Int. J. Human-Computer Studies 108 (2017) 105-121

Contents lists available at ScienceDirect

Human-
Computer
Studies

International Journal of Human-Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

A task-based taxonomy of erroneous human behavior @ CrossMark

Matthew L. Bolton

University at Buffalo, State University of New York, Department of Industrial and Systems Engineering, Buffalo, NY, USA

ARTICLE INFO ABSTRACT

Keywords:

Human error

Erroneous human behavior
Task analysis

System safety

Formal methods

Unexpected, erroneous human interactions often contribute to failures in complex systems. Human factors en-
gineers and researchers have developed taxonomies that allow engineers, designers, and practitioners to think
about and model erroneous behavior to improve the safety of human-interactive systems. However, the two lead-
ing erroneous behavior taxonomies are based on incompatible phenomenological and genotypical perspectives.
Further, neither of these are formulated in terms of task analytic methods, analysis and modeling techniques
human factors engineers use for documenting how humans normatively achieve goals when interacting with a
system. In this work, we introduce a new erroneous human behavior taxonomy based on where and how human
behavior diverges from task analytic models of human behavior. By describing where a human diverges from a
normative task, and by identifying what information the human failed to properly attend to that produced the
divergence, this taxonomy seeks to unify the phenomenological and genotypical perspectives. We describe the
theory behind this taxonomy and the different erroneous behavior classifications that result from it. We then
show how it is compatible with the leading phenomenological and genotypical taxonomies. Finally, we discuss

the implications of this new taxonomy and avenues of future research.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In complex systems that depend on human behavior, unexpected
erroneous human interactions often contribute to system failures
(Hollnagel, 1993; [Perrow, 1999]; Reason, 1990; Sheridan and Para-
suraman, 2005). This problem affects nearly every facet of our soci-
ety. It plays a role in between 44,000 and 98,000 deaths and more
than 1,000,000 injuries a year in medicine (Kohn et al., 2000); 74%
of general aviation accidents and 50% of commercial aviation accidents
(Kebabjian, 2016; Kenny, 2015); 90% of automobile accidents (NHTSA,
2008); a third of unmanned aerial vehicle mishaps (Manning et al.,
2004); and many incidents of fratricide in military operations (Office
of Technology Assessment, 1993).

Erroneous behavior is often a product of poorly designed human in-
teraction and is thus enabled by the tasks of the system (Hollnagel, 1993;
Reason, 1990; Sheridan and Parasuraman, 2005). Taxonomies have
been developed to give analysts and engineers ways of thinking about,
classifying, and modeling erroneous human behavior (Hollnagel and
Marsden, 1996; Jones, 1997). The two leading general taxonomies are
Reason’s (1990) Generic Error Modeling System (GEMS) and Hollnagel’s
(1993) phenotypes of erroneous action. GEMS attempts to explain why,
cognitively, erroneous acts occur (their genotypes). The phenotypes of
erroneous action describe how erroneous behaviors observably manifest
as deviations from a plan of action. Both have proven to be extremely

E-mail address: mbolton@buffalo.edu

http://dx.doi.org/10.1016/j.ijhcs.2017.06.006

Received 23 August 2016; Received in revised form 12 June 2017; Accepted 27 June 2017
Available online 28 June 2017

1071-5819/© 2017 Elsevier Ltd. All rights reserved.

influential in the extended human factors literature, though they are
useful in different contexts. Further, neither specifically address where
in a task the human operator diverges. In the work presented here, we
have developed a taxonomy that classifies erroneous human behavior
based on where and how it deviates from a normative human task. This
is a significant contribution because it allows engineers and analysts to
contextualize erroneous behavior using task-analytic concepts, which
are a cornerstone of human factors engineering. It also connects the
cognitive reasons errors occur with the actual observable phenotypes
of error, reconciling GEMS and Hollnagel’s phenotypes. Below, we dis-
cuss the background necessary for understanding our approach. We then
present our taxonomy. Following this, we show that our approach can be
used to bridge the gap between attentional slips in GEMS and the phe-
notypes of erroneous behavior. We do this by demonstrating that our
new system achieves coverage with respect to these other taxonomies:
that it is able to account for all of the erroneous behaviors classified
in these taxonomies. We ultimately discuss our results, the implications
of the taxonomy in human factors engineering, and avenues of future
research.

2. Review of the relevant literature

Task analysis and erroneous human behavior are relevant to this
work and thus both are discussed below.

http://dx.doi.org/10.1016/j.ijhcs.2017.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijhcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2017.06.006&domain=pdf
mailto:mbolton@buffalo.edu
http://dx.doi.org/10.1016/j.ijhcs.2017.06.006

M.L. Bolton

2.1. Task analysis and task analytic models

Task analysis is a systematic process human factors engineers use to
describe the ways human operators normatively achieve goals with a
system (Kirwan and Ainsworth, 1992; Schraagen et al., 2000). This is
most commonly documented using a task analytic model. Such a model
is a collection of individual tasks, where each is a hierarchy of goal-
directed activities that decompose into other activities and (at the low-
est level) actions. Strategic knowledge (condition logic) and operators
control when and how activities can execute in relation to each other
and the operational environment. Task analytic models are some of the
most successful technologies developed by human factors researchers.
They are critical to human-centered design (where human-machine in-
terfaces are designed to support human operator tasks; Cooley, 2000).
They can be used to generate human-machine interfaces in model-
based design and analysis (Li et al., 2015, 2017). They are used in
formal verifications analysis of human-automation interaction (Bolton
et al., 2013) (where properties are proven about models of human-
interactive systems). They are important in human-reliability analyzes
(Hollnagel, 1998). Finally, they are employed in accident and event
analysis (Doytchev and Szwillus, 2009).

There are a number of different ways to represent task analytic mod-
els. Because this work is concerned with deviations from task models,
it is important to be able to reason about the execution state of the
task. Researchers have developed task analytic modeling systems that
allow task behavior to be reasoned about with mathematical precision.
These include ConcurTaskTrees (CTT; Paterno et al. 1997), its exten-
sion Hamster (Martinie De Almeida et al., 2013), AMBOSS (Giese et al.,
2008), and the Enhanced Operator Function Model (EOFM; Bolton et al.
2011). EOFM is expressive, platform independent, feature rich, has a
well-documented formal semantics (Bolton et al., 2011, 2016), and has
been used in a number of human factors analyzes (Bolton and Bass,
2017). Thus, it will be used on the basis for most of the discussion pre-
sented in this paper.

2.2. Erroneous human behavior

There are a number of different ways to classify and model erro-
neous human behavior (Hollnagel and Marsden, 1996; Jones, 1997).
The two generic taxonomies that have seen the most widespread use are
Hollnagel’s phenotypes of erroneous action (1993) and Reason’s GEMS
(1990).

2.2.1. The phenotypes of erroneous action

Hollnagel (1993) classified erroneous human behaviors based on
their phenotype: how erroneous behavior observably deviates from a
normative plan of actions. In this taxonomy, erroneous behaviors are
composed of one or more erroneous acts, all capable of being detected
by observing the performance of a single action in a plan. The “zero-
order” phenotypes are classified as shown at the top of Table 1. These
serve as the building blocks for additional, “first-order,” phenotypes:
phenotypes that can be detected by observing multiple zero-order phe-
notypes (see the bottom of Table 1). Hollnagel (1993) also discussed
“second-order” phenotypes, which can be detected by observing multi-
ple first-order phenotypes. However, he did not explicitly describe the
specific phenotypes of this level.

2.2.2. The generic error modeling system

In contrast to Hollnagel, Reason (1990) classified erroneous behav-
iors based on their cognitive causes, their genotypes. Reason identified
three types of errors based on Rasmussen’s SRK (Skills, Rules, Knowl-
edge) framework (Rasmussen, 1983). That is, errors could occur at any
of the three levels of human information processing. Skill-based failures
(slips) occur when the human operator knows how to perform a task and
intends to do it correctly. However, the person fails execute the plan be-
cause of problems with attention. Rule-based failures (mistakes) occur

106

Int. J. Human-Computer Studies 108 (2017) 105-121

Table 1
Hollnagel’s (1993) phenotypes of erroneous action.

Phenotype Description

Zero-order phenotypes
Premature Start
Delayed Start
Premature Finish

Starting an action too early.
Starting an action too late.
Finishing an action too soon.

Delayed Completion Finishing an action too late.

Omission Not performing an action.

Jump Forward Performing an action that should be done later.
Jump Backward Performing a previously performed action.
Repetition Repeating the last action performed.

Intrusion Performing an unplanned action.

First-order phenotypes
Spurious Intrusion Performing a sequence of unplanned actions via multiple

zero-order intrusions.

Actions are skipped in either the forward or backward

direction.

Planned actions are performed in an arbitrary order via

multiple skips and jumps.

Jump / Skip

Place Losing

Recovery Performing previously omitted actions via multiple jumps.

Side Tracking Replacing one part of a plan with another.

Capture Performing part of another action sequence in the wrong
place via multiple intrusions.

Reversal Reversing the execution of two adjacent actions via a skip

and a jump backward.

Time Compression Multiple premature starts and/or premature finishes.

when a human operator performs a rule-based behavior that does not
achieve the intended outcome because he or she did not apply a rule
correctly or had an inadequate plan of action. Knowledge-based failures
(mistakes) happen when the human lacks the knowledge to formulate
a proper plan of action for a given situation. The distinction between
slips and mistakes largely comes down to the fact that the latter occurs
when the human operator does not know how to properly perform a
task. Thus, for work where there is a clear task model, there is a basic
assumption that the human operator is properly trained and practica-
ble in the task. Thus, slips are the most relevant to the work discussed
here.

Within the slip error type, Reason (1990) identified different failure
modes to explain the ways that slips can manifest. First, there are failure
modes associated with inattention (someone failing to attend to some-
thing). A double capture slip (commonly called a capture error) occurs
when a human’s attention is captured by something and thus does some-
thing different (usually something similar that is more well-rehearsed or
familiar) from what should be done in his or her task. An omission follow-
ing an interruption can occur as a result of a person not attending to the
task following an external event. Reduced intentionality takes place when
the human loses track of his or her intentions in the middle of a task. Per-
ceptual confusion occurs in tasks where somebody performs the correct
action on the wrong target due to similarities between the wrong target
and the correct target. Interference errors happen when the human has
more than one active or relevant task he or she should or could be per-
forming and the separate tasks become inappropriately blended. Slips
can also occur because of over attention (mistimed attentional checks)
that can cause a human to perform an omission (not doing something),
a repetition (repeat something already done), or a reversal (reversing the
order of steps in a sequence). The distinctions between these failure
modes are fuzzy, largely due to the informal nature of GEMS. This, how-
ever, does not negate the usefulness of this taxonomy.

2.2.3. Comparison

Both models of erroneous behavior have shown themselves to be use-
ful (Jones, 1997). Hollnagel’s phenotypes have been predominately used
for activities such as detecting the presence of human errors in monitors
(Hollnagel, 1993), methods for generating and/or exploring erroneous
behavior in model-based analyzes with defined normative plans of ac-
tion (Bastide and Basnyat, 2007; Bolton and Bass, 2008; Bolton et al.,

M.L. Bolton

2012; Fields, 2001; Jones, 1997), and techniques such as forcing func-
tions (Norman, 1988) for ensuring that humans remain on task. Con-
versely, Reason’s GEMS has found more use in its ability to help system
analysts and designers understand what causes erroneous behavior so
that the system can be designed to support the level of work (skills,
rules, and/or knowledge) the human is performing and to avoid cog-
nitive conditions that facilitate the associated errors (Jones, 1997). For
this purpose, Reason’s taxonomy has also been adapted to specialized
domains such as medicine so that its insights can be felt there (Zhang
et al., 2004). Both phenomenological and genotypical perspectives can
be used together as they are in Hollnagel’s “Phenotype Genotype Classi-
fication Scheme” (Hollnagel, 1998). However, such perspectives simply
use both classifications of erroneous behavior and do not account for
the connection between them.

Both taxonomies can be related to task models, but in different ways.
The phenotypes of erroneous action assume a normative plan of actions
that is being observed. A task model is a normative plan. In GEMS, slips
are presumed to occur when the humans have knowledge about how to
perform activities. Such knowledge can be represented as a task model.
Given the importance of task analysis in human factors engineering,
it is surprising that neither of the taxonomies explain where in a task
erroneous behaviors originate.

