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Abstract—User-centered design (UCD) is an approach for cre-
ating human–machine interfaces that are usable and support the
human operator’s tasks. UCD can be challenging because design-
ers can fail to account for human–machine interactions that occur
due to the concurrency between the human and the other sys-
tem elements. Formal methods are tools that enable analysts to
consider all of the possible system interactions using a combina-
tion of formal modeling, specification, and proof-based verification.
However, creating formal interface design models can be extremely
difficult. This work describes a method that supports UCD by auto-
matically generating formal designs of human–machine interface
behavior from task-analytic models. The resulting interface de-
sign will always support the behavior captured in the task model.
This paper describes the method and demonstrates its capabilities
with three case studies: a light switch, a vending machine, and a
patient-controlled analgesia pump. The produced designs are val-
idated with formal verifications to prove that they support their
associated tasks. Results and future research are discussed.

Index Terms—Formal methods, human–automation interaction,
machine learning, task analysis, user-centered design (UCD).

I. INTRODUCTION

U SER-CENTERED design (UCD) is an approach for cre-
ating human–machine interfaces to usably support human

operator tasks [2]. UCD can be difficult because the inherent
complexity of human–machine interaction can result in de-
signers not accounting for interactions in all situations. Such
oversights can result in poor system adoption, decreased pro-
ductivity, and unsafe operations.

Formal methods are tools and techniques that allow analysts to
use proof-based techniques to exhaustively consider the differ-
ent possible system interactions [3]. Emerging approaches use
formal methods in the design and analysis of human–machine
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systems [4]–[6]. Such methods are powerful, but require for-
mal modeling of human–machine interfaces, a process that can
be difficult and prone to error [7]. Thus, there is a need for
techniques to allow designers to easily create formal interface
designs that support operator tasks.

We present a method (originally proposed in [1] and [8]) that
can automatically generate formal models of human–machine
interface behavior from task-analytic models, products of task
analyses used to represent how humans normatively achieve
system goals [9], [10]. The resulting formal designs will be
guaranteed to support the behavior represented in the task mod-
els. To do this, we make use of an L* algorithm [11] for learning
formal system models.

This paper describes the necessary background for under-
standing our method, the objectives for its development, and its
implementation. We illustrate the capabilities of the method by
using it to automatically generate interfaces from task models for
several case studies. Furthermore, we systematically validate the
interface designs that result from our method by formally verify-
ing task-based usability properties against them. We ultimately
discuss our results and explore avenues of future research.

II. BACKGROUND

A. Formal Methods

Formal methods are tools and techniques for the model-
ing, specification, and verification of systems [12]. A formal
model describes the behavior of a target system mathemati-
cally (usually as a finite-state transition system). Specification
properties mathematically describe desirable system conditions
(usually using a temporal logic). Formal verification is the pro-
cess of proving that the system model adheres to the specifica-
tion. Model checking is a common form of formal verification.
It performs its proofs automatically using extremely efficient
search algorithms [3]. In model checking, if a specification
property holds for a formal model, the model checker returns a
confirmation. If the property is false, the model checker returns
a trace through the model, called a counterexample. This shows
exactly how the violation occurred. While they are predomi-
nately used in the analyses of computer hardware and software,
a growing body of work is investigating how formal methods
can be used in the engineering of human–machine systems [4].

B. Formal Models of Human–Machine Interfaces

To be used in formal verifications, human–machine inter-
faces must be formally modeled. While there are a number of
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techniques for accomplishing this (see [4]), all generally rep-
resent the interface as a form of finite-state automaton (FSA).
Most of the human–machine interface models are represented
as variants of Mealy or Moore machines. A Mealy machine [13]
represents a system as an FSA, where each transition between
states has an associated input (which causes the transition) and
output. A Moore machine [14] is also an FSA with both in-
puts and outputs, where inputs cause transitions between states.
However, outputs are associated with each state rather than each
transition. Both have equivalent expressive power. In this work,
we will use Mealy and Moore machines to formally describe
human–machine interface behavior.

C. Task-Analytic Behavior Models

In a cognitive task analysis, an analyst conducts interviews,
performs field studies, and inspects training materials to describe
how (physically and cognitively) human operators normatively
achieve goals with a system [9], [10]. This is usually documented
using a hierarchal task model. Such a model is a collection of
individual tasks. Each is represented as a hierarchy of goal-
directed activities that decompose into other activities and (at
the lowest level) atomic actions. Strategic knowledge (condition
logic) controls when activities can execute and describes what
each activity should accomplish. Modifiers between activities
or actions control how they execute in relation to each other.

