the 
whole model, the confidence score is different for every single 
case. You can thus use this score to rank the cases. Suppose we 
trained a model from the past years’ decisions on graduate 

Figure 4. Example of parameter tuning.
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admission decisions and used it for the future admission 
work. The model mimics how the admission committee 
valued an applicant in the past. Its output is a binary choice of 
whether to accept or reject a student. However, the optimal 
output of the system would be a ranking of all of the appli-
cants, because the essence of graduate admissions is to pick 
the best applicants from the pool. We could calculate the 
probability score of P(x = accept) (which is equivalent to the 
confidence of predicting the case to belong to class “accept”) 
and output a rank for each applicant, rather than just an 
accept/reject suggestion.

An Iterative Design Study on Visualization Design 
for Binary Prediction Result and Prediction Quality

As suggested above, providing algorithms’ historical per-
formance (accuracy) and confidence can help users under-
stand the prediction quality of the algorithms. We designed 
two different visualizations, which could present these two 
variables for binary classification algorithms and used surveys 
to collect feedback. We used stock investment as the example 
decision-making task.

The first version of the design is shown in Figure 5. The 
prediction result is shown by the color (green—rise, red—fall) 
and whether the bar extends to the right (price will rise) or the 
left (price will fall). Accuracy and confidence are shown by the 
transparency of the color and the bar length, respectively. In 
Figure 5, algorithm A suggested that the stock price would 
rise, while algorithm B suggested the opposite. There was 
higher confidence for Algorithm A, as shown by the longer 
bar. Algorithm B has better historical performance because 
the color is deeper.

Seventy-nine individuals provided feedback on the first 
version of this visualization through a survey conducted on 
Amazon Mechanical Turk (approved by the University at 
Buffalo Institutional Review Board). Examining the pattern of 
results indicated that some participants appeared to be 
confused by the color coding. Regardless of the fact that the 
red/green colors corresponded to whether the stock price 
would fall or rise, participants associated the red color with 

worse performing algorithms, and vice versa. Thus, partici-
pants tended to discount strong advice to avoid a stock.

We redesigned a second version of the visualization to 
address these issues, which resulted in better performance. In 
this second version (Figure 6), the color coding was replaced 
by simple marks on top of the bar. It avoided the “translation” 
(green → stock price will rise → I should buy), and instead 
gave the suggestion directly. It also avoided comparing 
transparencies among different colors.

Seventy-three participants provided their feedback on the 
second version of the visualization. This time, participants 
were able to understand the accuracy and confidence infor-
mation. These results suggest that this visualization can be 
useful to support the explanation of binary classifiers’ outputs.

An important step in providing visual explanations of ML 
algorithms is to ensure that the visualizations themselves are 
interpretable. The improvement in performance across 
iterations, and the possible initial confusion regarding the red/
green color scheme employed, reinforces the importance of 
iterative design and testing for complex visualizations. Design 
choices in the values of the graphical variables (color, trans-
parency) can affect how the information presented is inter-
preted (Bisantz et al., 2009).

takEaWayS

Supervised learning models could provide tremendous 
benefits by providing predictions and suggestions but suffer 
the disadvantage of inadequate explanation of those predic-
tions to human decision makers. To help users understand the 
model training and model quality, we suggest the following 
techniques:

Explain what data were fed into the model by

•• calculating and visualizing the input variable importance in 
a descending order

•• explaining how the input variables were selected (why to 
include or exclude the variables)

•• allowing experiments where users can test how controlled 
input variables affect the output variable

•• providing some typical examples of test results so that users 
can verify these with their knowledge

Figure 5. First version of the visualization. The top panel 
provides explanatory text that was provided to participants 
during training. The bottom panel shows the visualization 
without the explanation, as used during the experimental task.

Figure 6. Second version of the visualization.
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Explain how the model is trained by recording and visual-
izing the following measures during training:

•• Stability: How a model is perturbed by small changes to its 
inputs. Visualize this by drawing a plot to show how the 
model accuracy changes with the increase of the sample 
training set.

•• Robustness/generalizability: How effective a model is while 
being tested on a new but similar data set. Visualize this by 
doing k-fold cross-validation and plotting the test 
accuracies.

•• Hyperparameter sensitivity: How sensitive a model is with 
changes to its hyperparameters. Visualize this by drawing a 
plot that shows how the model accuracy changes with 
different values of the hyperparameter.

•• Training time and inference time: How long it takes to train 
the model and how long it takes to infer prediction for a 
new case.

Explain the prediction result and prediction quality by

•• mapping the prediction to the decision-making needs by 
explaining the actual meaning of the predicted value or 
translating it into decision-making suggestions

•• calculating and visualizing model historical performance 
and prediction confidence

Care must be taken in designing visualization to ensure 
that the explanations themselves are interpretable. Itera-
tive design and testing is important for complex 
visualizations.

MaChinE lEarning

A widely recognized definition of an ML algorithm is 
given by Mitchell (1997): “A computer program is said 
to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance 
at tasks in T, as measured by P, improves with experi-
ence E,” which in short, “computer programs that auto-
matically improve with experience” (p. 2).

Supervised learning algorithms are ML algorithms 
that map input data to a desired output.

Binary classifiers are algorithms that predict the 
instances as belonging to one group or another.

pErForManCE MEtriCS

For binary classification problems, a case is either 
positive (P) or negative (N). The confusion matrix 
below shows the four different conditions of the result: 
true positive (TP), false positive (FP), false negative 
(FN), and true negative (TN).

The performance metrics are defined as follows.
Accuracy is the proportion of correct predictions 

among all predictions. On the contrary, error is the 
proportion of wrong predictions. Accuracy + Error = 1.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Error =
FP + FN

TP+ TN+ FP+ FN

Accuracy and error can be misleading when the class 
distributions are imbalanced. Suppose there are 95% of 
noise and 5% of signal. When the algorithm predicts 
everything to be noise, the accuracy is 95% which is 
high, but it actually missed all the signals.

Thus, there are three better metrics to measure the 
unbalanced class problems.

Precision = TP
TP+ FP

Recall = TP
TP+ FN

2 1 1

1F P R
= +

F1 =
2TP

2TP+ FP+ FN
= 2

Precision Recall
Precision + Recall

∗
∗
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