2.3. Erroneous behavior and task analytic models

Attempts have been made to contextualize erroneous behavior in
task models. Paterno and Santoro (2002) explored different ways that
deviations from task models could occur with CTT models. Similarly,
the THEA (Technique for Human Error Assessment) system (Fields et al.,
1997; Pocock et al., 2001a, 2001b) explored systematic ways that be-
havior could deviate from tasks based on Norman’s execution evaluation
cycle model of human information processing (Norman, 1988). These
approaches are based on a keyword-guided brainstorming system for
thinking about erroneous human behavior possibilities similar to haz-
ard and operability study (HAZOP; Dunjé et al. 2010; Lawley 1974).
Fields (2001) and Bastide and Basnyat (2007) identified specific pat-
terns of human task behavior that could be manually inserted into task
models to replicate erroneous behavior in simulation and formal veri-
fication analyzes. Bastide and Basnyat (2007) defined a pattern-based
language and two specific “error patterns:” one for a repetition of be-
haviors and one for a post-completion error (an erroneous behavior con-
dition where a human accomplishes their primary goal and then fails
to perform tasks that must follow the completion of the primary goal;
Byrne and Bovair 1997). Fields (2001) introduced patterns capable of
replicating all of Hollnagel’s (1993) phenotypes of erroneous action.
Bolton et al. (2012) and Bolton and Bass (2013) introduced two dif-
ferent ways of automatically generating erroneous human behavior in
executable task models. In the first (Bolton et al., 2012), actions at the
bottom of the task hierarchy are replaced with task structures capa-
ble of generating all of Hollnagel’s zero-order phenotypes and, through
combination, all of his higher order phenotypes. In the second (Bolton
and Bass, 2013), the models assume humans can fail to attend to en-
vironmental conditions asserted in task model strategic knowledge in
situations that can make them repeat, omit, or commit activity behav-
iors erroneously. As such, this second method was capable of generating
some of the slip behaviors in GEMS (1990). All of these methods have
been useful in various analyzes, evaluation, and verification contexts.
However, none are (nor do they aspire to be) full-fledged taxonomies.
As such, none fully enumerates the connection between the observable
manifestation of the erroneous behavior and the cognitive cause for the
behavior.

3. A task-based taxonomy of erroneous human behavior

Task models are widely used in human factors engineering, encapsu-
late normative human behavior, and describe what environmental and

107

Int. J. Human-Computer Studies 108 (2017) 105-121

Table 2
Decomposition operators.

Operator Description

optor_seq Zero or more of the activities or actions in the decomposition
must execute in any order one at a time.

optor_par Zero or more of the activities or actions in the decomposition
must execute in any order and can execute in parallel.

or_seq One or more of the activities or actions in the decomposition
must execute in any order one at a time.

or_par One or more of the activities or actions in the decomposition
must execute in any order and can execute in parallel.

and_seq All of the activities or actions in the decomposition must
execute in any order one at a time.

and_par All of the activities or actions in the decomposition must
execute in any order and can execute in parallel.

Xxor Exactly one activity or action in the decomposition executes.

ord All activities or actions must execute in the order they appear
in the decomposition.

sync All actions in the decomposition must execute synchronously.

task conditions the human should be attending to. Thus, deviations from
task models are appropriate for classifying erroneous human behavior.
Further, the discussion above has shown that both task models and de-
viations from task models are formalizable (can have a specific mathe-
matical definition). As such, an erroneous behavior taxonomy based on
deviations from task analytic models can be formal. This is advantageous
because each classification within the taxonomy can have a precise, un-
ambiguous classification.

Below we formulate our erroneous human behavior taxonomy that
classifies erroneous behaviors formally based on where in a normative
task model deviations occur. We then show that this taxonomy covers
the erroneous behaviors classified in Hollnagel’s phenotypes (1993) of
erroneous action and slips from Reason’s GEMS (1990). However, to
be able to formulate our taxonomy, we need a formal description of a
task model to employ as the basis for describing deviations. For this, we
use the EOFM, which is described first. Note that the EOFM is appro-
priate for this work because it is an expressive task analytic modeling
language. It also has formal semantics, which provide an unambiguous,
mathematical description of how task models execute. These are used
as the basis for the taxonomy.

3.1. The Enhanced Operator Function Model (EOFM)

EOFM (Bolton et al., 2011) is a formal task analytic modeling lan-
guage derived from the Operator Function Model (OFM; Mitchell and
Miller 1986; Thurman et al. 1998). The language is XML-based and al-
lows for the modeling of human behavior, either individuals or groups,
as an input/output system. Inputs may come from other elements of the
system like human-device interfaces or the environment. Output vari-
ables are human actions. The operators’ task models describe how hu-
man actions may be generated based on input and local variables (rep-
resenting perceptual or cognitive processes).

EOFMs are hierarchical in that they are composed of goal-driven
activities that decompose into sub-activities and, at the bottom of the
hierarchy, atomic actions. EOFMs can express strategic knowledge ex-
plicitly as Boolean expressions using input and local variables that as-
sert what must be true for them to start executing (Preconditions), repeat
(RepeatConditions), or complete (CompletionConditions). Any activity can
decompose into one or more other activities or one or more actions. A
decomposition operator specifies the temporal relationships between,
and the cardinality of, the decomposed activities or actions (when
they can execute relative to each other and how many can execute).
Table 2 shows all of the decomposition operators currently supported
by EOFM.

Observable, atomic human actions or internal (cognitive or percep-
tual) actions exist at the bottom of the task model hierarchy. Observable
actions have three possible behaviors: AutoReset actions happen as a sin-

M.L. Bolton

Precondition CompletionCondition
Activity

xor
RepeatCondition
Precondition2 Sub
Activity2
ord ord
v v
' LocalVariable := Action2 :=
‘ Action ’ ‘ InputVariable || LocalVariable

Fig. 1. An example of a visualized EOFM task. In this, a top activity (aActivity)
decomposes into two sub-activities (SubActivity1 and SubActvity2). SubActivity1
and SubActvity2 each decompose into actions. Action1 represents an AutoReset ac-
tion. LocalVariable represents a local variable assignment action, where the local vari-
able is assigned the value of an input variable InputVariable. Action2 is an action with
SetValue behavior that commits the values stored in LocalVariable when the action is
performed.

gle atomic event; Toggle actions switch between occurring and not oc-
curring whenever the action is performed; and SetValue actions convey a
value that is more complex than simple occurrence or non-occurrence.
Non-observable actions allow internal behaviors to be represented as
the assignment of values to local variables. This can be used to repre-
sent the human operator remembering something or some other changes
in cognitive or perceptual state.

EOFMs can be represented visually as tree-like graphs (see Fig. 1).
Actions are rectangles and activities are rounded rectangles. An activ-
ity’s decomposition is an arrow labeled with the decomposition oper-
ator. The arrow points to a rounded rectangle containing the decom-
posed activities or actions. Strategic knowledge conditions are triangles
and/or arrows connected to the activity that they constrain. These are
labeled with the Boolean logic of the condition. A Precondition is a yel-
low, downward-pointing triangle; a CompletionCondition is a magenta,
upward-pointing triangle; and a RepeatCondition is an arrow recursively
pointing to the activity.

EOFMs have formal semantics (Bolton et al., 2011, 2016). This gives
models represented with it unambiguous, mathematical descriptions of
how they execute. Every activity and action is treated as a state machine
(Fig. 2) that transitions between three execution states: Ready (waiting
to execute), Executing, and Done. An activity or action starts in the Ready
state. It transitions between states based on whether or not the specific
Boolean conditions on the labeled transitions (Fig. 2) are true.

The strategic knowledge conditions of an activity (Preconditions, Re-
peatConditions, and CompletionConditions) are used to partially describe
when these transitions can occur. However, three additional implicit
conditions are also required. These assert whether an activity can start,
end, or reset based on the given activity’s or action’s position in the task.
Specifically, a StartCondition indicates if an activity can start executing
based on the execution states of its parent, its parent’s decomposition
operator, and its siblings (activities or actions in the same decomposi-
tion). An EndCondition indicates if an activity or action can end execu-
tion based on the execution state of its children (activities or actions
the activity decomposes into) and its decomposition operator. Since an
action has no children, its EndCondition is true when the action has been
properly executed. Finally, a Reset condition indicates when an activity
or action can return to the Ready execution state.

For any activity or action in a decomposition, a StartCondition has
two conjuncts:

1

(parent.state = Executing) A < /\ (s.state # Executing)).

Vsiblings s

If the parent’s decomposition operator has a parallel modality, the sec-
ond conjunct is eliminated. If the parent’s decomposition operator is

108

Int. J. Human-Computer Studies 108 (2017) 105-121

ord, the second conjunct imposes additional restrictions only on the
previous sibling in the decomposition order: (prev_sibling.state = Done).
If it is the xor decomposition operator, the second conjunct is modified
to enforce the condition that no other sibling can execute after one has
finished:

(s.state = Ready). 2)

Vsiblings s

An activity without a parent (a top-level activity) will eliminate the
first conjunct. Top-level activities treat each other as siblings in the
formulation of the second conjunct with an assumed and_seq rela-
tionship. All other activities are treated as if they are in an and_par
relationship and are thus not considered in the formulation of the
StartCondition.

An EndCondition is comprised of two conjuncts that relate to the ac-
tivity’s children. Since an action has no children, an action’s EndCondi-
tion defaults to true. The first conjunct asserts that the execution states of
the activity’s children satisfy the activity’s decomposition operator. The
second asserts that none of the children are Executing. This is generically
expressed as:

< @ (c.state = Done)) A (/\ (c.state # Executing)). 3)
Vsubacts ¢ Vsubacts ¢

In the first conjunct, € (a generic operator) is to be substituted with
A if the activity has the and_seq, and_par, ord, or sync decompo-
sition operator; and V if the activity has the or_seq, or_par, or xor
decomposition operator. Since optor_seq and optor_par enforce no
restrictions, the first conjunct is eliminated when the activity has either
of these decomposition operators.

The Reset condition is true in two situations. First, when an activ-
ity repeats (through an Executing-to-Executing transition with reset), ev-
ery descendant activity or action (any activities or actions that decom-
pose from the repeating activity) will Reset. Second, any top-level ac-
tivity, will have its Reset condition automatically be true when it enters
the Done state. When this activity Resets, all of its descendant activi-
ties and actions will Reset. More details on the EOFM formal seman-
tics can be found in Bolton et al. (2011, 2016) and Bolton and Bass
(2017).

The behavior of action outputs and local variable assignments are de-
pendent on the action formal semantics. For AutoReset action behavior,
the human action output is treated as Boolean (true when the action is
occurring and false otherwise) and occurs when a corresponding action
node in the EOFM task structure is Executing and does not at any other
time. For an action with toggle behavior, the human action switches be-
tween occurring and not occurring when the corresponding action node
is Executing. An action with SetValue behavior will set the corresponding
human action’s value when the action is Executing. An action with a lo-
cal variable (an internal action) has its value assigned when the action
is Executing.

3.2. An example for illustrating concepts

To facilitate the discussion of our erroneous behavior taxonomy, we
are going to use a simple running example: a coffee machine (Fig. 3).
In this example, we assume that the coffee machine brews coffee using
water and pods that a user has entered into the machine.

The tasks for interacting with this machine are shown in Figs. 4 and
5. Fig. 4 shows the task behavior a user would use to initiate the brewing
process. Fig. 5 shows the behavior for retrieving a brewed cup of coffee
and properly cleaning up the machine. The task model takes inputs that
indicate:

o The state of the machine’s power light (iPowerOn: which is true
when the light is on and false otherwise);

o The state of the machine’s reservoir lid (iLidClosed: which is true
when the lid is closed and false otherwise);

M.L. Bolton

StartCondition
A CompletionCondition

StartCondition A Precondition
A = CompletionCondition

EndCondition
A CompletionCondition

EndCondition A RepeatCondition A= CompletionCondition

with Reset
(@)

Int. J. Human-Computer Studies 108 (2017) 105-121

Legend

O state

—— Transition

—— |nitial State

StartCondition

EndCondition

(b)

Fig. 2. Formal semantics of an EOFM (a) activity’s and (b) action’s execution state presented as finite state transition systems (Bolton et al., 2011). Transitions are labeled with Boolean
expressions that allow a transition to occur when they are true. Note that with Reset is used to indicate a situation where all descendant activities and actions are Reset when the

associated transition occurs.

Reservoir Lid

Power
‘ Light
Pod

Power
Button

Water

Reservoir
Coffee Cup
Platform

Fig. 3. A pod-based coffee machine.

e An indication of whether or not that machine has enough water
(iIEnoughWater: which is true if there is enough water and false
otherwise);

A variable representing the state of the machine’s handle (iHan-
dleUp: which is true when the handle is up and false when it is
down);

A variable indicating the state of the mug (iMugState; which can
be Absent if no mug is placed, Empty if the mug is placed and
empty; and Filled if the mug is placed and full);

e A light indicating if the machine is brewing (iBrewing: which is
true if the machine is brewing and false otherwise); and

The state of the pod in the machine (iPodState: which can have
three values indicating if the pod is Fresh, Used, or Absent).

The human can, in turn, perform a number of actions on the machine.
He or she can:

o Press the power button (hPressPowerButton);

Open and close the reservoir lid (hOpenLid and hCloseLid respec-
tively);

Pour water into the reservoir (hPourWater);

Lift and lower the handle (hLiftHandle and hLowerHandle re-
spectively);

Enter (hEnterPod) multiple types of pods (i.e. a CoffeePod or Tea-
Pod);

Remove a pod (hRemovePod);

Place and remove a mug (hPlaceMug and hRemoveMug respec-
tively); and

Press the brew button (hPressBrewButton).