Task-analytic models are some of the most successful tech-
nologies developed by human factors engineers. Task models
can be used in interface design [15], training development [16],
usability analyses [17], real-time monitoring programs [18], and
system safety and performance analyses with both normative
and erroneous human behavior [19]–[22]. In fact, task-analytic
models are important to UCD [23], a broad approach to devel-
oping human–machine interaction to accommodate human task
goals.

D. Formal Models of Human Task Behavior

Formal models can also be used to represent human tasks in
formal verification analyses. Task models can be constructed na-
tively in a formalism or translated into one from a more standard
task modeling notation. Formal task models can be paired with
formal models of other system behavior (including interfaces)
and formal verification analyses can determine if the system
model is safe [20], [24]–[29], free from deadlock [30]–[32], or
exhibits other desirable usability properties [33], [34]. See [4]
for a deeper review of this literature.

There are a number of different task-analytic modeling for-
malisms. These include ConcurTaskTrees (CTT) [35], its exten-
sion Hamster [36], AMBOSS [37], and the enhanced operator
function model (EOFM) [20]. EOFM is expressive, platform
independent, and feature rich. It has a formal semantics [20],
[38] and has been used in a number of human factors analyses
[20]–[22], [25], [34], [39]–[44]. Thus, it will be used for the
work discussed in this paper.

EOFM is a formal XML-based task modeling language. It
represents human tasks as input–output systems. Input vari-
ables represent observable information from external sources

(like human–machine interfaces and the environment). Local
variables represent human memory and the execution state of
the human’s task. Outputs are human actions.

EOFMs are represented as a hierarchy of goal-directed activi-
ties that decompose into lower level activities and, at the bottom
of the hierarchy, atomic actions. Operators specify the temporal
and cardinal relationships between activities or actions in a de-
composition. EOFMs also have conditions on activities that can
assert what must be true before an activity can execute (precon-
ditions), when it can repeat (repeat conditions), and what must
be true when it finishes (completion conditions). EOFMs have
formal semantics that precisely describe how it executes and
enables its use in formal verification analyses. Specifically, the
execution behavior of a task model is represented by treating
each activity and action as an FSA. Each automata transitions
between three different execution states (Ready, Executing, and
Done) based on the evaluations of Boolean expressions asserted
using task input variables, task local variables, and the execution
state of the other activities and actions in the task. More details
can be found in [20] and [38].

Finally, EOFM tasks can be visualized as tree-like graphs
(examples can be seen later in Figs. 3, 4, and 6) [45].

E. L* Learning

L* machine learning is a process capable of generating a for-
mal model based on a series of queries to a teacher oracle [11].
An L* algorithm will learn a minimal FSA for accepting a lan-
guage (the traditional role of an FSA). It does this by iteratively
generating and receiving answers to queries: whether or not
specific strings are in the language recognized by the FSA, and
whether a given FSA properly recognizes the language. Variants
of the original L* algorithm have been developed that allow for
different types of FSA to be learned. In particular, Raffelt et al.
[46] have developed LearnLib, a Java-based library that allows
for the learning of Mealy machines. In this implementation, the
L* algorithm generates queries representing sequences of in-
puts to the machine. The teacher oracle examines these queries
and returns a sequence of outputs representing the proper ma-
chine response. This algorithm is capable of learning models
consistent with Mealy machines, thus enabling the automatic
generation of human–machine interfaces in the presented work.

F. Interface Design Generation

Prior work has investigated how to generate human–computer
interfaces from task models [47]–[52]. These generators were
based on transformation rules, which can be viewed as formal.
However, these efforts were concerned with rapid prototyp-
ing and shortening development time. As such, they employ
heuristics to produce interface descriptions at different levels
of abstraction for use in larger interface design and analysis
processes. While desirable interface properties can be achieved
with these techniques, they do not, nor do they intend to provide
formal guarantees.1

1When transformation rules can ensure that formal specifications are satisfied
in the resulting representation, this is called formal refinement. We explore this
more thoroughly in Section VIII-C.
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Fig. 1. Method for automatically generating human–machine interfaces from task models. Details of the formal model’s architecture can be seen in Fig. 2.

Heymann and Degani [53] investigated a formal algorithmic
approach for generating interface designs from models of sys-
tem automation that would avoid mode confusion (a condition
where the human is unable to keep track of the system’s state
or mode [54], [55]). The work of Combéfis et al. [56], [57]
extended this approach by using L* learning to generate inter-
face designs from models of automation behavior to ensure that
the human operator maintains “full control” (a condition that
will nominally prevent mode confusion [58]). These projects
were both formal and provided safety guarantees, as mode con-
fusion has been implicated in a number of human–automation
interaction accidents [54], [59], [60].

Collectively, the work reviewed in this section demonstrates
that interfaces can be generated from task models and that
L* learning can be used to generate interfaces that adhere to
certain performance properties. However, none of these ap-
proaches provide guarantees about the performance of the hu-
man operator task and thus do not facilitate UCD.

III. OBJECTIVE

In this paper, we describe a method that we developed to sup-
port UCD by automatically generating human–machine inter-
faces from task models, where we presume that the task models
are created as part of cognitive task analyses. In this method, we
use task behavior represented in the EOFM and the Mealy ma-
chine learning capabilities of LearnLib’s L* algorithms. Given
the properties of the L* learning algorithm and the formal na-
ture of EOFM task models, the resulting learned designs will
be guaranteed to always support the human operator’s task, and
thus, UCD will be supported. Because this method is generat-
ing interfaces from task-analytic models, it is accounting for

the high validity such approaches have shown in the extended
human factor literature.

In the remainder of this paper, we describe our method, show
how it can be used to generate an interface design for several
systems, validate our designs with formal verification, discuss
our results, and explore future research directions.

IV. METHOD

Fig. 1 presents our method. This takes a task model as input
and extracts two “alphabets.” An input alphabet represents the
human actions that an interface can receive. An output alphabet
represents the state of the information outputs of the interface: all
of the different combinations of task input variable values. The
alphabets are sent to a learner. The learner uses an L* algorithm
that creates Mealy machines. It does this through a series of
queries to a teacher oracle. The queries contain input sequences
from the input alphabet (a series of human actions). The oracle
answers the queries by returning corresponding sequences of
interface outputs.

The oracle works by first creating a formal model (see
Fig. 2) using a translator. This formal model contains a for-
mal task submodel. This has outputs representing the human
actions that are performed as well as a Boolean indicator vari-
able (NoTask) that is true when no tasks are executing and false
otherwise. The formal task submodel is paired with a dummy in-
terface submodel that is also generated by the translator from the
task-analytic behavior model. This dummy interface is only ca-
pable of initializing interface outputs and allowing their values to
change in response to human actions, where the values assumed
by interface outputs can be any possible value of that output
variable. To ensure that the model will only consider the input
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Fig. 2. Formal model architecture used by the teacher oracle (see Fig. 1).

action sequence contained in a query, we use a synchronous
observer submodel [61] to track the sequence of human actions
that have occurred. If the sequence from the query has been
observed, a Boolean indicator variable (SequenceObserved;
Fig. 2) becomes and stays true.

The teacher oracle then uses a model checker on the formal
model to prove the following temporal logic property:

G¬(SequenceObserved ∧ NoTasks).

This asserts that, in all paths through the model, it should never
be true that the action sequence from the learner is observed
(SequenceObserved) and that all tasks have completed their
execution (NoTasks). The effect of this is that, if the human
action sequence in the query is executable and allows the human
to successfully complete his or her tasks, the model checker will
return a counterexample showing how the sequence can occur.
The oracle extracts the output alphabet sequence corresponding
to the input query from the counterexample. This is sent back
to the learner as a response.

In an earlier version of the method (see [1]), every instance
of the formal model was always initialized to the same initial
default state. However, this produced situations where the formal
model would take excessive amounts of time to be evaluated.
Thus, to improve the scalability of the method, we incorporated
a database (“Query and Response History” in Fig. 1) that keeps
a history of all of the queries, the output responses, and the
state of the models at the end of the queries. Thus, when a new
query arrives, the oracle checks to see if the action sequence
or any prefix to it is in the database. Note that this search is
done backward to ensure that longest preevaluated prefix is
selected. If this check returns something, then the formal model
is initialized to the state it was in after the execution of the prefix.
The synchronous observer is set only to look for the action
sequence that followed the prefix in the original query. Once the
model-checking process has been completed, the oracle creates
a response that is a concatenation of the original output sequence
for the prefix and the output sequence seen for the actions that
followed the prefix.