The user can perform the task for preparing for and brewing coffee
(aBrewCoffee; Fig. 4) if its precondition is satisfied: that the coffee
machine is not brewing and the mug is not full. This is accomplished by
doing two activities in order: preparing the machine (aPrepMachine)
and initiating brewing (aBrew). To prepare the machine, the user per-
forms four sub-activities, one at a time, in any order: if the power is off,
turning it on (aTurnOn) by pressing the power button (hPressPower);
if there is not enough water, continually adding water (hPourWater via
the aPourWater activity) until enough water has been deposited; plac-
ing the mug (hPlaceMug via aPlaceMug) if no mug is present; and
inserting a pod into the machine (aAddPod). This last activity decom-
poses into four sub-activities that are performed in the specified order
(from left to right; Fig. 4). If the handle is down, the human lifts the han-
dle (hLiftHandle via aLiftHandle); if a used pod is in the machine, the
user removes it (hnRemovePod via aClearOldPod); if the pod is ab-
sent, the user inserts a fresh coffee pod (hEnterPod via aEnterPod,
where hEnterPod inputs a CoffeePod); and, if the handle is up, low-
ering the handle (hLowerHandle via aLowerHandle). Once aPrep-
Machine is Done, the user can initiate brewing (aBrew) by pressing
the brew button (hPressBrew).

The task for retrieving a brewed cup of coffee and cleaning up the
machine (aGetCoffee; Fig. 5) can occur if the machine is not brewing
and the mug is filled. This occurs by performing three sub-activities, one
at a time, in any order: turning the power off (aPowerOff) if it is on;
clearing the used pod (aClearPod) by lifting the handle, removing the
pod, and then lowering the handle; and picking up the now brewed cup
of coffee (aGetMug).

It is important to note the task model as presented here is a struc-
tural representation of the human behavior. The precise ways that the
task can execute are determined by its formal semantics, which were
discussed in the previous section. Specifically, every activity and action

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105-121

Y -
7iBrewing A iMugState # Full iBrewState = Brewing
aBrew
.Coffee

ord
A . ,
() R S
Machine
‘ ord
and_seq -

PV 0 iP A‘O Y ﬁx iMugst tV-Ab t iMugsSt tA-E ty
iPowerOn -~ iPowerOn , 2Add . MugState = Absent ———~iMugState = Empty 2Add
On TiEnoughWate Water iEnoughWater Mug Pod
ord { ord
A1

ord

ord
V2 A TiEnoughWater \V4 A
iLidClosed 20060 iLidClosed Y aPo:r % TiLidClosed 2Close iLidClosed
% ~iEnoughWate iEnoughWater
ord ord ord

Y A _ V A
iHandleDown - siHandleDown iPodState = Absent iPodState = Fresh
aLift i aClear \ aEnter R alLower’)
Handle iPodState = Used™| Qldpod /- iPodState = Absent Pod iHandleDown Handle JiHandleDown
ord ord 0;(1 ord

Fig. 4. EOFM task behavior model for describing how a human would prepare the machine for brewing and initiate brewing.

Y 4L
-iBrewing A iMugState = Filled 2Cet iMugState = Absent
(=
and_seq
v
Vv A
iPowerOn “Power JiPowerOn “Clear 2Get
Off Pod Mug
ord ‘ ord
¥ ord
VvV A Y ﬁx -V A
iHandleDown aLift ﬂlHandIeDown aClear TiHandleDown 2Lower iHandleDown
Handle iPodState = Used™\ OldPod j~iPodState = Absent Handle
ord ord ord

Fig. 5. EOFM task behavior for retrieving a brewed cup of coffee and performing the requisite machine maintenance.

in Figs. 4 and 5 is interpreted as a finite state machine with transitions as and the end condition
described in Fig. 2(a) and (b) respectively. As previously described, the aOpenLid.State = Done
Preconditions, RepeatConditions, and CompletionConditions come explic- AaPourW ater.State = Done
itly from the task model. However, StartConditions, EndConditions, and AaCloseLid.State = Done
Resets are implicit in the model. For example, the activity aAddWater aOpenLid.State # Executing ®)
(Fig. 4) would have the StartCondition A AaPourW ater.State # Executing
AaCloseLid.State # Executing
based on the semantics from Section 3.1 and (1) and (3).
aPrepMachin.State = Executing
aTurnOn.State # Executing @) 3.3. The taxonomy
Al AaPlaceMug.State # Executing
AaAddPod.State # Executing For our taxonomy, we want to classify erroneous behaviors based

on where they deviate from a human operator’s task and why they do

110

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105-121
-—~, StartCondition A Precondition T Mode
) . i StartCondition (:
_' A= CompletionCondition artondltion _ Ready —————> Intrusion
fffffffff + Omission
/ \ /
StartCondition /7> N\~ StartCondition v = Precondition SN - Restart
A = CompletionCondition /|, .\ V CompletionCondition VAN - > Delay
/7 True NN StartCondition ~ 4,0 True NN
Yy artCondition /" /
/- WithReset N EngConaltion A CompletionCondition 7, N N N
yavs .\ V EndCondition A RepeatCondition s N \\: StartConciition
o N A= CompletionCondition d NN
/ _— -—
,) / A N) EndCondition
Done -~ Done Executing |~
= EndCondition { = EndCondition
v = CompletionCondition LI
= EndCondition v RepeatCondition v CompletionCondition With Reset
(@) (b)

Fig. 6. Erroneous transitions in (a) activity and (b) action formal semantics. The type of dotted line used in a transition indicates the erroneous behavior mode (see the legend). All of
the transitions, with the exception of the Done-to-Executing, activity Executing-to-Executing (without a Reset), action Ready-to-Ready, and action Executing-to-Executing ones, have guards
that are the negation of the corresponding transitions from Fig. 2. The Done-to-Executing transitions represent erroneous resets where the human performs an activity or action when it
should be Done. These are labeled with true because they do not occur in the normative semantics (Fig. 2) and thus are always erroneous. The activity Executing-to-Executing (without a
Reset), action Ready-to-Ready, and action Executing-to-Executing transitions allow an activity or action to stay in its current state when it should transition out of it.

so. The EOFM formal semantics explicitly describe how a task should
execute normatively. As such, a human who erroneously diverges from
a task will do so in a way that violates the task model’s formal seman-
tics for a particular activity or action. Thus, by classifying erroneous
human behavior based on which formal semantics are violated (not ad-
hered to) and how they are violated, we will be able to identify several
phenomena. First, we will know from which activity or action the di-
vergent behavior occurred, identifying where in the task the erroneous
act originated. Second, we will know what the erroneous behaviors are
(what the person does) that result from the semantic violation. Finally,
we will know which part of the formal semantics was violated indicat-
ing what the human operator failed to properly attend to and thus why
the erroneous behavior occurred.

Our taxonomy is hierarchical (depicted later in Fig. 7) in that it clas-
sifies erroneous behavior at several levels based on the task structure
and task formal semantics. First, because of differences in the formal se-
mantics between activities (such as aBrewCoffee; Fig. 4) and actions
(such as hPressPower; Fig. 4), the taxonomy distinguishes between er-
roneous behaviors that originate at the activity or action levels. Task ex-
ecution can diverge from the formal semantics through violations of the
execution state transitions semantics (Fig. 2) or through incorrect action
variable assignments that occur during the action’s execution. Thus, our
taxonomy next identifies the divergence type associated with the erro-
neous act. These divergences have limited ways they can manifest, what
we call the erroneous behavior modes. For transition-based erroneous
behavior, the human can do something (an activity or action) that they
should not have done (an intrusion), not do an activity or action they
should have done (an omission), restart the execution of something (a
restart), or fail to perform a transition when it is supposed to (a delay).
For execution-based erroneous behaviors, a person can replace a value
or variable with a correct one or misremember something. These modes
represent the next level in the taxonomy. Within each of these modes, we
further classify an erroneous behavior based on the specific point of di-
vergence from the semantics. For transition-based erroneous behaviors,
this represents the specific type of erroneous transition that occurred.
For execution-based erroneous behaviors, this is the type of variable
assignment being used (the type of action being performed). Finally,
points of divergence are further refined and given meaningful specific
erroneous behavior types/names based on the information/condition
the human improperly attended to (for transition-based erroneous be-
haviors) or improper variable assignment (for execution-based errors).
A full representation of the hierarchy is shown later in Fig. 7.

The following sections further elaborate on the details of the taxon-
omy. First, we discuss the transition-based erroneous behaviors at both

111

the activity and action-levels. This is followed by a discussion of the
execution-based erroneous behaviors.

3.3.1. Transition-based erroneous behaviors

We classify transition-based erroneous behaviors into modes based
on the type of behavior that can result from an erroneous transition.
The human can do something (an activity or action) that is not his or
her current activity or action (an intrusion), fail to do the correct activity
or action (an omission), restart an already executing activity (a restart),
or fail to transition when it is supposed to (a delay).

Fig. 6 shows the formal state transition semantic violations we in-
clude in the taxonomy and their associated erroneous behavior mode:
intrusion, omission, restart, or delay. The formal semantics represented
here do not encompass all of the possible violations that can occur. Some
possible transitions were excluded because they are either artificial con-
structs that make sense for the finite automata perspective, but not from
a human error perspective, or they are encapsulated by other transitions.
The discussion below describes each of the included transitions as well
as the transitions that were excluded.

The guards on the Ready-to-Done, Ready-to-Executing, Executing-to-
Done, and activity Executing-to-Executing (with reset) transitions each
represent the negation of the guards on the corresponding conditions in
Fig. 2. That is, they occur in any condition outside of the normative tran-
sitions. Erroneous Done-to-Ready transitions are not included because
they would only result in erroneous behavior if the associated activ-
ity or action then transitioned to Executing. Thus, the Done-to-Executing
transitions in Fig. 6 represent the erroneous analogs to the Reset condi-
tions in the normative semantics (Fig. 2). The guard on this condition is
true because any such transition would always be erroneous. The Ready-
to-Ready and Executing-to-Executing (Fig. 6(a)) transitions (delays) occur
in situations where there should be transitions from Ready-to-Executing
and Executing-to-Done (respectively). Note that the delay Executing-to-
Executing transitions do not issue a reset to the associated activity’s
descendants, thus differentiating them from restart transitions. Further
note that a comparable Done-to-Done transition is not included in the
erroneous transitions. This is discussed further below.

The erroneous behavior modes and their associated erroneous transi-
tions (points of divergence) are useful for identifying how an erroneous
behavior manifests and where the divergence occurs. However, they do
not provide insights into exactly why an erroneous behavior occurred
(what the human inappropriately attended to that caused the erroneous
act). To address this, we can further refine our classification based on
which conditions in the guard were violated. This determines the spe-
cific erroneous behavior type. Table 3 shows all of the specific erroneous

M.L. Bolton

Table 3

Activity-level, transition-based erroneous behaviors.

Int. J. Human-Computer Studies 108 (2017) 105-121

Mode Transition / Point of divergence Transition condition Erroneous behavior type
Intrusion Ready-to-Executing
—StartCondition A Precondition A —CompletionCondition Activity Capture Intrusion
StartCondition A —Precondition A —~RepeatCondition A ~CompletionCondition Activity Premature Intrusion
StartCondition A ~Precondition A RepeatCondition A ~CompletionCondition Activity Premature, Repeat Intusion
StartCondition A Precondition A CompletionCondition Activity Completed Intrusion
—StartCondition A —Precondition A —RepeatCondition A ~CompletionCondition Activity Spurious Intrusion
—StartCondition A —Precondition A RepeatCondition A ~CompletionCondition Activity Repeat-Capture Intrusion
—StartCondition A Precondition A CompletionCondition Activity Completed, Capture Intrusion
StartCondition A ~Precondition A —~RepeatCondition A CompletionCondition Activity Completed, Premature Intrusion
StartCondition A —Precondition A RepeatCondition A CompletionCondition Activity Completed, Premature, Repeat Intusion
—StartCondition A —Precondition A —RepeatCondition A CompletionCondition Activity Completed, Spurious Intrusion
—StartCondition A —Precondition A RepeatCondition A CompletionCondition Activity Completed, Repeat-Capture Intrusion
Done-to-Executing
StartCondition A Precondition A ~CompletionCondition Activity Reset Intrusion
—StartCondition A Precondition A ~CompletionCondition Activity Capture, Reset Intrusion
StartCondition A —~Precondition A —~RepeatCondition A ~CompletionCondition Activity Premature, Reset Intrusion
StartCondition A ~Precondition A RepeatCondition A ~CompletionCondition Activity Premature, Repeat, Reset, Intusion
StartCondition A Precondition A CompletionCondition Activity Completed Intrusion
—StartCondition A —Precondition A —RepeatCondition A ~CompletionCondition Activity Spurious, Reset Intrusion
—StartCondition A —Precondition A RepeatCondition A ~CompletionCondition Activity Repeat-Capture, Reset Intrusion
—StartCondition A Precondition A CompletionCondition Activity Completed, Capture, Reset Intrusion
StartCondition A —Precondition A ~RepeatCondition A CompletionCondition Activity Completed, Premature, Reset Intrusion
StartCondition A —~Precondition A RepeatCondition A CompletionCondition Activity Completed, Premature, Repeat, Reset Intusion
—StartCondition A —Precondition A —RepeatCondition A CompletionCondition Activity Completed, Spurious, Reset Intrusion
—StartCondition A —Precondition A RepeatCondition A CompletionCondition Activity Completed, Repeat-Capture, Reset Intrusion
Omission Ready-to-Done
StartCondition A ~CompletionCondition Activity Omission
Executing-to-Done
—EndCondition A CompletionCondition Activity Post-Completion Omission
EndCondition A —CompletionCondition Activity Non-completion Omission
—EndCondition A —~CompletionCondition Activity Spurious Termination Omission
Restart Executing-to-Executing with Reset
—EndCondition A RepeatCondition A —~CompletionCondition Activity Post-Repetition
EndCondition A —RepeatCondition A —~Precondition A ~CompletionCondition Activity Premature Restart
EndCondition A —RepeatCondition A Precondition A ~CompletionCondition Activity Premature, Pre-capture Restart
EndCondition A RepeatCondition A CompletionCondition Activity Completed Restart
—EndCondition A —RepeatCondition A —Precondition A ~CompletionCondition Activity Spurious Restart
—EndCondition A —RepeatCondition A Precondition A ~CompletionCondition Activity Spurious, Pre-capture Restart
—EndCondition A RepeatCondition A CompletionCondition Activity Completed, Post-Repetition
EndCondition A —RepeatCondition A —~Precondition A CompletionCondition Activity Completed, Premature Restart
EndCondition A —RepeatCondition A Precondition A CompletionCondition Activity Completed, Premature Pre-capture Restart
—EndCondition A —RepeatCondition A —Precondition A CompletionCondition Activity Completed, Spurious Restart
—EndCondition A —RepeatCondition A Precondition A CompletionCondition Activity Completed, Spurious, Pre-capture Restart
Delay Ready-to-Ready