Through iterative queries and responses between the learner
and the oracle, the learner will ultimately learn a Mealy ma-
chine representation of the human–machine interface. In this,
the inputs represent human actions, outputs represent the state
of interface display information, and state represents the internal

state of the interface. While the Mealy machine representation is
sufficient, we generally found it easier to interpret results when
they were represented as a Moore machine [62] (where interface
states map to outputs instead of transitions mapping to outputs).
Thus, our method allows for this conversion. Furthermore, we
needed a formal representation of the model for use in formal
verification analyses for validation experiments. To address this,
we converted the Moore machine representation into the input
language of a model checker.

The method was implemented in Java using EOFM, the Sym-
bolic Analysis Laboratory’s (SAL’s) model checkers [63],2 the
EOFM-to-SAL “optimized” translator [38], and LearnLib’s [46]
L*-based Mealy machine learning algorithm.3

V. APPLICATIONS

To demonstrate the capabilities of our method, we use it to
learn the interface for three different applications: a light switch,
a beverage vending machine, and a patient-controlled analge-
sia (PCA) pump. All of the interfaces in the application were
learned using our Java-based implementation of the method on
a computer workstation with a 3.7-GHz Intel Xeon processor
and 128 GB of RAM running Linux Mint.

A. Light Switch

The first application is a simple light switch. In this, a person
flips a single switch to turn a light ON and OFF.

1) Task Modeling: The task model for describing the desired
user behavior for the light switch is shown in Fig. 3: (a) rep-
resents the behavior for turning a light ON when it is OFF and
(b) represents the behavior for turning the light OFF when it is
ON. The state of the light is represented by a Boolean variable
(iLight) that is true when the light is ON and false otherwise. In
both cases, the top-level activity is completed by performing the
action for flipping the switch (hFlipSwitch).

2) Interface Generation: When the task model was run
through the interface generation method, the generation process
took 2.65 s and processed 15 queries. The generated interface
design is shown in Fig. 3(c). This appears to support the task
[see Fig. 3(a) and (b)] in that the human flipping the switch will
turn the light ON and OFF.

B. Vending Machine

For the vending machine application, we assume that the
machine only sells one kind of drink, drinks cost 50¢, and the
machine exclusively accepts payment with quarters.

1) Task Modeling: We created an EOFM task model
describing how we would normatively want the human
operator to interact with the machine (see Fig. 4). This

2Note that we did experiment with the use of bounded model checking (an
approach that limits model search depth) in our analyses. However, this proved
to be computationally less efficient. This is because we could not make any guar-
antees about the lack of deadlock in generated formal models and thus needed
to run multiple bounded model-checking runs to avoid artificial confirmations
that would not produce counterexamples.

3The method’s implementation and model data for all of the presented appli-
cations are available at http://fhsl.eng.buffalo.edu/EOFM/
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Fig. 3. (a) and (b) Visualization of the EOFM task for turning the light ON and OFF. Activities are rounded rectangles; actions are unrounded rectangles.
Preconditions and completion conditions are yellow and magenta triangles, respectively, connected to their associated activities and annotated in condition logic.
Activity decompositions are downward pointing arrows annotated with decomposition operators. (c) Moore machine model of the generated human–machine
interface. Each circle is a state labeled with its name (S0 and S1 ) and the values of the corresponding system outputs. An arrow indicates a transition triggered by
the action in the arrow’s label. If an action does not produce a transition from a given state, then the action is not allowed in that state.

model assumes that the human operator can see how much
money has been entered into the machine (iMoneyIn), if
a drink has been vended (iDrinkOut), and if any change
has been returned (iMoneyOut). He or she can perform
actions for entering quarters (hEnterQuarter), press-
ing the drink button (hPressDrinkButton), pressing the
change return (hPressChangeReturn), picking up vended
drinks (hPickUpDrink), and picking up returned change
(hPickUpChange). The behavior of the human operator was
described using three goal-directed tasks for: entering money,
acquiring a drink, and retrieving change.