StartCondition A Precondition A ~CompletionCondition
Executing-to-Executing
EndCondition

A CompletionCondition
EndCondition A RepeatCondition A ~CompletionCondition

Activity Start Delay

Activity Finish Delay
Activity Repeat Delay

Note. Each erroneous behavior type’s transition condition satisfies the associated erroneous transition from Fig. 6(a). Underlines are used to show where in a
transition condition a deviation from normative occurs. For the Done-to-Executing transitions, there is an assumed erroneous reset transition. Note that any given
activity may not have all of the strategic knowledge conditions. If an activity does not explicitly define a particular strategic knowledge condition, there is an assumed
default value, where the default values depend on the transition. For erroneous Ready-to-Done, Ready-to-Executing, and Done-to-Executing: a Precondition’s default
value is equal to the StartCondition and a RepeatCondition and a CompletionCondition are false by default. For erroneous Executing-to-Executing and Executing-to-Done
transitions: a Precondition and RepeatCondition are false by default and a CompletionCondition is, by default, equal to the EndCondition.

behavior types for activity-level erroneous behaviors. Each entry in this
table shows the exact condition (listed under transition condition) under
which a given erroneous transition / point of divergence occurs. Under-
lines are used to show which conditions are violated in the transition
(which condition are improperly attended to by the human). Erroneous
transitions are also given a descriptive name (erroneous behavior type)
to relate the encapsulated concepts to ideas familiar to human factors
engineers. These names are convenient for users of the taxonomy be-
cause they account for the conveyed levels, transitions, and condition

112

violations without requiring potential users to explicitly refer to the un-
derlying erroneous semantics. Below we discuss each of the different
erroneous transitions and their associated specific erroneous behavior

types.

Activity Ready-to-Executing Intrusions. For activity-level Ready-to-
Executing intrusions, there are 11 erroneous behaviors. An activity
capture intrusion (a classic capture error) occurs when the strategic
knowledge conditions for an activity are satisfied, but it is not the

M.L. Bolton

appropriate time to perform that activity in the task (the StartCondition
is not true). Thus, an activity capture intrusion occurs when the human
fails to attend to the StartCondition properly. An example of this could
occur with the coffee machine when the human is performing the task
for getting the coffee (Fig. 5) when the mug is placed and the machine
is no longer brewing. In this situation, if there is not enough water
in the reservoir, the human could erroneously perform the activity
for adding water to the machine (aAddWater; Fig. 4) because its
Precondition (— iEnoughWater) is satisfied but its StartCondition is not
(aPrepMachin.State = Executing is false; see (4)).

An activity premature intrusion occurs when it would otherwise be
appropriate for the activity to start executing (its StartCondition is true),
but without the Precondition or RepeatCondition being satisfied. Thus, it
occurs when the human fails to properly attend to these condition. Note
that RepeatConditions only show up in transition conditions of Ready-
to-Executing intrusions (Table 3) when the Precondition is not satisfied.
This is because it is irrelevant when the Precondition is true. For the
coffee machine, this could occur after the human has completed the task
for brewing the coffee (the task in Fig. 4) and the machine is brewing
(iBrew is true) with the mug in place (iMugPlaced is also true). In this
situation, aGetCoffee’s StartCondition is true because aBrewCoffee
is not executing. However, its Precondition is not true because —iBrew
is false. Thus, a premature intrusion occurs if somebody attempts to
execute aGetCoffee.

An activity completed intrusion occurs when both the StartCondi-
tion and Precondition are properly satisfied (if there is indeed a pre-
condition on the activity), but when the CompletionCondition has been
satisfied. Thus, the activity does not need to execute because its goal
(CompletionCondition) has been achieved. For the coffee application, this
could happen if the human is performing the task for brewing the cof-
fee (aBrewCoffee; Fig. 4) but with the machine already configured
for brewing: the power is on, the lid is closed, there is enough wa-
ter, the handle is down, the mug is placed and empty, and there is a
fresh pod. The human can make an activity completed intrusion if he
or she performs the aPrepMachine activity when its StartCondition
(aBrewCof fee.State = Executing A aBrew.State # Executing) and Pre-
condition are true, even though its CompletionCondition is satisfied.

An activity repeat-capture intrusion is just like an activity capture
intrusion except that it occurs when a human’s attention is captured
by the RepeatCondition instead of the Precondition. There are no good
examples of this in the coffee machine task.

The remainder of the Ready-to-Executing intrusions are varia-
tions/combinations of these erroneous behaviors.

Activity Done-to-Executing Intrusions. There are 12 activity Done-to-
Executing intrusions, all dubbed reset intrusions. The base activity reset
intrusion occurs under the condition where an activity would transi-
tion for Ready-to-Executing normatively. The remainder of the Ready-
to-Executing intrusions are the analogues of Ready-to-Executing intru-
sions, only differing in that they occur from an activity’s Done state.
Consider the example in the coffee machine application where the hu-
man is performing aGetCoffee (Fig. 5). In this, assume that he or she
first properly performs the activity for clearing the pod (aClearPod)
and then performs one or more of the other activities in the decompo-
sition (aPowerOff and/or aGetMug). An activity reset intrusion will
occur if the human restarts the performance of aClearPod (thus reset-
ting all of its decomposed activities and actions) as if the activity had
not previously been done.

Activity Omissions. There are four activity omissions. One for Ready-to-
Done and three for Executing-to-Done transitions.

The Ready-to-Done omission occurs when it is appropriate to do the
activity (the StartCondition is true) and the goal of the activity has not
been satisfied (the CompletionCondition is false), but the activity is not
performed because the human treats the completion conditions as if it is

113

Int. J. Human-Computer Studies 108 (2017) 105-121

true. For the coffee machine, this could happen when the human is per-
forming aBrewCoffee (Fig. 4) and does not properly attend to the state
of the machine as prescribed in aPrepMachine’s completion condition.
This could result in the person thinking aPrepMachine is completed,
not performing the activity, and moving on to aBrew without properly
preparing the machine.

For Executing-to-Done, an activity post-completion omission occurs
when its CompletionCondition is satisfied, but its EndCondition is not. Note
that this is a classic post-completion error (Byrne and Bovair, 1997; Li
et al., 2005), a type of erroneous behavior where a human fails to com-
plete sub-goals/activities in a task because the primary goal has been
achieved. The best example of this in the coffee machine task would
occur under aGetCoffee (Fig. 5). If the human operator retrieves the
filled coffee mug (aGetMug) before performing the other two activ-
ities (aPowerOff and aClearPod), the human may erroneously stop
performing aGetCoffee because its completion condition (iMugState
= Absent) is satisfied even though its EndCondition is not (aPowerOff
and aClearPod are not Done).

The opposite of an activity post-completion omission is an activity
non-completion omission. This occurs when the activity’s EndCondition
is satisfied, but its goal (CompletionCondition) has not been achieved.
In the coffee machine, this is best illustrated by aPourWater under
aBrewCoffee (Fig. 4). If the human is performing aPourWater and
has just completed hPourWater, but without yet adding enough wa-
ter for iEnoughWater to become true, aPourWater’s EndCondition is
true, but not its CompletionCondition. Thus, if the human treats aPour-
Water as if it is Done and moves on to aCloselLid, then an activity
non-completion omission has occurred.

An activity spurious termination omission is a combination of the
previous two erroneous behaviors in that the omission occurs in viola-
tions of an activity’s EndCondition and CompletionCondition. In the cof-
fee machine, this could occur if the human stops performing aPrep-
Machine (under aBrewCoffee; Fig. 4) before completing all of its
sub-activities (violating its EndCondition) and before its completion con-
dition is satisfied.

Activity Restarts. Activity restarts, of which there are 11, all occur due to
erroneous Executing-to-Executing transitions, where a reset is broadcast
to all descending activities and/or actions when the transition occurs.
These are conceptually similar to the Ready-to-Executing intrusions ex-
cept that the role of the RepeatConditions and Preconditions are reversed.
Note that an activity post-repetition occurs when a RepeatCondition is
true, but the activity has not yet reached its EndCondition. Also note that
an erroneous act with “pre-capture” in its name indicates an erroneous
behavior where a Precondition captures human attention in an inappro-
priate situation. All of the other erroneous restarts should be relatively
straightforward to interpret.

It is important to note that activity restarts can occur when an ac-
tivity has a repeat condition and when it does not. For example, for the
coffee machine example, aPourWater (which has a repeat condition;
see Fig. 4) could be performed with an activity completed, premature
restart, if the human repeats that activity even though enough water has
been added to the reservoir. Alternatively, an activity premature restart
could occur for aBrewCoffee (Fig. 4; which does not have a RepeatCon-
dition) if the human erroneously restarts the activity any time during the
execution of its sub-activities.

It is important to note that a previously executed activity can execute
again. However, in our taxonomy, this will occur via activity done-to-
executing intrusions, not activity restarts.

Activity Delays. Activities can also have delays. A Ready-to-Ready tran-
sition that occurs when an activity should normatively transition
from Ready-to-Executing represents an activity start delay. Executing-to-
Executing transitions (which do not broadcast a reset) can result in two
different types of delays.

M.L. Bolton

Table 4
Action-level erroneous behaviors.

Int. J. Human-Computer Studies 108 (2017) 105-121

Divergence type Mode Point of divergence Transition condition Erroneous behavior type
Transition Intrusion Ready-to-Executing —StartCondition Action Intrusion
Done-to-Executing StartCondition Action Reset Intrusion
—StartCondition Action Spurious Reset Intrusion
Omission Ready-to-Done StartCondition Action Omission
Executing-to-Done —EndCondition Action Premature Finish
Delay Ready-to-Ready StartCondition Action Start Delay
Executing-to-Executing EndCondition Action Finish Delay
Divergence type ~ Mode Point of divergence Assignment Erroneous behavior type
Execution Substitution SetValue CorrectAction := IncorrectValue ~ Action Value Substitution
IncorrectAction := CorrectValue Action Target Substitution
Misremembrance Local Variable Assignment CorrectVariable := IncorrectValue ~ Value Misremembrance

IncorrectVariable := CorrectValue Target Misremembrance

Note. Each erroneous behavior type in the top part of the table satisfies the associated erroneous transitions in Fig. 6(a). Underlines are used to
show where in a transition condition or a variable assignment a deviation from normative occurs.

If the human does not complete the activity when he or she should
(when the conditions for an Executing-to-Done transition are true), an
activity finish delay occurs. Such a condition could occur in a number of
activities in our coffee machine application. For example, if the human
pauses after lifting the handle of the machine (aLiftHandle; in either
Fig. 4 or Fig. 5), this would constitute an activity finish delay.

If the human does not perform a true repetition (an Executing-to-
Executing transition with a reset), an activity repeat delay occurs. In the
coffee machine, this could occur if the person stops or pauses while
adding water to the reservoir (aPourWater; Fig. 4) before enough wa-
ter has been added.

Note that a comparable delay for a Done activity (an erroneous Done-
to-Done transition) is not included in our taxonomy. This is because such
a transition would be an artifact of the finite state machine representa-
tion: a human does not think about an activity or action being reset (the
only way to transition out of Done) and thus a delay on a reset transition
is artificial. Further, the only way an erroneous Done-to-Done transition
would impact the performance of human behavior is if a human fails
to perform the given activity or action after its parent activity has been
reset and is executing. Such behavior would occur because the person is
not properly attending to the conditions indicating when that activity or
action should be performed and is thus encapsulated by the erroneous
Ready-to-Done transitions.

Action-Level Transition-Based Erroneous Behaviors. Erroneous transition-
based behavior can also occur at the action level. As with the activity
transitions, these can be refined based on the property that is violated.
However, because actions do not have strategic knowledge conditions,
there are fewer transition-based erroneous behaviors at this level. These
are shown in the upper half of Table 4.