Fig. 4(a) shows the task for entering money. This task can
be performed when the money entered is less than the drink
price. To enter money, the human first notes how much money
is currently in the machine (lChangeIn = iMoneyIn from
aRememberChangeInValue). Then, the human operator per-
forms the activity for entering a quarter (aEnterCoin). This is
completed when the hEnterQuarter action is performed and
the completion condition is satisfied: that the money entered
into the machine is a quarter’s value more than it was before the
quarter was entered (iMoneyIn = lChangeIn + cQuarter).

The task for getting a drink is shown in Fig. 4(b). In this, once
the money entered is greater than or equal to the drink price, the
human operator first presses the drink button. This should result
in a drink output and the entered money resetting to zero. The
human operator can then pick up the drink, which should result
in there being no drink output.

If the money entered into the machine is greater than zero, the
human operator can perform the task for returning change [see
Fig. 4(c)]. He or she first notes how much money is currently
in the machine (as was done when entering money) and then
presses the change return button. For this to complete success-
fully, the money in the machine must then drop to zero and the
money outputted must match what was in the machine before
the change return was pressed.

2) Interface Generation: This task model was used as input
to the Java program implementation of our method. The program
ran for 61.82 s, during which 185 queries were processed. The
resulting interface is shown in Fig. 5.

An examination of the generated interface seems to show that
the interface is compatible with the associated human operator
task. The machine allows the human operator to enter money
until the correct drink price is reached. The machine will only
vend a drink if the entered money is equal to the drink price. If a
drink is output, then the human operator can pick it up, removing
it from the machine. Whenever change has been entered, the
human can press the change return to get the money as output,
after which they can pick up the money.

VI. PCA PUMP

Our final application was the interface to a PCA pump. A PCA
pump is a medical device designed to deliver pain medication
to a patient intravenously based on patient inputs (usually via a
button) and a prescription programmed into it by a technician.
This application was chosen specifically because PCA pumps
have been known to have a number of issues related to human–
machine interaction. Furthermore, a formal reference model of a
PCA pump and its interface have been developed [64]. Because
the paper associated with this model contains a description of
a human operator task (though not an explicit task model), this
application gives us the opportunity to check our generation
method against a robust reference.

The PCA reference model [64] has five major components:
alarm manager, pump controller, user interface, display, and
logs for events and errors. For this work, we focus on the user
interface and the behavior it was intended to support.

The PCA pump interface is designed to give practitioners
and patients access to information and controls necessary for
setting up the pump and delivering medication. The PCA pump
interface is meant to have four states to indicate the state of the
pump: Stopped, Started, Bolus, and Wait. The Stopped state
represents a situation where the device is not administering
any treatment. The Started state indicates that the pump is
delivering medication at a steady rate based on a prescription.
In the Bolus state, the pump delivers an additional dose of
medication. When the pump interface is in the Wait state, it
indicates that prescription or bolus delivery has been paused.
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Fig. 4. Visualization of the EOFM tasks for (a) entering money into the drink
vending machine, (b) dispensing and picking up a drink from the machine, and
(c) picking up change returned by the machine.

The pump interface also keeps track of whether or not a bolus
is being administered so that a bolus can resume administration
if it is interrupted.

Humans (patients or medical practitioners) who interact with
the device can do so in several ways. The interface is meant to
allow for all of the following six human actions: a change to the
prescription programmed into the device,4 confirming treatment
changes, starting a bolus, canceling a bolus, starting the admin-
istration of a prescription, waiting for a bolus to complete, and
waiting for treatment to administer.

It is important to note that the interface in the reference model
[64] is not necessarily a good example of interface design. It is
being considered here because it gives us a robust standard that
our method’s results can be compared to.

A. Task Modeling

An EOFM model was instantiated to describe the task behav-
ior from the reference model. In this, the human is able to see
the interface state, iState, which can have any of the four values
identified above. The human can also see the state of bolus ad-
ministration (iBolus), which is true during bolus administration.
The human operator could perform all of the following actions,
each corresponding respectively to the interface actions listed
above: hChangeSetting, hConfirmSettings, hPressBolus,
hPressStart, hWaitForBolus, and hWaitForInfusion.