An action intrusion occurs when an action transitions from Ready to
Executing at the wrong time (when the human fails to properly attend
to the StartCondition). A Done-to-Executing action reset intrusion occurs
when the person performs an action that is Done, but has its StartCondi-
tion satisfied. An action spurious intrusion describes a condition where
this occurs when the action’s StartCondition is not satisfied. An action
omission occurs when an action transitions from Ready to Done when
it is the correct time to transition from Ready to Executing (the Start-
Condition is true). An action premature finish (a special type of action
omission) occurs when an action transitions from Executing to Done be-
fore the action’s EndCondition is true. An action start delay occurs when
the activity transitions from Ready-to-Ready when it normatively should
have transitioned from Ready-to-Executing. An action finish delay occurs
when the activity transitions from Executing-to-Executing when it norma-
tively should have transitioned from Executing-to-Done. Every action in
our coffee machine application could be used to illustrate these erro-
neous behaviors.

The action-level (Table 4) behaviors do not explicitly account for
repetition. This is because, for an action to finish and then repeat, it
needs to transition to Done. A direct Executing-to-Executing transition
would thus not register the completion of the action. As such, action
repetition is encapsulated by an action reset intrusion, where this occurs
after the action transitions from Executing to Done.

Additional Transition-based Considerations. It is important to note that
each of the transition-based erroneous behavior types can be further re-
fined based on which part of the violated condition was not attended to.
For example, a human may perform an action intrusion, where the ele-
ments in the StartCondition that are violated are related to the execution
state of the action’s siblings (the other actions in the decomposition)
rather that the execution state of the parent (the activity the actions
decomposes from). In this situation, erroneous behavior will result in
actions being executed in the wrong order or instead of another action,
depending on the activity’s decomposition operator. Similar distinctions
can be made for all other errors and condition types. This is further dis-
cussed in Section 4.

3.3.2. Execution-based erroneous behaviors

The transition-based, action-level erroneous behaviors can account
for people doing the wrong action or omitting the correct action. How-
ever, when an action involves the conveyance of information beyond
simple performance (as is done for SetValue actions and local variable
assignments), there are additional deviations that can occur in the as-
signment process. These are shown in the bottom of Table 4.

These execution-based erroneous behaviors are separated into two
modes. A substitution is associated with SetValue actions (the point of di-
vergence) and represents part of an action’s value conveyance being sub-
stituted with something correct. A misremembrance is associated with
local variable assignments (the point of divergence). It models a person
remembering something partially wrong when performing a mental ac-
tion. The erroneous behavior types within each of these designations are
distinguished based on whether the target (the action or local variable)
is incorrect or the value assigned to it is incorrect. Note that a condi-
tion where both are wrong is still possible in the larger taxonomy. This
can occur either through an intrusion or through the combination of an
intrusion and an action omission.

For substitutions, the human can perform an action where they con-
vey the wrong value through the correct action (an action value substi-
tution). In the coffee machine example, this could occur by the human
operator placing something other than a coffee pod into the machine
(performing an action value substitution for hEnterPod under aEnter-
Pod in Fig. 4). If the person performs the wrong action, but the right
value, this is called an action target substitution. For the coffee machine,
for the same place in the task, this could occur if the human operator
placed the coffee pod somewhere other than in the machine.

114

M.L. Bolton

Analogues for these can also occur for misremembrances (local vari-
able assignments). Someone can remember the wrong thing (a value
misremembrance) or remember the right thing in the wrong context (a
target misremembrance). However, because there are no local variable
assignments in the coffee machine tasks, there are not illustrative exam-
ples of misremembrances for the application.

3.4. Summary

Fig. 7 provides an overview of the hierarchy used in our taxonomy.
It is worth noting that although each of these categories is general, any
given erroneous behavior that actually occurs will be associated with
a specific activity or action. Thus, additional context and insights can
be had by considering the behaviors being performed and any strategic
knowledge that factored into the erroneous behavior.

4. Inter-taxonomy compatibility

Our new taxonomy is intended to encompass both phenomenological
and genotypical erroneous behavior concepts. To assess this, we show
that our taxonomy achieves coverage over both Hollnagel’s phenotypes
of erroneous action (1993) and slips from Reason’s GEMS (1990). We
do this by going through all of the designations of the other taxonomies
and showing how each of their classifications is accounted for in the
new system.

4.1. Phenotypes of erroneous action

Hollnagel’s phenotypes of erroneous action (1993) were concerned
with how erroneous behaviors manifest as deviations from a normative
plan or task. Thus, the discussion below describes how each of Holl-
nagel’s phenotypes can manifest using our taxonomy.

4.1.1. Zero-order phenotypes

Premature Start. A premature start occurs when an action starts too
early (Hollnagel, 1993). In our taxonomy, premature starts can occur
in several ways. At the action level, a premature start can occur when
a person performs an action intrusion right before the action’s Start-
Condition is true. However, a premature start can also occur for similar
reasons at the activity level if a human performs an activity capture
intrusion right before the activity’s StartCondition is satisfied. This can
result in one or more of the actions that the activity decomposes into
executing prematurely. Alternatively, timing constraints can potentially
be asserted into an activity’s Precondition or RepeatCondition. If this is
the case and a human does not properly attend to these elements of an
activity’s Precondition or RepeatCondition, he or she may perform an ac-
tivity premature intrusion; an activity premature, repeat intrusion; an
activity premature restart; or an activity premature pre-capture restart.

Delayed Start. A delayed start describes occurs where an action does
not start when it is supposed to (Hollnagel, 1993). In the new taxonomy,
this can occur when the human fails to start the execution of an action
due to improperly attending to the StartCondition, an action start delay.
Delays at the activity level can also occur. A human may fail to attend
to the conditions when an activity should normatively transition from
Ready-to-Executing and perform an activity start delay. A human may
also fail to attend to the conditions associated with when the activity
should normatively repeat and perform an activity repeat delay.

Premature Finish. A premature finish occurs when an action finishes be-
fore it should (Hollnagel, 1993). In our taxonomy, this manifests as an
action premature finish. An action can also finish prematurely if its par-
ent activity finishes before it should. Thus, premature finishes can hap-
pen if any of the activity Executing-to-Done omissions occur while an
action is executing.

115

Int. J. Human-Computer Studies 108 (2017) 105-121

Delayed Completion. A delayed completion occurs when an action does
not finish when it is supposed to (Hollnagel, 1993). This is replicated by
an action finish delay, where the human does not stop executing when
the EndCondition is satisfied.

Omission. An omission occurs when the human does not perform a
planned action (Hollnagel, 1993). This is replicated directly by an ac-
tion omission in the new taxonomy. Action omissions can also occur if
any activity-level omission occurs before the activity has executed all of
its required actions.

Jump Forward. A jump forward involves a human performing an action
that occurs later in a plan (Hollnagel, 1993). At the action level, this can
be represented by an action intrusion, as long as the action is one that
occurs later in the given activity or task. A jump can also occur for an
activity via any Ready-to-Executing intrusion as long as the activity is in
the same task as the normative action/activity.

Jump Backward. A jump backward occurs when a human performs a
previously completed action (Hollnagel, 1993). In our taxonomy, a Done
action or activity is one that was previously performed. Thus, a jump
backward can be represented by an action reset intrusion or an action
spurious reset intrusion. Similarly, a jump backward can occur for any
Done-to-Executing activity intrusion, as long as the resulting actions were
performed in the previous execution of the activity.

Repetition. A repetition occurs when a human repeats the action he or
she just performed (Hollnagel, 1993). In the new taxonomy, this occurs
when either an action reset intrusion or an action spurious reset intru-
sion occurs right after the completion (Executing-to-Done) of that same
action. A repetition can also happen if an activity only has one action
in its decomposition and any activity restart (erroneous Executing-to-
Executing transitions with reset) happens after the completions of the
activity’s action or if the just finished activity erroneously transitions
from Done-to-Executing.

Intrusion. An intrusion occurs when a human performs an unplanned
action (Hollnagel, 1993). In our taxonomy, this can occur via an ac-
tion intrusion, where the action is not in the task currently being per-
formed. At the activity level, action intrusions can occur for any Ready-
to-Executing intrusion where the activity that is intruded is not part of the
current executing task. It is important to note that this will inherently
exclude any intrusion where the StartCondition is satisfied (a StartCondi-
tion can only become true for an executing activity). It also excludes any
Done-to-Executing intrusion because there would be no Done activities or
actions in non-executing tasks.

4.1.2. First-order phenotypes

Spurious Intrusion. A spurious intrusion is represented by multiple zero-
order intrusions in sequence (Hollnagel, 1993). In the new taxonomy,
this can occur via a sequence of action intrusions, reset intrusions, or
spurious reset intrusions. Any activity intrusions cannot be rightly qual-
ified under this designation because it would constitute the performance
of actions within a given activity that have a specific relationship with
each other.

Jump / Skip. A jump / skip occurs when a human skips multiple actions
(Hollnagel, 1993). This is represented in our taxonomy as a sequence of
action omissions or an activity-level omission.

Place Losing. Place losing occurs when a human performs actions in an
arbitrary order (Hollnagel, 1993). In the new taxonomy, information
about activity and action execution order is encoded into its StartCon-
dition. Thus, place losing behavior is replicated by multiple action in-
trusions or activity capture intrusions during the execution of a parent
activity that encapsulates the activities or actions.

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105-121

Level Divergence Type Erroneous Behavior Mode Point of Divergence Erroneous Behavior Type

Activity Capture Intrusion

Activity Premature Intrusion

Activity Premature, Repeat Intusion

Activity Completed Intrusion

Activity Spurious Intrusion

Activity Repeat-Capture Intrusion

Activity Completed, Capture Intrusion
Activity Completed, Premature Intrusion
Activity Completed, Premature, Repeat Intusion
Activity Completed, Spurious Intrusion
Activity Completed, Repeat-Capture Intrusion

Ready-to-Executin

Intrusion

Activity Reset Intrusion

Activity Capture, Reset Intrusion

Activity Premature, Reset Intrusion

Activity Premature, Repeat, Reset, Intusion

Activity Completed Intrusion

Activity Spurious, Reset Intrusion

Activity Repeat-Capture, Reset Intrusion

Activity Completed, Capture, Reset Intrusion
Activity Completed, Premature, Reset Intrusion
Activity, Completed, Premature, Repeat, Reset Intusion
Activity Completed, Spurious, Reset Intrusion
Activity Completed, Repeat-Capture, Reset Intrusion

Done-to-Executing

Ready—to-Done% Activity Omission

Activity Post-Completion Omission
Executing—to-Done% Activity Non-completion Omission
Activity Spurious Termination Omission

Omission

Activity EITransition

Activity Post-Repetition

Activity Premature Restart

Activity Premature, Pre-capture Restart
Activity Completed Restart

Activity Spurious Restart

Activity Spurious, Pre-capture Restart
Activity Completed, Post-Repetition
Activity Completed, Premature Restart
Activity Completed, Premature Pre-capture
Activity Completed, Spurious Restart
Activity Completed, Spurious, Pre-capture Restart

Executing-to-Executing

Restart with Reset

Ready-to- Ready—% Activity Start Delay

Delay

Activity Finish Dela
Executing-to- Executlng< Actlvni Repeat Delgy

Ready—to-Executing—: Action Intrusion

Action Reset Intrusion
Done-to- Execuﬂng{ Action Spurious Reset Intrusion

Intrusion

Ready—to-Done% Action Omission
Omission :

Executing—to-Doneiﬁ Action Premature Finish

Read)y-to-Ready——————— Action Start Delay

. Delay :
Action Executing-to-Executing————— Action Finish Delay

Action Value Substitution
Action Target Substitution

Substitution SetValue

. Value Misremembrance
Misremembrance—————Local Variable ASS|gnment< Target Misremembrance

Fig. 7. Summary of erroneous behavior classifications using the new taxonomy.

116

M.L. Bolton

Recovery. Recovery occurs when a human performs actions that were
previously omitted (Hollnagel, 1993). In the new taxonomy, the fact
that acts were previously omitted suggests that they will be in the Done
state. Thus, recovery occurs when any activity or action that was pre-
viously omitted will transition from Done to Executing (any of the reset
intrusions).

Side Tracking. Side tracking represents a situation when one part of an
action plan is replaced with another (Hollnagel, 1993). In our taxonomy,
this would require the performance of one or more omissions (at either
the action or activity level) and then an activity-level intrusion, where
the intruding activity would be from another task.

Capture. A capture occurs when a human performs part of another ac-
tion sequence in the wrong place though multiple intrusions (Hollnagel,
1993). In our new taxonomy, this can be replicated by any activity-
level intrusion. Hollnagel also discussed a special type of capture called
branching, where the intruding action sequence would have started un-
der similar conditions to the normative sequence (Hollnagel, 1993). In
the new taxonomy, this corresponds with the activity intrusions that
are given “capture” designations: activity repeat-capture intrusion; ac-
tivity completed, capture intrusion; activity completed, repeat-capture
intrusion; activity repeat-capture, reset intrusion; activity completed,
capture, reset intrusion; and activity completed, repeat-capture, reset
intrusion. These are appropriate for “branching” because they represent
conditions where activity Preconditions or RepeatConditions indicate that
the erroneous activity should be performed.

Reversal. A reversal represents a situation where the execution of two
adjacent actions is reversed (a combination of an omission and a jump;
Hollnagel, 1993). In our taxonomy, this would be replicated by an action
intrusion, where the intruding action is one that would have executed
next. Note that because an action that has executed will be Done when
the activity would have normatively reached it. Thus, there is no need
for an additional erroneous behavior.

Time Compression. Time compression occurs when a sequence of ac-
tions occurs faster than they should through multiple premature starts,
premature finishes, and/or performing actions in parallel (Hollnagel,
1993). In the new taxonomy, time compression would occur in a simi-
lar manner: through multiple action intrusions (where an action starts
before the actions it should wait for are Done) and/or action premature
finishes. It is important to note that an action intrusion allows for the
erroneous parallel execution of actions given that restrictions on such
behavior are encoded into action StartConditions.

4.1.3. Discussion

The above discussion shows that our taxonomy is able to account for
all of the phenotypes of erroneous action identified by Hollnagel (1993).
Our taxonomy thus covers the various phenotypes found in Hollnagel’s
taxonomy and encompasses the contained concepts.

For the vast majority of the phenotypes, there were multiple ways
that the included behavior could be represented in our taxonomy. This
speaks to the capabilities of our method. Specifically, our taxonomy
not only accounts for how the erroneous behavior manifested, but also
why it occurred. Conversely, several first order phenotypes can only be
replicated in our taxonomy through multiple erroneous behavior types.
While this does not allow for elegant classifications of some of the first-
order types in our taxonomy, this is not a major limitation. Specifically,
our taxonomy is still able to replicate the observable behavior encap-
sulated by phenotypes. It is just that wedding the phenotypes to the
reasons the violations occurred can require multiple error types.

Several specific erroneous behaviors from our new taxonomy are
not addressed by Hollnagel’s phenotypes. In particular, none of the
execution-based erroneous behaviors are included. This is not surprising
for misremembrances because such behaviors are not observable. The

117

Int. J. Human-Computer Studies 108 (2017) 105-121

lack of substitution in Hollangel’s phenotypes is a potentially more seri-
ous issue. However, a convincing argument could be made that these
substitutions would be encapsulated by a zero-order intrusion. Ulti-
mately, the fact that the new taxonomy identifies this specific distinction
shows its enhanced specificity.

4.2. GEMS slips

Slips in GEMS (Reason, 1990) all represent erroneous behavior that
occur when the human knows what they should be doing, but fail to do
so because of a failure of attention. We discuss the relationship of our
taxonomy to Reason’s slips based on their association with inattention
and over attention below.

4.2.1. Inattention

Double Capture Slip. A double capture slip occurs when a human’s atten-
tion is captured by something else in the environment resulting in the
person doing something different than what they were currently doing
(Reason, 1990). Our taxonomy encompasses this behavior with the var-
ious forms of activity “capture” intrusions. Note that all of these meet
with Reason’s definition of a double capture slip because the Precondi-
tion or the RepeatCondition capture the human’s attention.

Omission Following an Interruption. An omission following an interrup-
tion can occur as a result of a person not attending to the task following
an external event (Reason, 1990). In the new taxonomy, this can occur
for any type of omission. However, it best matches activity level omis-
sions because it suggests that the distraction caused the person to fail to
attend to the state of the task (encompassed by the activity’s EndCondi-
tion) or the completeness of its goals (expressed in the CompletionCon-
dition). It is important to note that omissions in the new taxonomy do
not explicitly account for the interruption. Rather, they enumerate what
information was not properly attended to. In the context of cognitive ex-
planations, this is actually more utility than the presence of an external
interruption.

Reduced Intentionality. Reduced intentionality takes place when the hu-
man loses track of his or her intentions in the middle of a task (Reason,
1990). In our taxonomy, this is represented by a situation where an
activity erroneously transitions from Executing-to-Done, omitting sub-
activities or actions that should have been performed.

Perceptual Confusion. Perceptual confusion occurs in tasks where some-
body performs the correct action on the wrong target due to similarities
between the wrong target and the correct target (Reason, 1990). These
are directly represented by action value substitutions in the new tax-
onomy. In these, the person performs the right action with the wrong
value (an action value substitution).

Interference Errors. Interference errors happen when the human is per-
forming two or more tasks and inappropriately blends them together. As
with perceptual confusion, this is represented by execution-based sub-
stitutions and misremembrances. In this situation, the incorrect values,
actions, or local variables would be values, actions, or variables from
the other task, respectively.

4.2.2. Over attention

According to Reason (1990), slips also occur because of mistimed
attentional checks due to over attention. This can cause a human to
omit something (an omission), repeat something that was already done
(a repetition), or reverse the order of steps in a sequence (a reversal).
Over attention can cause a human to incorrectly evaluate and/or ignore
any of the conditions from a task model.

An omission is accounted for in our taxonomy through any of the
activity or action-level omissions.

M.L. Bolton

Repetitions are included in our taxonomy via activity-level Done-to-
Executing intrusions (if the activity has just finished executing) and spe-
cial circumstance of restarts (Executing-to-Executing transitions with re-
set; see Section 4.1.1). At the action level, a repetition can occur through
the Done-to-Executing action intrusions as long as it occurs immediately
following the normative execution of that same action.

A reversal in our taxonomy occurs in the same way it would for
Hollnagel’s reversal (Section 4.1.2). Specifically, this occurs when an
action intrusion happens where the erroneous action would normatively
be the one that executes after the current normative action.

In all of these, our taxonomy does not explicitly identify that a mist-
imed check occurred. However, it does explicitly capture what condition
received the mistimed check.

4.2.3. Discussion

As the analysis above shows, the new taxonomy is able to encom-
pass all of the slip behaviors and thus covers the failure modes associ-
ated with slips in Reason’s GEMS. As with the phenotypes of erroneous
action (discussed above), many of the slip designations are associated
with multiple error types in the taxonomy. Because Reason’s slip desig-
nations are informal and thus have many vagaries, our new taxonomy
can be seen as a useful extension of the original classification. While it
is true that our taxonomy does not always explicitly capture the higher-
level reason for the error (i.e. a mistimed check), it does explicitly enu-
merate what information was not attended to properly. Thus, our tax-
onomy provides additional insights into how the erroneous behavior
occurred.

5. General discussion

In this work, we have introduced a new taxonomy of erroneous hu-
man behavior that classifies erroneous acts based on where and how
they deviate from normative behavior expressed in task models. By link-
ing erroneous behavior modes and/or the specific activities and actions
with the information the human improperly attended to in the seman-
tics of the task, our taxonomy links the phenotype of the erroneous be-
havior with its genotype (the cognitive slip). Our taxonomy is capable
of accounting for the different classifications in the phenotypes of er-
roneous action (Hollnagel, 1993) as well as the skill-based slips from
GEMS (Reason, 1990). Because these are the leading phenomenological
and genotypical erroneous behavior classifications respectively, our tax-
onomy should be expressive enough to represent most erroneous human
behaviors that occur when humans are performing task work. In some
circumstances, our approach provides additional precision by explicitly
enumerating why a particular erroneous phenotype occurred or exactly
what information the person failed to attend to in committing a slip,
thus showing that has additional expressive power beyond the original
taxonomies.

Many of the categories of the legacy taxonomies such as reason’s
double-capture slips and Hollnagel’s delays naturally arose from the
erroneous sematic transitions in our taxonomy. This speaks to the va-
lidity of the new taxonomy. This is further supported by the fact that
the new taxonomy encapsulated erroneous behavior types, such as post-
completion errors (represented as an activity post-completion omission
in our taxonomy), that have gained importance in the larger human fac-
tors literature (Bastide and Basnyat, 2007; Byrne and Bovair, 1997; Cur-
zon and Blandford, 2004; Li et al., 2005). In fact, the taxonomy identifies
a number of new and/or precise erroneous behavior types including ac-
tivity completed intrusions; activity repeat-capture intrusions; activity
post-repetitions; activity premature, pre-capture restarts; activity non-
completions; and many different combinations of these and other types.
This suggests that some or all of these special types may be deserving of
additional study in future research.

The phenotypes of erroneous action are formally precise (Hollnagel,
1993). However, by design, they lack information about the factors that
helped contribute the error. Conversely, the slips in GEMS (Reason,

118

Int. J. Human-Computer Studies 108 (2017) 105-121

1990) do provide information about these factors, but do so without any
formal precision. Thus, our new taxonomy makes a significant contribu-
tion by connecting the phenomenological and genotypical elements of
an erroneous behavior and doing so in a formal, unambiguous way. This
should allow for additional precision in the study of erroneous human
behavior moving forward.

Even with these contributions, the taxonomy could make further im-
pact through future developments and applications. These are explored
in the discussion below.

5.1. No-error perspective and the systemic contribution

The contemporary view of erroneous human behavior is that it is
a result of system problems rather than the cause of problems (Cook
et al., 1998; Dekker, 2002; Hollnagel, 1983). Our taxonomy is meant
to be compatible with this perspective. Specifically, the taxonomy seeks
only to classify why and how human behavior can diverge from task
analytic behavior models. It does not mean to assign fault to the human
operator even if he or she failed to attend to a specific part of the task or
condition in the environment. In fact, the taxonomy can potentially be
used as a stepping-stone towards understanding what specific systemic
factors contributed to erroneous human behavior. Specifically, identify-
ing exactly what information was not attended to, or what information
was erroneously attended to, gives analysts insights into exactly what
system conditions were present when the erroneous behavior occurred.
Engineers could use this information to modify system behavior to avoid
the associated erroneous acts. The fact that the specific violations within
task model conditions provide insights into an erroneous behavior sug-
gests that additional categorical refinements could be applied to our
taxonomy. This is explored in the next section.

5.2. Additional categories

Erroneous behavior is classified hierarchically in our taxonomy
(Fig. 7). This is advantageous because it allows analysts to use the tax-
onomy at whichever level is most useful for their purpose. As discussed
previously, the erroneous behavior types can be further refined to ad-
dress erroneous behaviors that arise when a person does not properly at-
tend to specific parts of conditions. Such refinements were not included
in the presented version of the taxonomy because the specific parts of
violated conditions will be very specific to a given task or environmental
condition under which a task occurs. The specific parts of implicit con-
ditions (StartConditions, EndConditions, and Resets) that are violated will
indicate exactly what part of a task’s execution state was not properly
attended to. The specific parts of explicit strategic knowledge conditions
(Preconditions, RepeatConditions, and CompletionConditions) that are vi-
olated will indicate exactly what environmental conditions (based on
input variables used in the condition) or memory conditions (based on
local variables in the condition) were not attended to correctly. Future
work should investigate if there are ways of refining the taxonomy to
categorize such erroneous behaviors in ways that are useful to human
factors engineers.

In the comparison of the legacy taxonomies to our new one, there are
some situations where multiple erroneous behavior types are required
to replicate concepts from single classifications. This suggests that there
could be utility in identifying specific groupings of our erroneous be-
havior types to represent these behaviors. This should be investigated
in future work.

5.3. Recovery behavior

Recovery behavior, where a human recognizes that he or she has
made an erroneous behavior and attempts to account for it, can often
be just as critical to system safety as the initiating erroneous act (Woods
et al., 2010). Because recovery behaviors deviate from normative tasks,

M.L. Bolton

they can be considered erroneous (Hollnagel, 1993). However, such be-
havior is not inherently accounted for in most erroneous behavior tax-
onomies (Jones, 1997) including GEMS (Reason, 1990). We know from
Bigelow et al. (2011) that recovery behaviors manifest as task back-
tracking, restarting, resumption, or abandonment. All of these behav-
iors can be accounted for in our taxonomy. Backtracking occurs as any
Done-to-Executing (reset) intrusion. Restarting manifests as any activity
restart. Resumption occurs when a human resumes performing a task
normatively after committing any erroneous behavior. Abandonment
is encompassed by any activity Executing-to-Done omission. Thus, our
task-based taxonomy is able to account for human recovery behavior.
As such, it represents a more complete taxonomy.

5.4. Workarounds

Workarounds are human behaviors that occur when people en-
counter problems and find new ways to accomplish task goals.
Workarounds can be both an advantage and disadvantage to a system.
The possibility of working around a problem can increase system re-
siliency (Halbesleben et al., 2008), but also produce unexpected prob-
lems (Spear and Schmidhofer, 2005). Workarounds are not explicitly ad-
dressed in the new taxonomy. However, this does not mean that they are
completely incompatible. If specific workarounds are common in a given
domain, then a good task analysis should be capable of identifying them
and working them into task models. In this situation, the workarounds
would be normative behavior. If workaround behavior is not in the nor-
mative task model, then various intrusions should be able to capture
workaround behavior. This would especially be true if the workaround
behavior was a synthesis of other task behaviors. However, such a classi-
fication does not inherently capture the fact that workarounds are being
developed and/or pursued. Thus, if the workaround behavior is learned
later in the life of a system or developed by a human in response to
novel situations, then the behavior would fall under what Reason clas-
sified as rule- or knowledge-based mistakes. These erroneous behaviors
are not addressed by our taxonomy. We discuss this topic in more depth
next.