Fig. 6 shows the task describing how the human operator in-
teracts with the device. Infusion can be started [see Fig. 6(a)]
when the interface is in the Stopped state by performing the
hPressStart action. A human can change prescription settings
[see Fig. 6(b)] if the interface is in the Started or Bolus states
by performing the hChangeSettings action. The human can
wait for infusion to finish [see Fig. 6(c)] when the interface is in
the Started state by performing the hWaitForInfusion action.
A human can start a bolus [see Fig. 6(d)] once infusion has
Started by executing the hPressBolus action. Note that this
not only changes the interface state, but sets iInBolus to true. A
human can wait for the bolus infusion to finish [see Fig. 6(e)] by
waiting (hWaitForBolus). Note that when a bolus completes,
iInBolus becomes false. If the interface is in the Started or
Bolus states, the human can change the prescription [see Fig.
6(f)] in the pump using the (hChangeSettings) action, which
puts the interface into the Waiting state. Finally, if the inter-
face is in the waiting state, the human can confirm treatment
[see Fig. 6(g)] by performing the settings confirmation action
(hConfirmSettings). If bolus treatment is not being adminis-
tered, this should put the interface back into the Started state.
Otherwise, it should put it into the Bolus state.

B. Interface Generation

When the PCA task model was run through our imple-
mentation of the method, it produced the interface shown in
Fig. 7(a) after 87.84 s and 217 queries. As with the previous ap-
plications, a visual inspection appears to show that the interface
is consistent with the task used to generate it.

4This represented as a single action in the reference model interface [64].
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Fig. 5. Moore machine model of the generated vending machine human–machine interface.

Because the PCA application comes from a reference model
[64], there is an established interface model to compare the gen-
erated model to. This is shown in Fig. 7(b). While the interface
we generated contains five states, the reference model contains
only four. However, the reference model uses a notation that is
a combination of Mealy and Moore machine features. Specif-
ically, transitions with the expression inBolus := true allow
variables to be assigned values when a transition occurs. This
allows the interface to be in the Wait state with inBolus be-
ing both true and false. As such, we can think of the Wait state
from Fig. 7(b) being a combination of states S3 and S4 from Fig.
7(a). With this perspective, Fig. 7(a) and (b) clearly represent the
same interface behavior. Thus, our interface generation method
was able to create the same design that was included with and
rigorously evaluated in the PCA formal reference model.

VII. VALIDATION

The visual inspection of the generated interfaces seems to
indicate that they always support the tasks they were generated
from. However, to validate that this is the case, we can use
formal verification. Specifically, EOFM supports the ability to
automatically generate specification properties to check that a
system and/or interface is compatible with and always supports
the human operator task [40].

Generated properties assert qualities about the execution state
of the task models based on their formal semantics [40]. This
allows analysts to look for problems in the human-automation
interaction (HAI) of a system by finding places, where the task
models would not perform as expected and thus elucidate po-
tential unanticipated interaction issues. Properties are able to
assert that every execution state of each activity and action are
reachable, that every transition between execution states are
achievable, that all activities and actions will eventually finish,
and that any human task will always eventually be performable.
Collectively, if all of these properties evaluate to true, then we
know that the system being evaluated always supports the task.

We used this feature of EOFM to validate each of the inter-
faces generated above. Specifically, each formal interface model

TABLE I
GENERATED INTERFACE FORMAL VERIFICATION RESULTS

Model Interface Model Verified Verification Deadlock
States States Properties Time (s) Time (s)

Light Switch 2 40 27 0.83 0.05
Vending Machine 6 475 104 41.95 0.57
PCA Pump 4 7808 111 36.64 0.50

was paired with the formal version of the EOFM task model used
to generate it and checked against all of the generated specifica-
tion properties supported by EOFM [40]. Additionally, because
some of these properties are only true if the model has no dead-
lock states, formal deadlock checking was also performed. All
of these verification analyses and deadlock checks were per-
formed using SAL on the same machine used to generate the
interfaces.

All of the models were shown to satisfy the properties checked
against them and to be free of deadlock. Statistics concerning
the verification results are shown in Table I. These analyses in-
dicated that, for all of the evaluated applications, the generation
method was fulfilling its intended purpose: generating interface
designs that will always satisfy the human operator task models.

VIII. DISCUSSION AND FUTURE WORK

The work presented in this paper described a novel ap-
proach for using L* learning to automatically generate func-
tional human–machine interface designs. By learning interfaces
from task-analytic behavior models, this method ensures that
the interface will always support the human operator’s task be-
havior as captured by a task analysis and thus supports UCD.
This finding is supported by the presented validation results that
show that the generated interface designs allow every part of a
task to execute and do so without ever preventing tasks from
finishing or locking the user out of the system. Furthermore,
because L* learning ensures that a minimal model is produced,
the state space of the interface will also be minimal [11], [46].
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Fig. 6. Task models describing how the human should behave when interacting with the PCA pump.