5.5. Other cognitive considerations

Our taxonomy is compatible with slips from Reason’s GEMS (1990).
However, as discussed in Section 4.2, our taxonomy only accounts for
why an erroneous behavior occurred based on what information the
human operator failed to properly attend to. It does not specifically
describe higher levels of classifications that relate to why the partic-
ular failures of attention could occur (such as distraction). Further,
GEMS accounts for erroneous behaviors that occur at the rule-based and
knowledge-based levels (mistakes). This exclusion was intentional be-
cause both types of mistakes occur when the human does not know how
to perform a given task. Rule-based mistakes occur when the human
has learned to do something wrong (has the wrong rule) or has prob-
lems remembering how to do the procedure at the time of execution.
Knowledge-based mistakes relate to logical fallacies, incomplete knowl-
edge, or limitations on other available information. In this context, our
taxonomy would have little relevance for erroneous behaviors that man-
ifest at the knowledge level. However, for situations where rule-based
behavior can be effectively coded into task analytic models, our taxon-
omy could provide some relevance. In the extended literature on the
use of formal verification of human-interactive systems, erroneous hu-
man behaviors have been derived from skill and rule-based behaviors
represented in formal representations of cognitive architectures (Curzon
and Blandford, 2004; Curzon et al., 2007; Ruksénas et al., 2009a, 2007,
2009b). This suggests rule-based mistakes and high classifications of
skill-based slips could be reconciled with our taxonomy. Future work
should investigate how our method could be adapted to account for
these classifications.

119

Int. J. Human-Computer Studies 108 (2017) 105-121

5.6. Generalizability

EOFM, the task analytic modeling system around which the new tax-
onomy is based, is unique within the formal task model community.
Specifically, EOFM is automata-based while other common task model-
ing formalisms such as CTT (Paterno et al., 1997) and the system used by
Fields (2001) are based on process algebras. While they have similar ex-
pressive power, automata and process algebras are definitely different.
Thus, it is not clear whether the classifications contained in our taxon-
omy will be easily translated to other process-algebra-based task mod-
els. However, EOFM and these other languages have similar expressive
power. Thus, it does seem like it is possible to reconcile the task-based
taxonomy with these other task models. This should be the subject of
future work.

5.7. Cognitive work analysis

Hierarchical task models, like those used as the basis for our tax-
onomy, are widely used in the human factors engineering community.
However, these models are not without their critics. In particular, mod-
els like EOFM are “instruction-based” approaches. These work well
in situations where people have well defined plans or what Vicente
(1999) would call “closed” systems. However, they do not give work-
ers very much flexibility or discretion when interacting with a complex
“open” system (Vicente, 1999). As such, cognitive work analysis (CWA)
(Vicente, 1999) has been defined as a method for characterizing the con-
straints on human work in a way that is appropriate for both “closed”
and “open” systems. Extensive work has gone into developing this ap-
proach and adapting it for use in a number of domains (Bisantz and
Burns, 2008), including work within the formal methods community
(Masci et al., 2011; Wright et al., 2000). Ultimately, there are trade-
offs between CWA and task analysis (Salmon et al., 2010), and they are
not necessarily incompatible. While CWA can capture more information
(at higher levels abstraction), task analysis is more detailed. Ultimately,
because task analysis is more widely used, our taxonomy should have
utility in the human factors community. This is further bolstered by the
fact that task analysis can be used in a number of other analyzes (Salmon
et al., 2010). This is explored next.

5.8. Application areas and use in analyzes

A taxonomy inherently has intellectual value if it provides a unique
perspective on a subject, something we believe our taxonomy accom-
plishes. However, our task-based erroneous human behavior taxonomy
also has the potential to have impact through its use in a number of
application areas. We explore several of these below.

5.8.1. Erroneous behavior tracking at runtime

The phenotypes of erroneous behavior were originally intended for
use in monitoring to identify erroneous behavior at runtime (Hollnagel
and Marsden, 1996). Such functionality can be used as the basis for
intelligent decision support systems (Guerlain et al., 1999; Hollnagel
and Marsden, 1996). There is also precedence for creating monitors
for tracking human task behavior at runtime (Bushman et al., 1993;
Chu et al., 1995; Thurman et al., 1998). As such, the taxonomy enu-
merated here should be readily adaptable to the detection of erroneous
behavior at runtime. Because our taxonomy contextualizes the actual
erroneous behavior manifestation with environmental information con-
tained in strategic knowledge conditions, it should provide more infor-
mation than simply detecting and identifying the behavior’s erroneous
phenotype.

5.8.2. Accident analysis and reporting

GEMS has served as the basis for erroneous human behavior classi-
fication in accident analyzes and event reporting. This includes the Hu-
man Factors Analysis and Classification System (which is generic but

M.L. Bolton

predominately used in aviation; Shappell and Wiegmann, 2000) and
Zhang et al.’s cognitive taxonomy of medical errors (Zhang et al., 2004).
Given that our taxonomy adds additional precision to the skill-level er-
roneous behaviors of these systems and the precedence task models have
in accident analysis (Doytchev and Szwillus, 2009; Hollnagel, 1998), our
new taxonomy could be used in accident analysis and reporting. Further,
the fact that our taxonomy uses formal models of human operator tasks
and provides formal descriptions of erroneous human behaviors should
potentially make it compatible with techniques for formally modeling
and reasoning about accidents (Johnson, 1997; Johnson and Holloway,
2003; Johnson and Telford, 1996). This should be investigated in future
work.

5.8.3. Human reliability analysis

Because the model presented here is a taxonomy, it only strives to
classify erroneous human behavior, not address the plausibility of differ-
ent behaviors. This is purview of human reliability analyzes ([Bell and
Holroyd, 2009]). Human reliability analyzes attempt to qualitatively
and/or quantitatively assess the probability of erroneous human behav-
ior. There are a number of such techniques including THERP (technique
for human error-rate prediction; Swain and Guttmann, 1983); CREAM
(cognitive reliability and error analysis method; Hollnagel, 1998); the
data entry error rate prediction method developed by Cauchi (2013);
and the HAZOP-like techniques such as THEA (Pocock et al., 2001a;
2001b) and the approach explored by Paterno and Santoro (2002).
While all of these techniques have different underlying theories and pro-
cedures for estimating error rates (i.e. historical data, cognitive control
modes, brainstorming activities), they are similar in that they consider
deviations from human operator tasks. Because our taxonomy is based
on systematic deviations from normative task models, it should provide
a good framework around which to assess human reliability. Thus, fu-
ture work should investigate how our taxonomy can be integrated into
or help extend existing human reliability analyzes.

5.8.4. System design

User-centered design is a framework for designing human-computer
or human-machine interfaces so that they always support the human
operators’ tasks (Vredenburg et al., 2002). Erroneous human behav-
ior is an extremely important consideration in user-centered design.
This is because designers want to design interfaces that prevent or
avoid certain erroneous acts and reduce the likelihood of others (Rizzo
et al., 1996). The task-based nature of our erroneous behavior taxonomy
should make it compatible with user-centered design. The connection
the taxonomy provides between the phenotype and genotype of erro-
neous acts should facilitate designs that both prevent them and help
humans avoid the associated cognitive failures. Future research should
explore how our taxonomy can be integrated into user-centered design
practices.

5.8.5. Simulation and formal verification

Task analytic models have been used in model-based analyzes such
as simulation and formal verification to assess the safety and reliability
of human-interactive systems both with and without erroneous human
behavior (see Bolton et al., 2013). In particular, Bastide and Basnyat
(2007) and Fields (2001) showed how patterns of erroneous human be-
havior, mostly based on the phenotypes of erroneous behavior, could
be manually used to modify normative human task behavior. The im-
pact this behavior has on system performance can then be assessed us-
ing simulation and/or formal verification analyzes. Conversely, Bolton
et al. have explored how erroneous human behavior can be automati-
cally generated from task models by systematically considering the per-
formance of erroneous phenotypes during the performance of actions
(Bolton et al., 2012), slips caused by attentional failures to strategic
knowledge (Bolton and Bass, 2013), miscommunications in commu-
nication protocols (Bolton, 2015), and the combination of all of the
above (Pan and Bolton, 2016). Although based on similar foundations,

120

Int. J. Human-Computer Studies 108 (2017) 105-121

the erroneous behavior taxonomy discussed here is far more complete
than any of these other analyzes, even in combination. As such, the
new taxonomy should be capable of being used to generate erroneous
human behavior in simulation and formal verification analyzes. By
virtue of its completeness, an erroneous behavior generation technique
based on the taxonomy should help analysts evaluate system safety at
a level that was previously not possible. This should be investigated in
future work.

6. Conclusions

By unifying the phenomenological and genotypical perspectives on
erroneous human behavior, our task-based taxonomy constitutes a sig-
nificant contribution. As we have shown, this new taxonomy is compat-
ible with the two leading erroneous behavior taxonomies and thus sup-
ports the different classifications they encompass. In addition to organi-
cally accounting for common erroneous behaviors (such as capture and
post-completion errors), our taxonomy identifies a number of new erro-
neous behavior types that should be given consideration by the larger
human factors community. Finally, the fact that the taxonomy is com-
patible with the legacy system and contextualizes erroneous behaviors
around task analytic models makes it compatible with many facets of
human factors engineering and analysis. As such, the true impact of the
taxonomy on system safety and usability will be realized as it is adopted
and incorporated into these different practices.

Acknowledgments

The work presented here was supported by grant WO11NF-15-1-
0474 “Young Investigator Program (8.5): Preventing Complex Failures
of Human Interactive Systems with Erroneous Behavior Generation and
Robust Human Task Behavior Patterns” by the Army Research Office /
Army Research Lab. The author would like to thank Kylie Molinaro and
Adam Houser for their help in the preparation of this manuscript.

References

Bastide, R., Basnyat, S., 2007. Error patterns: systematic investigation of deviations in task
models. In: Task Models and Diagrams for Users Interface Design. Springer, Berlin,
pp. 109-121.

Bell, J., Holroyd, J., 2009. Review of Human Reliability Assessment Methods. Technical
Report, RR679. Health and Safety Executive, Norwich.

Bigelow, M., Christmann, C., Feigh, K., Prichett, A., Kannan, S., Kim, S.-Y., Lee, G., 2011.
WMC. Technical Report. GA Tech, Atlanta.

Bisantz, A.M., Burns, C.M., 2008. Applications of Cognitive Work Analysis. CRC Press,
Boca Raton.

Bolton, M.L., 2015. Model checking human-human communication protocols using task
models and miscommunication generation. J. Aerosp. Inf. Syst. 12 (7), 476-489.
Bolton, M.L., Bass, E.J., 2008. Formal modeling of erroneous human behavior and its
implications for model checking. In: Proceedings of the Sixth NASA Langley Formal

Methods Workshop. NASA Langley Research Center, Hampton, pp. 62-64.

Bolton, M.L., Bass, E.J., 2013. Generating erroneous human behavior from strategic knowl-
edge in task models and evaluating its impact on system safety with model checking.
IEEE Trans. Syst. Man Cybern. 43 (6), 1314-1327.

Bolton, M.L., Bass, E.J., 2017. Enhanced Operator Function Model (EOFM): A Task Ana-
lytic Modeling Formalism for Including Human Behavior in the Verification of Com-
plex Systems. In: Weyers, B., Bowen, J., Dix, A., Palanque, P. (Eds.), The Handbook of
Formal Methods in Human-Computer Interaction. Springer International Publishing,
Cham, pp. 343-377. doi:10.1007/978-3-319-51838-1_13.

Bolton, M.L., Bass, E.J., Siminiceanu, R.I., 2012. Generating phenotypical erroneous hu-
man behavior to evaluate human-automation interaction using model checking. Int.
J. Hum. Comput. Stud. 70 (11), 888-906.

Bolton, M.L., Bass, E.J., Siminiceanu, R.I.,, 2013. Using formal verification to evaluate
human-automation interaction in safety critical systems, a review.. IEEE Trans. Syst.
Man Cybern. 43 (3), 488-503.

Bolton, M.L., Siminiceanu, R.I., Bass, E.J., 2011. A systematic approach to model check-
ing human-automation interaction using task-analytic models. IEEE Trans. Syst. Man
Cybern. Part A 41 (5), 961-976.

Bolton, M.L., Zheng, X., Molinaro, K., Houser, A., Li, M., 2016. Improving the scalability
of formal human-automation interaction verification analyzes that use task-analytic
models. Innov. Syst. Softw. Eng. DOIL: 10.1007/s11334-016-0272-z.

Bushman, J.B., Mitchell, C.M., Jones, P.M., Rubin, K.S., 1993. ALLY: an operator’s asso-
ciate for cooperative supervisory control systems. IEEE Trans. Syst. Man Cybern. 23
(1), 111-128.

Byrne, M.D., Bovair, S., 1997. A working memory model of a common procedural error.
Cogn. Sci. 21 (1), 31-61.

http://dx.doi.org/10.13039/100000183
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0002
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0002
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0002
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0004
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0004
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0004
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0005
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0005
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0006
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0006
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0006
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0007
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0007
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0007
http://dx.doi.org/10.1007/978-3-319-51838-1_13
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://10.1007/s11334-016-0272-z
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0014
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0014
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0014

M.L. Bolton

Cauchi, A., 2013. Using differential formal analysis for dependable number entry. In: Pro-
ceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems. ACM, pp. 155-158.

Chu, R.W., Mitchell, C.M., Jones, P.M., 1995. Using the operator function model and
OFMspert as the basis for an intelligent tutoring system: towards a tutor/aid paradigm
for operators of supervisory control systems. IEEE Trans. Syst. Man Cybern. Part A 25
(7), 1054-1075.

Cook, R.I., Woods, D.D., Miller, C., 1998. A Tale of Two Stories: Contrasting Views of
Patient Safety. Technical Report. National Health Care Safety Council of the National
Patient Safety Foundation at the AMA.

Cooley, M., 2000. Human-centered design. Inf. Des. 59-81.

Curzon, P., Blandford, A., 2004. Formally justifying user-centered design rules: a case
study on post-completion errors. In: Proceedings of the 4th International Conference
on Integrated Formal Methods. Springer, Berlin, pp. 461-480.

Curzon, P., Ruk$énas, R., Blandford, A., 2007. An approach to formal verification of hu-
man-computer interaction. Formal Aspects Comput. 19 (4), 513-550.

Dekker, S.W.A., 2002. The Re-invention of Human Error. Technical Report, 2002-01. Lund
University School of Aviation, Ljungbyhed, Sweden.

Doytchev, D.E., Szwillus, G., 2009. Combining task analysis and fault tree analysis for
accident and incident analysis: a case study from Bulgaria. Accid. Anal. Prev. 41 (6),
1172-1179.

Dunjé, J., Fthenakis, V., Vilchez, J.A., Arnaldos, J., 2010. Hazard and operability (HAZOP)
analysis. a literature review. J. hazard. Mater. 173 (1), 19-32.

Fields, B., Harrison, M., Wright, P., 1997. THEA: Human Error Analysis for Requirements
Definition. Technical Report. York.

Fields, R.E., 2001. Analysis of Erroneous Actions in the Design of Critical Systems. Uni-
versity of York, York Ph.D. thesis.

Giese, M., Mistrzyk, T., Pfau, A., Szwillus, G., von Detten, M., 2008. AMBOSS: a task mod-
eling approach for safety-critical systems. In: Proceedings of the Second International
Conference on Human-Centered Software Egnineering. Springer, Berlin, pp. 98-109.

Guerlain, S.A., Smith, P.J., Obradovich, J.H., Rudmann, S., Strohm, P., Smith, J.W., Svir-
bely, J., Sachs, L., 1999. Interactive critiquing as a form of decision support: an em-
pirical evaluation. Hum. Factors 41 (1), 72-89.

Halbesleben, J.R., Wakefield, D.S., Wakefield, B.J., 2008. Work-arounds in health care
settings: literature review and research agenda. Health Care Manage. Rev. 33 (1),
2-12.

Hollnagel, E., 1983. Position paper on human error. In: NATO Conference on Human Error.
Bellagio, Italy.

Hollnagel, E., 1993. The phenotype of erroneous actions. Int. J. Man Mach. Stud. 39 (1),
1-32.

Hollnagel, E., 1998. Cognitive Reliability and Error Analysis Method (CREAM). Elsevier,
Amsterdam.

Hollnagel, E., Marsden, P., 1996. Further Development of the Phenotype Genotype Classi-
fication Scheme for the Analysis of Human Erroneous Actions. Technical Report, EUR
16463 EN. European Commission.

Johnson, C.W., 1997. The epistemics of accidents. Int. J. Hum. Comput. Stud. 47 (5),
659-688.

Johnson, C.W., Holloway, C.M., 2003. Strengths and weaknesses of logic formalisms
to support the causal analysis of mishaps. In: Proceedings of the 21st Interna-
tional System Safety Conference. International Systems Safety Society, Unionville,
pp. 1133-1142.

Johnson, C.W., Telford, A.J., 1996. Extending the application of formal methods to analyse
human error and system failure during accident investigations. Softw. Eng. J. 11 (6),
355-365.

Jones, P.M., 1997. Human error and its amelioration. In: Handbook of Systems Engineer-
ing and Management. Wiley, pp. 687-702.

Kebabjian, R., 2016. Accident Statistics. planecrashinfo.com, Accessed 3/14/2016

Kenny, D.J., 2015. 24th Joseph T. Nall report: General Aviation Accidents in 2012. Tech-
nical Report. AOPA Foundation.

Kirwan, B., Ainsworth, L.K., 1992. A Guide to Task Analysis. Taylor and Francis, London.

Kohn, L.T., Corrigan, J., Donaldson, M.S., 2000. To Err is Human: Building a Safer Health
System. National Academy Press, Washington.

Lawley, H.G., 1974. Operability studies and hazard analysis. Chem. Eng. Prog. 70 (4),
45-56.

Li, M., Molinaro, K., Bolton, M.L., 2015. Learning formal human-machine interface designs
from task analytic models. In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting. HFES, Santa Monica, pp. 652-656.

Li, M., Wei, J., Zheng, X., Bolton, M.L., 2017. A formal machine learning approach to
generating human-machine interfaces from task models. IEEE Trans. Hum. Mach. Syst.
doi:10.1109/THMS.2017.2700630. In Press.

Li, Y.W., Blandford, A., Cairns, P., Young, R.M., et al., 2005. Post-completion errors in
problem solving. In: Proceedings of the XXVII Annual Conference of the Congnitive
Science Society. Cognitive Science Society, Inc., Wheat Ridge, pp. 1278-1283.

Manning, S.D., Rash, C.E., LeDuc, P.A., Noback, R.K., McKeon, J., 2004. The Role of Hu-
man Causal Factors in US Army Unmanned Aerial Vehicle Accidents. Technical Re-
port, 2004-11. USA Army Research Laboratory.

121

Int. J. Human-Computer Studies 108 (2017) 105-121

Martinie De Almeida, C., Palanque, P., Ragosta, M., Fahssi, R.M., 2013. Extending pro-
cedural task models by explicit and systematic integration of objects, knowledge and
information. In: 31st European Conference on Cognitive Ergonomics. ACM.

Masci, P., Curzon, P., Blandford, A., Furniss, D., 2011. Modelling distributed cognition sys-
tems in PVS. In: Proceedings of the Fourth International Workshop on Formal Methods
for Interactive Systems. EASST, Potsdam.

Mitchell, C.M., Miller, R.A., 1986. A discrete control model of operator function: a method-
ology for information display design. IEEE Trans. Syst. Man Cybern. Part A 16 (3),
343-357.

NHTSA, 2008. National Motor Vehicle Crash Causation Survey: Report to Congress. DOT
HS 811 059.

Norman, D.A., 1988. The Psychology of Everyday Things. Basic Books, New York.

Office of Technology Assessment, 1993. Who Goes There: Friend or Foe. Technical Report,
OTA-ISC-537. Congress, US, Washington, DC.

Pan, D., Bolton, M.L., 2016. Properties for formally assessing the performance level of
human-human collaborative procedures with miscommunications and erroneous hu-
man behavior. Int. J. Ind. Ergon. doi:10.1016/j.ergon.2016.04.001. In Press.

Paterno, F., Mancini, C., Meniconi, S., 1997. ConcurTaskTrees: a diagrammatic notation
for specifying task models. In: Proceedings of the IFIP TC13 International Conference
on Human-Computer Interaction. Chapman and Hall, London, pp. 362-369.

Paterno, F., Santoro, C., 2002. Preventing user errors by systematic analysis of deviations
from the system task model. Int. J. Hum. Comput. Stud. 56 (2), 225-245.

Perrow, C., 1999. Normal Accidents: Living with High-risk Technologies. Princeton Uni-
versity Press, Princeton.

Pocock, S., Fields, B., Harrison, M., Wright, P., 2001a. THEA: A Reference Guide. Technical
Report, YCS336. Department of Computer Science, University of York.

Pocock, S., Harrison, M.D., Wright, P.C., Johnson, P., 2001b. THEA: a technique for human
error assessment early in design.. In: Interact. IFIP Technical Committee No 13 on
Human-Computer Interaction, Tokyo, pp. 247-254.

Rasmussen, J., 1983. Skills, rules, and knowledge; signals, signs, and symbols, and other
distinctions in human performance models. IEEE Trans. Syst. Man. Cybern. 13 (3),
257-266.

Reason, J., 1990. Human Error. Cambridge University Press, New York.

Rizzo, A., Parlangeli, O., Marchigiani, E., Bagnara, S., 1996. The management of human
errors in user-centered design. SIGCHI Bull. 28 (3), 114-118.

Ruksénas, R., Back, J., Curzon, P., Blandford, A., 2009a. Verification-guided modelling of
salience and cognitive load. Formal Aspects Comput. 21 (6), 541-569.

Ruksénas, R., Curzon, P., Back, J., Blandford, A., 2007. Formal modelling of cognitive
interpretation. In: Proceedings of the 13th International Workshop on the Design,
Specification, and Verification of Interactive Systems. Springer, London, pp. 123-136.

Ruksénas, R., Curzon, P., Blandford, A., Back, J., 2009b. Combining human error verifi-
cation and timing analysis. In: Proceedings of the 2007 Conferences on Engineering
Interactive Systems. Springer, Berlin, pp. 18-35.

Salmon, P., Jenkins, D., Stanton, N., Walker, G., 2010. Hierarchical task analysis vs. cog-
nitive work analysis: comparison of theory, methodology and contribution to system
design. Theor. Issues Ergon. Sci. 11 (6), 504-531.

Schraagen, J.M., Chipman, S.F., Shalin, V.L., 2000. Cognitive Task Analysis. Lawrence
Erlbaum Associates, Inc., Philadelphia.

Shappell, S., Wiegmann, D., 2000. Human Factors Analysis and Classification System-H-
FACS. Technical Report, DOT/FAA/AM-00/7. Office of Aviation Medicine, Washing-
ton, DC.

Sheridan, T.B., Parasuraman, R., 2005. Human-automation interaction. Rev. Hum. Factors
Ergon. 1 (1), 89-129.

Spear, S.J., Schmidhofer, M., 2005. Ambiguity and workarounds as contributors to medical
error. Ann. Intern. Med. 142 (8), 627-630.

Swain, A.D., Guttmann, H.E., 1983. Handbook of Human-Reliability Analysis with
Emphasis on Nuclear Power Plant Applications. Final report. Technical Report
NUREG/CR-1278; SAND-80-0200 ON: DE84001077. Sandia National Labs, Albu-
querque.

Thurman, D.A., Chappell, A.R., Mitchell, C.M., 1998. An enhanced architecture for
OFMspert: a domain-independent system for intent inferencing. In: Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics. IEEE, Piscataway,
pp. 955-960.

Vicente, K.J., 1999. Cognitive Work Analysis: Toward Safe, Oroductive, and Healthy Com-
puter-based Work. Lawrence Erlbaum Associates, Inc., Philadelphia.

Vredenburg, K., Mao, J.-Y., Smith, P.W., Carey, T., 2002. A survey of user-centered design
practice. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, pp. 471-478.

Woods, D.D., Dekker, S., Cook, R., Johannesen, L., Sarter, N., 2010. Behind Human Error.
Ashgate Farnham.

Wright, P.C., Fields, R.E., Harrison, M.D., 2000. Analyzing human-computer interaction
as distributed cognition: the resources model. Hum. Comput. Interact. 15 (1), 1-41.

Zhang, J., Patel, V.L., Johnson, T.R., Shortliffe, E.H., 2004. A cognitive taxonomy of med-
ical errors. J. Biomed. Inform. 37 (3), 193-204.

http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0015
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0015
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0018
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0018
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0019
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0019
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0019
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0021
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0021
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0022
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0022
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0022
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0025
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0025
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0029
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0029
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0030
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0030
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0031
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0031
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0032
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0032
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0032
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0033
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0033
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0034
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0034
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0034
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0035
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0035
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0035
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0036
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0036
http://planecrashinfo.com
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0038
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0038
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0039
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0039
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0039
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0041
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0041
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://dx.doi.org/10.1109/THMS.2017.2700630
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0048
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0048
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0048
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0049
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0049
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0049
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0050
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0050
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0051
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0051
http://dx.doi.org/10.1016/j.ergon.2016.04.001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0054
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0054
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0054
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0055
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0055
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0058
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0058
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0059
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0059
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0066
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0066
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0066
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0067
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0067
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0067
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0068
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0068
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0068
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0069
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0069
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0069
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0071
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0071
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075

	A task-based taxonomy of erroneous human behavior
	1 Introduction
	2 Review of the relevant literature
	2.1 Task analysis and task analytic models
	2.2 Erroneous human behavior
	2.2.1 The phenotypes of erroneous action
	2.2.2 The generic error modeling system
	2.2.3 Comparison

	2.3 Erroneous behavior and task analytic models

	3 A task-based taxonomy of erroneous human behavior
	3.1 The Enhanced Operator Function Model (EOFM)
	3.2 An example for illustrating concepts
	3.3 The taxonomy
	3.3.1 Transition-based erroneous behaviors
	3.3.2 Execution-based erroneous behaviors

	3.4 Summary

	4 Inter-taxonomy compatibility
	4.1 Phenotypes of erroneous action
	4.1.1 Zero-order phenotypes
	4.1.2 First-order phenotypes
	4.1.3 Discussion

	4.2 GEMS slips
	4.2.1 Inattention
	4.2.2 Over attention
	4.2.3 Discussion

	5 General discussion
	5.1 No-error perspective and the systemic contribution
	5.2 Additional categories
	5.3 Recovery behavior
	5.4 Workarounds
	5.5 Other cognitive considerations
	5.6 Generalizability
	5.7 Cognitive work analysis
	5.8 Application areas and use in analyzes
	5.8.1 Erroneous behavior tracking at runtime
	5.8.2 Accident analysis and reporting
	5.8.3 Human reliability analysis
	5.8.4 System design
	5.8.5 Simulation and formal verification

	6 Conclusions
	 Acknowledgments
	 References