This is a potentially advantageous property because it ensures
the minimal complexity of the interface [56].

While all of the presented applications demonstrate the power
of our method, the PCA pump is particularly compelling. This
is because the generation method was able to create the same
interface that was designed for the PCA pump reference model
[64] based on human task behavior the device was intended to
support. This is important because it shows that our method is
capable of generating a formal interface design that complies
with the interface the reference standard was rigorously verified
with. This suggests that our method is appropriate for safety
critical applications.

Despite these advances, there are still limitations of the meth-
ods and ways that it could be developed and assessed in the
future. These are explored in the discussion below.

A. Interface Usability and Other Artifacts of UCD

An interesting feature of our method is that it creates inter-
faces with forcing functions. That is, it creates interfaces that
will not let the human operator go off task [65]. For example,
the vending machine application will not let the human operator
enter more than two quarters into the machine. This is a known
method for ensuring safe system operation and preventing
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Fig. 7. (a) PCA pump interface design generated from the task model shown in Fig. 6. (b) PCA pump interface reference model from [64], presented in its
original notation. Note that in (b), states have been slightly rearranged to support easy comparison with the interface in (a). States and actions have been slightly
renamed for the same purpose. Recursive transitions to states (transitions that point to the same state they originated from) have been removed because they
relate to automation behavior that was not of concern in this analysis. Further note that in (b), multiple expressions on a transition are assumed to be in an “and”
relationship. == represents a Boolean equals and := represents a variable assignment.

human error. However, it also results in a system that could be
rigid or inflexible in unusual or unanticipated situations. Future
work should investigate when the forcing function feature of our
method is inappropriate and explore methods for accounting for
human operator tasks differently.

It is important to note that even though the generation method
ensures the use of forcing functions, this does not mean that the
generation method forbids nondeterminism in human tasks. To
the contrary, nondeterminism is inherently built into the differ-
ent decomposition operators of EOFM: allowing human tasks
to be described with multiple paths to success [20]. Such nonde-
terminism is present in the described applications. For example,
in the drink machine, the human can perform any of the three
tasks in Fig. 4 at any time, as long as the precondition of the
top-most activity of each task is satisfied. Thus, while there are
some potential drawbacks to the use of forcing functions, they
do not inherently remove the flexibility often associated with
valid task models.

In the extended formal human–automation interaction litera-
ture [4], there are a number of different formal usability proper-
ties [66]–[69]. These relate to the reachability of interface states,
the visibility of interface states, task-related properties (proper-
ties concerning task compatibility), and reliability [4]. We know
from the generation process and the verification analyses that
our method supports task-related usability properties. However,
it is not clear if the generated interface will satisfy the other
types of formal processes.

Our method did not consider the graphical representation of
the human–machine interface. However, the action flow infor-
mation contained in a task model could conceivably be used to
influence the position and layout of interface controls.

Work by Bowen and Reeves [6] applied formal methods to
other artifacts commonly generated during UCD, such as inter-
face drawings and storyboard concepts. Specifically, they de-
veloped techniques that allowed formal methods to describe the
behavior interface prototypes so that they can be used in formal
refinement processes (discussed in Section VIII-C) and other
types of formal analyses.

Future work should investigate whether these other formal
usability and UCD considerations can be accounted for in our
interface generation process to make it more robust and useful
to designers.

B. Scalability

We have made many efforts to ensure that the generation
process is fast, efficient, and will scale. This includes using the
state-space efficient version of the EOFM to SAL translator in
the teacher oracle [38]. We also reduce model-checking time by
using the database to allow the oracle to only check the part of
the query not previously processed.

These efforts are reflected in the results. As the number of
tasks grew from two in the light switch application, to three
in the vending machine, and to seven in the PCA pump, the
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amount of time required to learn the interface went up. However,
even the application that took the longest to generate the PCA
pump interface took less than a minute and a half. Thus, the
scalability was never a limitation for the examined applications.
However, because the method uses model checking, it is subject
to the state explosion problem: a situation where model size
can quickly grow too big to check [3]. Scalability has shown
itself to be a major limiting factor when using model checking
to evaluate human-interactive systems that require data entry
[25]. Thus, it is likely that scalability will be a limitation to
the method for more complex applications. Future work should
explore additional ways of improving the method’s scalability.

C. Formal Refinement

Refinement is a process in which a formal description of a
system is transformed into another one while ensuring that prop-
erties are maintained [70]. Refinement has shown promise for
converting formal human–computer interface descriptions into
actual interface implementations [71]. This concept is similar
to the interface generation discussed previously in Section II-F.
However, where the previous work was concerned with short-
ening development time, refinement strives to provide formal
guarantees about performance and usability.

Because EOFM task models have formal semantics [20], it
may be possible to generate formal interface designs directly
from task models by applying formal refinement to these se-
mantics. Because refinement processes do not rely on model
checking, they may be more computationally efficient than the
L* learning approach we employed. It is important to note,
however, that EOFM can have a significant amount of nondeter-
minism in the order that activities and actions can be executed
in. This flexibility is advantageous for modelers because it en-
sures that they are not overconstraining the normative behavior
of the human operator or the assumptions about the system they
are interacting with. However, creating transformation rules for
converting EOFM tasks into interface designs through formal
refinements that account for this nondeterminism may not be
straightforward.

Santoro [52] (whose work was briefly discussed under Section
II-F) developed techniques for generating abstract descriptions
of interfaces from formal task models represented in CTT using
transformation rules and design heuristics. However, these ab-
stractions required additional designer effort to ultimately pro-
duce finalized designs. The CTT approach can be used to pro-
vide formal guarantees, but these are done by checking the CTT
model itself or by integrating it with other elements of a larger
formal system model and then performing formal verification.
As such, research has not yet identified the transformation rules
that will preserve the task performance requirements encapsu-
lated by the task models in a generated interface (though the
heuristics used in [47]–[52] would be good initial candidates)
or the concurrent usability properties we plan to incorporate
in future developments (see Section VIII-A). Because nobody
has done this before, it is not clear how difficult such a pro-
cess will be. It could be that the automated learning afforded
by our use of the L* algorithm will prove to facilitate a much

more straightforward process. Future work should explore the
possibility of using formal refinement techniques with EOFM
to create interface designs. This refinement process could then
be compared to the learning approach presented here based on
their scalability, usability, and the guarantees they can provide.

D. Task Modeling for Interface Generation

In creating the task-analytic models for the presented appli-
cation, two features of task models revealed themselves to be
important for successfully generating interfaces. First, it was
best to keep the task models as modular as possible. This en-
sured that the model-checking process could successfully find
desired execution sequences. Second, the task models needed
to be explicit about the conditions expected from the interface.
For example, when inserting money in the vending machine
application, the task model was required to note the amount of
money entered into the machine before inserting an additional
quarter. The task’s completion condition also had to assert that
the amount of money registered in the machine was increased by
25¢. These constraints can certainly work for some applications,
like the ones presented here. However, they may be incompatible
for systems with complex tasks. Future work should investigate
how to avoid these constraints.

E. Validation With Other Applications and Human Subjects

The applications presented in this paper are illustrative, but
simple. We plan to continue developing applications as the gen-
eration method evolves to test the applicability of our method
in different domains.

It is important to note that applications presented here were
meant to test and demonstrate the capabilities of the method.
They do not necessarily represent the best practices for task
analysis. Clearly, the success of interfaces generated with the
method depends on the quality of the task models used as input.
Ideally, task models would be derived from a cognitive task
analysis conducted before the engineering of a system. This
would allow the generation method to be genuinely used as
part of UCD. However, because the presented applications are
simple and based on the existing analyses [64], the authors feel
confident that the task models used in the presented generations
are valid and reasonably representative.

While we have confidence in the ability of the method to
generate successful descriptions of interface behavior from task
models, the method could be more thoroughly validated. In par-
ticular, future work should focus on using the method to generate
interfaces for systems that are actually being designed using task
models and UCD. Such an effort would start with a task analysis
through which the task behavior model and other display con-
siderations would be discovered. The generation method would
then be used to create the functional description of the human–
machine interface. This would be used in conjunction with the
other requirements elucidated in the cognitive task analysis and
usability design principles to create an interface. Human sub-
ject experiments would then be used to assess how usable the
generated interface is. Such efforts will be the subject of future
research.
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